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Treating geometric phase effects in nonadiabatic dynamics
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We present an approach for eliminating the gauge freedom for derivative couplings, enabling nonadiabatic
dynamics in the presence of geometric phase effects. This approach relies on a bottom-up construction of a
parametric quantum Hamiltonian in terms of functions of a dynamical variable. These functions can be associated
with real- and imaginary-valued contributions to the Hamiltonian in a given diabatic basis. By minimizing
variable-dependent fluctuations of the imaginary functions we identify a set of diabatic bases that recover the
real-valued gauge commonly used for topologically trivial systems. This minimization, however, also confines
the gauge freedom in the topologically nontrivial case, opening a path towards finding gauge-invariant derivative
couplings under geometric phase effects. Encouraging results are presented for fewest-switches surface-hopping
calculations of a nuclear wave packet traversing an avoided-crossing region, for which fully gauge-invariant
derivative couplings are found.
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I. INTRODUCTION

It is well known that the parametric dependence of a quan-
tum Hamiltonian on a dynamical variable may give rise to
geometric phase effects that influence the dynamics [1–3].
This is particularly relevant to mixed quantum-classical dy-
namics which involves a quantum Hamiltonian that depends
parametrically on classical coordinates [4,5]. In topologically
trivial systems the nonadiabatic rotation of the quantum eigen-
basis induced by the classical coordinates is captured by the
derivative couplings between eigenstates which can be made
real valued by appropriately adjusting the gauge of the eigen-
basis [6]. In topologically nontrivial systems, however, the
derivative coupling also captures a “geometric” rotation that is
orthogonal to the otherwise real-valued nonadiabatic rotation.

In addition to imposing a path-dependent phase on indi-
vidual eigenstates in the adiabatic limit [1], the geometric
rotation introduces a complex contribution to the derivative
couplings between eigenstates [7]. As a result, the derivative
couplings can no longer be made real valued by a gauge trans-
formation. This complicates the description of topologically
nontrivial systems by trajectory surface hopping techniques
[8–11], such as the widely used fewest-switches surface-
hopping (FSSH) method [12,13], where real-valued vectors
associated with derivative couplings are required to determine
the direction in which to rescale classical momenta upon
nonadiabatic transitions (hops). Recent years have seen grow-
ing interest in the application of trajectory surface hopping to
problems featuring nontrivial topologies [14–18], including
pronounced spin-dependent behavior [19–24], conical inter-
sections [25–27], intersystem crossings [28–30], and Dirac
cones [31–33], prompting investigations into the influence of
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geometric phase effects within this class of techniques and on
the momentum rescaling directions in particular [34–36].

Traditionally, momentum rescaling directions have been
associated with the instantaneous limit of the Pechukas force
arising from a nonadiabatic transition [35,37,38]. In this limit,
the Pechukas force becomes an impulsive one in the direction
of the real part of the derivative coupling and so is real valued
by construction [9]. Nevertheless, the direction of the real part
of the derivative coupling is generally not gauge invariant.
Indeed, even in the topologically trivial case, a gauge exists
where the derivative coupling becomes fully imaginary, as a
result of which the direction of its real part becomes undefined
[39].

If anything, this suggests that previous works have adopted
an implicit gauge fixing which at the very least disfavors this
“singular gauge.” An obvious choice of gauge for the topolog-
ically trivial case is then one in which the derivative couplings
become fully real valued, consistent with the traditional ap-
plication of trajectory surface hopping techniques to systems
with real-valued eigenvectors. In the topologically nontrivial
case, however, there is no gauge in which the derivative cou-
plings become fully real valued, and a change in gauge rotates
their real part, changing the momentum rescaling directions.
The sudden appearance of a gauge ambiguity when geometric
phase effects are introduced motivates the formulation of a
more general treatment that applies to both the topologically
trivial and nontrivial cases, necessarily recovering real-valued
derivative couplings in the former and restricting the gauge
freedom in the latter.

