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Experimental verification of quantum contextuality using a weak measurement
in a single trapped ion
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Quantum contextuality is usually verified through establishing the violation of appropriate inequalities con-
structed based on the assumption of generalized noncontextuality. Recently, the connection between anomalous
weak values (AWVs) and the generalized contextuality under specific experimental conditions has been pro-
posed. Experimentally, only the connection between the real part of the AWVs and the generalized contextuality
is verified in a single-photon experimental system. In this paper, we conduct weak measurement experiments
in a single 40Ca+ ion system under specific experimental conditions. The incompatibility between quantum
mechanics and noncontextual ontological models (NCOMs) is verified by both the real and imaginary parts of
the AWVs, which provides a more general test of the connection between the quantum contextuality and AWVs.
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I. INTRODUCTION

Quantum contextuality refers to the fact that it is not
possible to give a noncontextual classical interpretation of
quantum predictions in terms of ontic states [1]. In 1967,
the Kochen-Specker (K-S) theorem denied the noncontextual
hidden-variable model of quantum theory using a set of 117
incompatible observables and established the notion of quan-
tum contextuality [2]. Several attempts have been made to
simplify Kochen and Specker’s proof, especially to reduce the
number of different quantum observables used [3–6]. Then, to
circumvent the experimental difficulties of verifying multiple
algebraic equations and measuring many observables in tests
of the K-S theorem, various kinds of K-S inequalities with
more experimental ease were proposed to verify quantum
contextuality, e.g., the state-dependent Clifton inequality [7],
the Klyachko-Can-Binicioǧlu-Shumovsky (KCBS) inequal-
ity [8], and the state-independent Yu-Oh inequality [9]. Up
to now, quantum contextuality has been tested in experi-
ments with trapped ions [10–12], photons [13,14], molecular
nuclear spins [15], nuclear spins [16], and superconducting
systems [17].

In 2005, Spekkens generalized the conventional K-S notion
of contextuality in the operational framework, and granted it
a much more broadly applicable scope [18]. Compared with
the K-S contextuality, which is applicable only to projec-
tive measurements, Spekkens’ generalized contextuality can
be applied to all operational procedures, including unsharp
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measurements, preparations, and transformations. Recently, it
has been established that the generalized contextuality forms
the basis of quantum advantage in various information pro-
cessing tasks, e.g., universal quantum computation [19], state
discrimination [20], state-dependent cloning [21], quantum
random access codes [22], quantum weak measurement tech-
nique [23], and so on. Correspondingly, the noncontextual
bounds that quantify how well any noncontextual theory can
perform in these tasks constitute noncontextuality inequalities
whose violation can be used to witness the generalized con-
textuality [20–23].

Here, we focus on the noncontextuality inequality derived
from the quantum weak measurement scenario. Weak mea-
surement, with its outcome referred to as weak value, is a
new measurement method that amplifies signals by selecting
appropriate pre and postselected states under the weak cou-
pling [24]. Different from the strong measurement, a weak
measurement has the characteristics of less disturbance and
less information extraction [25]. Recent works have shown
that the incompatibility of quantum theories with noncon-
textual ontological models (NCOMs) can be proven in the
framework of anomalous weak values (AWVs) [26]. It has
been theoretically proven that the AWV is a full proof of
the generalized contextuality under certain extra operational
facts [23], and then the connection between the real part of the
AWV and the generalized contextuality has been verified in
a single-photon experimental system [27]. In 2019, Kunjwal
et al. theoretically proved that the nonzero imaginary part of
the weak value, seen as a new class of AWVs, can be used
to manifest the contradiction between the generalized con-
textuality and NCOMs with a more tightened inequality [28],
however, which still lacks the experimental test.
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In this paper, we use the experimental techniques of atomic
weak value amplification in Refs. [29,30] to verify the con-
nection between both the real and imaginary parts of AWVs
with the generalized contextuality. This experiment proves
the relationship between the imaginary parts of AWVs and
the generalized contextuality. Our results clearly violate the
noncontextual bound for the NCOMs, which provides a good
demonstration of the connection between AWVs and the
intrinsic contextuality of quantum mechanics.