In this article we pursue this goal by presenting a bottom-
up construction of a parametric quantum Hamiltonian in terms
of functions of a dynamical variable. These functions can be
associated with real- and imaginary-valued contributions to
the Hamiltonian in a given diabatic basis. We then recognize
that in certain “preferred” bases the functions associated with
the imaginary-valued contributions can be taken as constants
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in the topologically trivial case, consequently giving rise to
strictly real-valued derivative couplings. This allows us to
employ the fluctuations of these functions as a metric which
can be minimized to yield real-valued derivative couplings,
thereby resolving the singular-gauge ambiguity.

By employing the aforementioned metric we establish a
continuity between the topologically trivial and nontrivial
cases, enabling us to radically restrict the gauge freedom for
complex-valued derivative couplings arising in the topologi-
cally nontrivial case, thereby reducing the ambiguity in the
direction of their real parts. Moreover, for a series of two-
dimensional avoided-crossing problems we show empirically
that this approach yields fully gauge-invariant momentum
rescaling directions, while its implementation within FSSH
yields encouraging results when compared to exact quantum
modeling. In addition to shedding light on the fundamen-
tal properties of derivative couplings, our theory guides the
gauge-invariant implementation of trajectory surface hopping
techniques in the presence of geometric phase effects and
provides a path towards incorporating such effects in future
mixed quantum-classical dynamics methods.

II. THEORY

We begin by considering an arbitrary quantum Hamiltonian
that depends parametrically on a classical coordinate q. This
Hamiltonian can be represented by a set of real-valued scalar
functions of q, an obvious choice for which are the real and
imaginary parts of the Hamiltonian matrix elements. Assum-
ing the Hamiltonian is N-dimensional and traceless, we need
at most N2 − 1 functions to define it and can discard at least
N ′ = 1

2 (N2 − N ) functions if the Hamiltonian is constrained
to be topologically trivial with real-valued matrix elements.

Naturally, these functions depend on the diabatic basis
used to express the Hamiltonian. For example, a topologically
trivial Hamiltonian that has real-valued matrix elements in one
diabatic basis may have complex-valued matrix elements in
another. Importantly, this may give rise to complex-valued
eigenvectors and, consequently, complex-valued derivative
couplings [40], which implies that the applied functional
representation still captures some of the gauge freedom of
the derivative couplings, including the singular gauge. How-
ever, as shown below, by imposing that topologically trivial
Hamiltonians necessarily give rise to real-valued derivative
couplings, we can directly use the functions to avoid the
singular gauge.

To this end we must assess the eigenvector matrix in terms
of the functions. This can be achieved by analytic diagonaliza-
tion of the Hamiltonian, but doing so becomes intractable in
higher dimensions. Instead, we utilize the functions to directly
construct a unitary matrix of column eigenvectors and a real-
valued, traceless, and diagonal matrix of eigenvalues, both of
which depend parametrically on q (after which the Hamilto-
nian can be obtained through the eigendecomposition).

A natural way to construct this representation is by using
the generators of the group SU(N), which forms a basis of
N-dimensional, traceless, anti-Hermitian matrices. While the
particular form of each generator is arbitrary, we broadly
classify them into three subsets: {T E

ne
}, the subset of N − 1

imaginary-valued diagonal generators, {T R
nr

}, the subset of

N ′ real-valued off-diagonal generators, and {T I
ni
}, the subset

of N ′ imaginary-valued off-diagonal generators. To formu-
late a generic traceless eigenvalue matrix we associate each
imaginary-valued diagonal generator in {T E

ne
} with an “en-

ergetic” function of q, λne , which linearly combines the
generators to produce

E (λ) = i
∑

ne

λne T
E

ne
. (1)

The space of all possible traceless eigenvalue matrices is
spanned through Eq. (1) by variations in the functions
λne . If a given Hamiltonian H0 has the eigendecomposi-
tion H0(q) = V0(q)E0(q)V †

0 (q), where E0 and V0 are its
eigenvalue and eigenvector matrices, respectively, then λ =
(λ1, λ2, . . . , λN−1) are its energetic functions if E (λ(q)) =
E0(q) is satisfied.