II. THEORETICAL MODEL

A. Anomalous weak values

The principle of weak measurement [24,25,29–33] can be
explained by von Neumann’s measurement model. According
to the measurement process proposed by von Neumann [34],
we use a pointer to couple with the measured system and the
Hamiltonian describing the coupling interaction between the
pointer and the measured system can be written as

HI = gÂ ⊗ p̂. (1)

Here, g is the interaction strength, Â is the observable of the
system, and p̂ is the canonical momentum of the pointer. The
weak value in weak measurement is defined as [34]

Aw = 〈ψ f |Â|ψi〉
〈ψ f |ψi〉 , (2)

where |ψi〉 and |ψ f 〉 are the preselected and postselected
states, respectively.

AWVs in weak measurements [23,28] can be defined using
the real part or imaginary part of the weak values, described
as follows.

(1) Real part of the AWVs: If the real part of the weak
value is less than the minimum eigenvalue or greater than the
maximum eigenvalue of Â, we call Aw an AWV [23]. Assume
Â can be expressed as Â = ∑

a a�(a) using the spectral de-
composition technique, where a is the eigenvalue and �(a) is
the corresponding projector. Because the real part of Aw can
be expressed as

Re(Aw ) =
∑

a

aRe

( 〈ψ f |�(a)|ψi〉
〈ψ f |ψi〉

)
=

∑
a

aRe
(
�(a)

w

)
, (3)

a weak value Aw with anomalous real part implies that one of
its eigenprojectors satisfies Re(�(a)

w ) < 0 [23].
(2) Imaginary part of the AWVs: If the imaginary part of

the weak value is not zero, i.e.,

Im(Aw ) �= 0, (4)

we also call Aw an AWV. A weak value Aw with anomalous
imaginary part also implies that one of its eigenprojectors
satisfies Im(�(a)

w ) < 0 [28].

B. Noncontextual ontological models

In an operational theory, the primitive elements are
preparation and measurement procedures. The theory sim-
ply provides rules for calculating the probability p(k|P, M ),
representing the probability of obtaining an outcome k of
measurement M given a preparation P. As an example, sup-
pose we prepare a quantum system in a state |ψ〉, after

that a positive operator-valued measurement (POVM) {Ek}
is performed, then quantum theory gives the probability
p(k|P, M ) = 〈ψ | Ek |ψ〉.

For an ontological model of an operational theory, the
preparation procedure P is represented by a probability dis-
tribution p(λ|P) over a set of ontic states {λ ∈ �}, and the
measurement procedure M is represented by a conditional
probability p(k|λ, M ), representing that implementation of M
on a state described by λ yields outcome k with probability
p(k|λ, M ). Then, the ontological model gives the prediction
p(k|P, M ) = ∫

dλp(k|λ, M )p(λ|P).
Assumptions of noncontextuality are procedural con-

straints on the ontological model. NCOMs are ontological
models which satisfy that if two experimental procedures
(preparations or measurements) are operationally equivalent,
i.e., giving rise to the same statistics of prediction, then they
have an equal representation in the ontological model; in other
words, the characterization of each experimental procedure
only depends on its equivalence class and does not depend
on its context [18].

C. AWVs and contextuality

The authors of Refs. [23,28] proposed and proved a con-
nection between AWVs and the generalized contextuality
under certain conditions, and the following theorem was
given.

Theorem 1. In an operational interpretation of a physi-
cal theory, suppose there is a preparation procedure Pψi , a
two-outcome sharp measurement procedure Mψ f that outputs
S and F (corresponding to the successful and failed post-
selection of the state |ψ f 〉, respectively), and a generalized
measurement procedure {MW }z∈R, which satisfy the following
four conditions.

(1) The preselected state |ψi〉 and the postselected state
|ψ f 〉 are nonorthogonal

pψ f := p(S|Pψi , Mψ f ) = |〈ψ f |ψi〉|2 > 0. (5)

(2) There exists a two-outcome measurement Mε and a
probability distribution p(z) with median z = 0. Removing
the postselection procedure Mψ f , the weak measurement is
equivalent to a two-outcome measurement. That is, for all
z ∈ R,

p(z | Pψi , MW ) � p(z − g)p(1 | Mε )

+ p(z)p(0 | Mε ), (6)

where g is a positive real number.
(3) There exists a “probability of disturbance” pd ∈ [0, 1]

(the effect of weak measurements on subsequent measure-
ments) such that, ignoring the outcome of MW , it affects
the postselection in the same way as mixing it with another
measurement

p(S | Pψi , MW , Mψ f ) = (1 − pd )p(S | Pψi , Mψ f )

+ pd p(S | Pψi , Md ), (7)

where Md denotes some other measurement procedure with
two outcomes.

(4) The values of z have a negative bias probability of
“outweighing” pd after the successful postselection. That
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FIG. 1. (a) Experimental setup. A single 40Ca+ is trapped in a linear Paul trap, which is located in a vacuum chamber. The lasers for
quantum manipulation enter the trap by passing through the glass windows of the chamber. (b) The internal electronic states and coupling
lasers used. (c) The experimental procedure for the weak measurement using our single trapped ion.

is, by defining p−z := (pψ f )−1
∫ 0
−∞ p(z, S | Pψi , MW , Mψ f )dz,

the following two inequalities hold. For the real parts of
AWVs,

p−z ≈ 1

2
− 1√

π�z
Re(�w ) >

1

2
+ (1 − pψ f )pd

pψ f

, (8)

where �z is the wavepacket size of the measuring pointer. For
the imaginary parts of AWVs

p−z ≈ 1

2
− 1√

π�z
Im(�w ) >

1

2
+ (1 − pψ f )pd

pψ f

. (9)

The authors of Refs. [23,28] proved that there is no
noncontextual ontological model for the preparation Pψi , mea-
surement {MW }z∈R, and postselection of |ψ f 〉 satisfying the
outcome determinism for sharp measurements.

In our experiment of the weak measurement in a single
trapped ion, under a set of procedural constraints de-
scribed by the above conditions (1) to (3), the inequalities

LR = − (1−pψ f )pd

pψ f
− 1√

π�z
Re(�w ) > 0 and LI = − (1−pψ f )pd

pψ f
−

1√
π�z

Im(�w ) > 0 are experimentally verified. Therefore, the
violation of NCOMs can be obtained using these results and
the connection between AWVs and the generalized contextu-
ality can be established.

III. EXPERIMENTAL IMPLEMENTATION AND RESULT
ANALYSIS

A. Experimental setup and procedure

The experimental setup and the main sequence of our ex-
periment are shown in Fig. 1. A single 40Ca+ is produced
by the photoionization process and trapped in a blade-shaped
linear Paul trap, which is mounted in a vacuum chamber
[Fig. 1(a)]. The axial and radial trapping frequencies are ωz =

2π × 1.33 MHz and ωr = 2π × 1.6 MHz, respectively. Sev-
eral lasers with different wavelengths enter the trap by passing
through the glass windows of the chamber and illuminate
on the ion for the quantum manipulation and measurement
operations.