Next, we recognize that a given eigenvector matrix V0 is
associated with a subset of SU(N), the elements of which
are related to one another by a gauge transformation. Accord-
ingly, we can formulate a generic eigenvector matrix up to a
gauge transformation as (see Appendix A for details)

V (I, R) =
∏

ni

exp
(
Ini T

I
ni

) ∏
nr

exp
(
Rnr T

R
nr

) ≡ U (I)Ṽ (R),

(2)

where I = (I1, I2, . . . , IN ′ ) are functions associated with
the imaginary-valued off-diagonal generators and R =
(R1, R2, . . . , RN ′ ) are functions associated with the real-
valued off-diagonal generators. We take the ordering and
choice of generators to be fixed as a convention.

A generic traceless Hamiltonian matrix then follows from
the eigendecomposition as

H (λ, I, R) = V (I, R)E (λ)V †(I, R), (3)

which, as expected, involves N2 − 1 independent functions.
If we discard U from the construction of V [Eq. (2)], by
setting I = 0, we can write a generic real-valued Hamilto-
nian as H̃ (λ, R) = Ṽ (R)E (λ)Ṽ †(R), which requires N ′ fewer
functions. To represent a given traceless Hamiltonian H0 using
Eq. (3), one simply solves the equation H (λ(q), I(q), R(q)) =
H0(q), yielding a functional representation of H0.

Once a Hamiltonian has been represented in terms of func-
tions, these functions can be used to evaluate the derivative
couplings, which follow from Eq. (2) as

V †(I, R)∇V (I, R) = Ṽ †(R)U †(I)∇U (I)Ṽ (R)

+Ṽ †(R)∇Ṽ (R), (4)

where ∇ denotes differentiation with respect to q and acts only
on its adjacent term. Here, the term Ṽ †(R)U †(I)∇U (I)Ṽ (R)
is generally complex valued and vanishes when I = 0. It
therefore does not contribute to the derivative coupling when
the Hamiltonian is topologically trivial and real valued. More
generally, it does not contribute when ∇I = 0, i.e., in the ab-
sence of fluctuations of I with q [41]. Indeed, for topologically
trivial Hamiltonians with ∇I = 0 the nonadiabatic rotation of
the eigenbasis is entirely captured by Ṽ †(R)∇Ṽ (R), which is
real valued by construction. As a result, it is appropriate to use
this term to determine momentum rescaling directions.
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However, as previously mentioned, a topologically trivial
Hamiltonian can be made complex valued by a diabatic basis
transformation, as a result of which ∇I �= 0 and Ṽ †(R)∇Ṽ (R)
no longer exclusively incorporates the nonadiabatic rotation.
Importantly, however, in such cases, one can always find a
diabatic basis for which ∇I = 0. This basis is part of a set
of “preferred bases” for which Ṽ †(R)∇Ṽ (R) optimally cap-
tures the nonadiabatic rotation. Hence, in practice one may
solve H (λ(q), Ik (q), Rk (q)) = D†

kH0(q)Dk for arbitrary dia-
batic transformations Dk , where Rk , Ik , and λ are the functions
representing the Hamiltonian associated with Dk , while mini-
mizing fluctuations of Ik . (We note that λ is independent of the
diabatic basis and therefore does not carry a k dependence.)

For simplicity, consider the case where Ik consists of only
a single function Ik which depends on a one-dimensional
coordinate q. Fluctuations of Ik can be assessed in terms of
its Taylor series as

Ik (q + ε) − Ik (q) =
∞∑

m=1

1

m!

∂mIk (q)

∂qm
εm, (5)

which for any constant Ik is exactly zero for any displacement
ε. By taking Ik to be a vector in the mononomial basis in
orders of ε, the coefficients in Eq. (5) can be considered
elements of the vector describing the displacement of Ik from
the point of constancy, defined by the zeroth-order element
which is subtracted out in Eq. (5). The Euclidean distance of
Ik from this point,

dist[Ik (q)] =
√√√√ ∞∑

m=1

(
1

m!

∂mIk (q)

∂qm
εm

)2

, (6)

then provides a metric for the extent to which Ik is locally
constant for a given value of ε.

A global metric can then be obtained by integrating Eq. (6)
over q,

D(Ik ) = �−1
∫

dist[Ik (q)] dq, (7)

and normalizing by the area integrated �. For multidimen-
sional coordinates q, Eq. (6) is trivially generalized to include
the terms of the multidimensional Taylor series, and for
multiple functions Ik = (Ik

1 , Ik
2 , . . . , Ik

N ′ ) the individual contri-
butions to the distance can be directly summed.