The Zeeman sublevels 4S1/2(mJ = −1/2) and 3D5/2(mJ =
−5/2) are used as the spinor states |↑〉 and |↓〉, respectively,
and their energy level spacing is denoted as h̄ω0 [Fig. 1(b)].
A narrow linewidth laser of 729 nm is used to drive the opti-
cal quadrupole transition between |↑〉 and |↓〉. The 729-nm
laser beam enters the trap by passing through two hollow
end-cap electrodes, parallel to the axial z direction, resulting
in a Lamb-Dicke parameter of η ≈ 0.08. The 397-nm laser,
coupling the S1/2 state to the short-lived state P1/2, is used for
Doppler cooling, electromagnetically induced transparency
(EIT) cooling and fluorescence detection. The 854-nm and
866-nm lasers are used for pumping the ion out of the D states.

Figure 1(c) shows the whole experimental procedure for
the weak measurement using a single trapped ion. The mo-
tional ground state of the ion can be prepared by implementing
the Doppler cooling for 1000 µs and EIT cooling for 300 µs.
Using optical pumping pulse for 3 µs, the internal electronic
state of the ion can be initialized to S1/2(mJ = −1/2). The
preselected state can be prepared by driving the |↑〉 → |↓〉
transition for a time tpre = 2θ/�, where 2θ is the rotation an-
gle and � is the coupling Rabi frequency. The weak coupling
between the motional state and the spinor state is achieved
by a bichromatic light pulse (with the frequencies ω0 ± ωz)
of 2 µs. The postselection by a 397-nm laser pulse of 120 µs
retains the data that the electronic state of the ion is |↓〉. A
π pulse of |↑〉 → |↓〉 transition is needed if the postselected
state is |↑〉. Furthermore, with the photon fluorescence de-
tection method, we can construct the postselected motional
wavepacket and obtain the average spatial displacement of the
axial motion [30,35–37].
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B. Preparation of the preselected state

In our weak measurement scheme, the axial vibrational
motion of the ion along the z direction and the spinor states are
used as the measuring pointer and measured system, respec-
tively. After Doppler cooling and EIT cooling in sequence, the
ion is cooled to the ground state. The obtained axial motional
ground state can be described as

|ϕi(z)〉 =
(

1

2π�z
2

)
1
4 e

− z2

4�z2 , (10)

where �z =
√

h̄
2mωz

= 9.726 nm is the width of the ground-

state wavepacket and m is the ion’s mass. However, the
internal state of the ion is initialized to |↑〉 by optical pump-
ing using 397-nm, 854-nm, and 866-nm lasers. Then we
rotate the internal state along the Y axis of the Bloch’s
sphere by 2θ = 0.94π to obtain the preselected state |ψi〉 =
cos(θ )|↑〉 + sin(θ )|↓〉.

C. Coupling of measured system and measuring pointer

In the trapped-ion system, the weak coupling of the system
and the pointer is achieved by a bichromatic light resonant
with the red and blue sidebands at the same time, which is
realized via sending the 729-nm laser through an acoustooptic
modulator (AOM) driven by two RF signals; the light frequen-
cies are ω0 − ωz and ω0 + ωz, respectively. Here, we choose
the Pauli-x operator σ̂x of the qubit as the system observable.
In the Lamb-Dicke approximation, the resulting Hamiltonian
of the weak coupling system reads

HI = h̄η�

2
(σ̂x sin φ+ − σ̂y cos φ+)[(â + â†) cos φ−

+ i(â† − â) sin φ−]. (11)

The Rabi frequency � can be adjusted by changing the in-
tensity of the two RF signals driving the AOM, and here we
set it as � = 2π × 8.24 KHz. â and â† are the annihilation
and creation operators for the degree of motional freedom,
2φ+ = φblue + φred and 2φ− = φblue − φred represent the sum
and difference between the red-sideband laser phase φred and
the blue-sideband laser phase φblue. In the experiment, we
choose φ+ = φ− = π/2, then the interaction Hamiltonian can
be written as

HI = ih̄(â† − â)

2
η�σ̂x = η��zσ̂x p̂, (12)

where the canonical momentum p̂ = ih̄(â†−â)
2�z

. By performing
the bichromatic light with a duration t = 2 µs, we obtain
a coupling strength g = η�t = 0.01 between the system
and the pointer and implement a spin-dependent displace-
ment. In this case, the probability of disturbance pd = 1 −
exp[−g2/4] = 0.00236 is small enough [27] and meets the
requirement of Eq. (7) [28]).

D. Postselection

The initial state for the internal and motional degrees of
the ion is |ψ〉 = |ψi〉 ⊗ |ϕi(z)〉. After the weak coupling, by
driving the ion to its fast decaying energy level 4P1/2 (with a
lifetime of about 7.1 ns) with 397-nm laser, we can distinguish

between the states |↑〉 and |↓〉. For our trapped ion system,
only the state |↓〉 can be postselected directly without de-
stroying the motional wavepacket as no photons are scattered.
However, the other states can be indirectly postselected with
the help of appropriate one-qubit rotations. In our experi-
ment, we take the result of postselected state |↑〉 to verify the
noncontextuality inequality. In this case, the preselected state
and the postselected state satisfy Eq. (5). To postselect |↑〉,
a 729-nm π -pulse resonant with the |↑〉 → |↓〉 transition is
implemented before the photon fluorescence detection. After
postselection, the wave function for the external motion is
(choosing �z as the unit of ẑ):

|ϕ f (z)〉 = sin
(
θ + π

4

)
e− (z−g)2

4 + cos
(
θ + π

4

)
e− (z+g)2

4

4
√

2π

√
1 + cos(2θ )e− g2

2

. (13)

Because the probability of successful postselection is 0.89%,
only about 222 experiments are effective for a total of about
25 000 experimental cycles. After completing the wavepacket
reconstruction, we fit the reconstructed data of the wavepacket
and obtain that, the displacement of the center position of
the motional wavepacket is about 0.108 ± 0.01173 (in units

FIG. 2. Wavepackets of the ground state (a) before and (b) after
the data acquisition process of our weak measurement experiment.
The red solid lines represent the theoretical results. The blue data
points represent the ground-state wavepackets reconstructed accord-
ing to the experimental data, and their central positions are 0.009 ±
0.001 and 0.009 ± 0.0013, respectively. It can be seen that the center
positions have very small deviations from the theoretical values.
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(a)

(b)

FIG. 3. The solid red lines are plots of (a) LR and (b) LI , respec-
tively, and the variable is the phase angle θ of the preselected state.
The black dots are the experimental results (Lexp

R = 0.3605 ± 0.0674,
Lexp

I = 0.3489 ± 0.0679) with the preselected state cos(θ )|↑〉 +
sin(θ )|↓〉, the postselected state |↑〉, θ = 0.47π , and g = 0.01. The
experimental results obviously violate the NCOMs.

of �z). And the displacement of the axial motion is δz =
g sin(2θ )/[ exp(−g2/2) cos(2θ ) + 1] ≈ 0.1055 in theory.

Similarly, for the cases where the weak value is imaginary,
we choose the preselected state cos(θ )|↑〉 + sin(θ )|↓〉, and
reconstruct the wavepacket with the postselected state |↑〉.
Different from the real part of the weak value, the observable
of the system is selected as the Pauli-y operator σ̂y of the
qubit, and the bichromatic light phases φ+ = π and φ− =
π/2 are used in the displacement operation. Then, by using
the definition of weak value in Eq. (2), Aw can be derived
to be pure imaginary numbers. For imaginary weak values,
according to the authors of Ref. [38], the wavepacket displace-
ment after postselection can be observed in the same direction
as defined using the pointer operator in Eq. (11), which is
p̂ when choosing φ− = π/2. When the postselected state is
|↑〉, the wavepacket displacement is δp = 0.106 ± 0.0117 (in
units of �p = h̄