Solving H (λ(q), Ik (q), Rk (q)) = D†
kH0(q)Dk while mini-

mizing D(Ik ) across diabatic bases for arbitrarily large ε not
only recovers fully real-valued derivative couplings for the
topologically trivial case but also provides a means for extend-
ing the concept of preferred bases to topologically nontrivial
Hamiltonians. While there is no diabatic basis in which a topo-
logically nontrivial Hamiltonian has ∇I(q) = 0, taking the
preferred bases to be those which minimize D(Ik ) provides
an extension which continuously reduces to the topologically
trivial case. This therefore offers a consistent framework for
decomposing the derivative couplings through Eq. (4). The
purely real contribution, Ṽ †(R)∇Ṽ (R), then serves to deter-
mine the momentum rescaling directions.

Specifically for the N = 2 case, an arbitrary traceless
Hamiltonian in some given diabatic basis takes the form

H0(q) = ρ(q)

(
− cos θ (q) sin θ (q)eiφ(q)

sin θ (q)e−iφ(q) cos θ (q)

)
, (8)

which involves only a single generator for each of the three
subsets and hence a single function for each. Evaluating D(Ik )
for the solutions of H (λ(q), Ik (q), Rk (q)) = D†

kH0(q)Dk en-
ables one to find the set of preferred bases in which this
metric is minimized. We demonstrate the construction of H
according to Eq. (3) in Appendix B.

III. RESULTS

We now proceed with an application of our approach,
which we henceforth refer to as Dmin, to three models in-
volving a nuclear wave packet traversing an avoided-crossing
region, governed by Eq. (8) under different parametrizations.
For the resulting two-dimensional Hamiltonians, the functions
can be found analytically, upon which the metric and mo-
mentum rescaling directions can be computed throughout all
possible diabatic bases. In the Supplemental Material (SM)
[42], we present such a survey for all of the models under
the various applied parameter values. The accuracy of the
computed rescalings is then assessed within FSSH. A com-
prehensive review of the application of FSSH to topologically
trivial systems can be found elsewhere [12,13]. For topo-
logically nontrivial systems, the contribution of the diagonal
elements of the derivative coupling to the classical momentum
gives rise to a “pseudomagnetic” gauge field which yields
an additional force in the classical equations of motion. A
detailed derivation of these equations of motion can be found
in Appendix C.

A. Model A

In the first model, referred to as model A, Eq. (8) is param-
eterized as

ρ = A, θ = π

2
[erf (Bx) + 1], φ = Wy, (9)

where we take q = (x, y). The resulting Hamiltonian is real
valued when W = 0.0, corresponding to the topologically
trivial case, and becomes increasingly nontrivial for larger
values of W . Shown in Fig. 1 are the associated diabatic and
adiabatic surfaces, where it can be seen that adiabatic surfaces
are at a constant energy of ±A, while the diabatic surfaces
involve a single crossing at x = 0. Away from this crossing
region, both surfaces converge on one another. Also depicted
in Fig. 1 is sin φ, whose fluctuations are indicative of the
complex phase of the eigenvectors due to geometric phase
effects.

This model was previously investigated in detail in
Ref. [35], where FSSH was applied while determining
momentum rescaling directions based on whichever gauge
maximized the real part of the derivative coupling at that point
in the trajectory. This approach, which we refer to as Rmax,
yielded promising results for some values of B and W . How-
ever, it induces abrupt changes in the momentum rescaling
(between the x and y directions) when the magnitude of the
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FIG. 1. Visualization of the (a)–(c) diabatic and (d)–(f) adiabatic surfaces for models (a) and (d) A, (b) and (e) B, and (c) and (f) C with
parameters given in the text and W = 2.0. Superimposed on the diabatic surfaces are heat maps depicting the nuclear wave-packet intensity
as initialized on the n = 0 diabatic surface. Red arrows depict the initial momentum. Superimposed on the adiabatic surfaces are heat maps
of sin[φ(q)], representing the complex oscillation of the eigenvectors resulting from geometric phase effects that gives rise to complex-valued
derivative couplings.

geometric rotation is increased, which, as we show below,
introduces inaccuracies.