2�z
). The displacement of the axial motion is

δp = g sin(2θ )/[exp(−g2/2) + cos(2θ )] ≈ 0.1061 in theory.
It can be seen that, in our weak measurement experiment

of the trapped ion, the interaction strength selected is only
0.01, and the postselection probability is only 0.89%. A large
amount of data need to be collected, and the experimental
duration is very long, so the stability of the experimental
system is particularly important. To monitor the stability of

FIG. 4. (a) The histogram represents the wavepacket recon-
structed directly without postselection after the internal states and
external motional states are weakly coupled. The blue line shows
the superimposed wavepackets with postselected state |↑〉 and |↓〉
in the weak measurement experiment. It can be seen that the two
wavepackets (the histogram and the blue line) are in good agreement,
which indicates that our experiment meets the requirement in Eq. (6)
that weak measurement is equivalent to a two-outcome measurement.
(b) The histogram represents the wavepacket reconstructed with the
successful postselection of |↑〉, which agrees well with the theoreti-
cal curve.

the experimental system and increase the confidence level
of the experimental data, we directly reconstruct the same
ground-state wavepacket of the pointer state before and af-
ter the data acquisition process of our weak measurement
experiment, respectively. As shown in Fig. 2, the center posi-
tions of the ground-state wavepackets are 0.009 ± 0.001 and
0.009 ± 0.0013, respectively, and the measurement errors are
within the acceptable range, indicating that our experimental
system is relatively stable during the experiment.

E. AWVs and contextuality

As shown in Fig. 3, the AWVs of real and imaginary
parts by experiments are in good agreement with Eqs. (8)

032211-5



CHUNWANG WU et al. PHYSICAL REVIEW A 109, 032211 (2024)

and (9). According to the above measurement results, we
obtain Lexp

R = 0.3605 ± 0.0674 and Lexp
I = 0.3489 ± 0.0679.

Verification of Theorem 1

To verify the validity of our experimental results, we need
to prove that the conditions in Theorem 1 are fulfilled. Note
that we already verified Eqs. (5) and (7), so only the validity
of Eq. (6) remains to be verified. After completing the weak
coupling procedure, a 854-nm laser pulse with a duration of
120 µs is used to pump the population from |↓〉 to |↑〉, and then
we directly reconstruct the pointer state wavepacket without
postselection. As shown in Fig. 4(a), we perform the proba-
bility superposition on wavepackets with postselected states
|↑〉 and |↓〉, and find that the pointer state wavepacket without
postselection agrees well with this superimposed wavepacket.
In Fig. 4(b), the experimentally obtained pointer wavepacket
with the successful postselection of the state |↑〉 is also given,
which agrees well with the theoretical result.

Now that all the conditions in Theorem 1 have been ver-
ified, we can evaluate that our experimental results clearly
violate the noncontextual bounds of the quantities in inequal-
ities Eqs. (8) and (9). The connection between the real and
imaginary parts of AWVs and the generalized contextuality is
demonstrated simultaneously.

IV. CONCLUSION

We use a single trapped 40Ca+ ion to perform weak mea-
surement experiments of purely atomic degrees of freedom
and demonstrate the connection between both the real and

imaginary parts of AWVs and the generalized contextuality.
In the experiment, the measurement error of the ground-
state wavepacket is within the acceptable range, indicating
that our experimental system is stable during the exper-
iment. To ensure that the weak measurement experiment
meets the verification conditions, we select the appropriate
pre and postselected states. The experiment is carried out
when the coupling strength is only 0.01, and the postse-
lection probability is only 0.89% to ensure that the weak
measurement process has little influence on the subsequent
measurement. In addition, the pointer-state wavepackets of
successful postselection, failed postselection, and no post-
selection measurement are used to verify the two-outcome
measurement equivalence of weak measurement. The good
scalability, stability, and flexible controllability of our trapped
ion system enable us to complete the measurement of the real
and imaginary parts of AWVs. Our results are important for
understanding the role of contextuality in quantum mechan-
ics, as well as for understanding the particular properties of
AWVs.
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