In accordance with the Dmin approach, one particular dia-
batic basis Dk̄ which happens to minimize the metric involves
the functional representation

λ = A, Rk̄ = −π

4
erf(Bx), I k̄ = 1

2
Wy. (10)

The associated metric is

D(I k̄ ) = 1
2 |W |, (11)

with the rescaling direction governed by

Ṽ †(Rk̄ )∇Ṽ (Rk̄ ) = −
√

π

2
Be−B2x2

x̂T R, (12)

where x̂ denotes the unit vector in the x direction and T R is
the real-valued off-diagonal generator of SU(2) provided in
Appendix B. From the survey presented in the SM [42], it
follows that Eq. (11) is a minimum shared by a set of preferred
bases that extends beyond k̄, all yielding the same momentum
rescaling direction up to an overall sign. Hence, Dmin predicts
that momentum should be unambiguously rescaled in the x
direction upon a nonadiabatic transition.

In what follows, we will compare results from FSSH within
Dmin to those obtained within Rmax and against exact quan-
tum results obtained with the Fourier transform method [43].
In doing so, we consider W = 0.0, W = 2.0, and W = 3.0
while fixing A = 20 and B = 1.0. The nuclear wave packet is
initialized on a single diabatic surface [44] as


(q) = eiq·pinit e−|q−qinit|2 (13)

while being centered at qinit = (−3, 0) and while moving to-
wards the avoided crossing with pinit = (px

init, 0), as depicted
in Fig. 1. Meanwhile, px

init is varied between 8 and 24. Since
the diabatic surfaces cross but the adiabatic surfaces do not,
a fully adiabatic trajectory (with no hops) yields transmitted
populations fully on the opposite diabatic surface.

Figure 2 shows results with the nuclear wave packet initial-
ized on the n = 0 diabatic surface, which initially corresponds
to the diabatic surface at the lowest energy. This roughly
corresponds to an initialization on the lower adiabatic sur-
face, as the diabatic and adiabatic surfaces coincide at the
initial wave-packet location (see Fig. 1). Such an initializa-
tion is particularly interesting, as virtually all nonadiabatic
transitions require energy to be absorbed from the momentum
within FSSH. With Dmin predicting x̂ rescaling, the rate of
nonadiabatic transitions is thus sensitively dependent on the
value of px

init. Hence, comparing transient populations against
exact quantum results makes for a sensitive test case for the
x̂ rescaling prediction. Results with an initialization on the
other (n = 1) diabatic surface (for which the nonadiabatic
transitions are less trivially related to momentum rescaling)
are included in the SM [42], and animations of the full wave-
packet dynamics for px

init = 24 and W = 3.0 are also provided
there.

For W = 0.0, meaning in the absence of geometric phase
effects, both Dmin and Rmax yield the same rescaling direc-
tion within FSSH, corresponding to the direction in which
momenta are conventionally rescaled within topologically
trivial systems. This is borne out in Fig. 2, where both ap-
proaches are seen to produce identical results, which are in
near-quantitative agreement with exact results save for small
deviations inherent to FSSH. Dmin retains a consistent perfor-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. Calculated results for a nuclear wave packet traversing
an avoided-crossing region described by model A [Eq. (9)] with (a),
(d), and (g) W = 0.0, (b), (e), and (h) W = 2.0, and (c), (f), and (i)
W = 3.0. Results from FSSH under application of the Dmin approach
are compared with exact results and with those from FSSH under
application of the Rmax approach [35]. Shown are the transmitted
population ρnn and the x and y components of momentum (px

n and py
n,

respectively) for the n = 1 and n = 0 diabatic surfaces. The nuclear
wave packet is initialized on the n = 0 diabatic surface.

mance throughout all values of W , again within the limitations
imposed by FSSH. In particular, the transmitted populations
ρnn show quantitative agreement with exact results across the
full range of initial momenta, underscoring the validity of
exclusive x̂ rescaling. The latter is further substantiated by the
high accuracy reached for the x component of the transmit-
ted momenta px

n for both diabatic surfaces. Trajectories that
remain on the same adiabatic surface arrive on the n = 1 dia-
batic surface with px

1 ≈ px
init as expected. The trajectories that

arrive on the n = 0 diabatic surface, however, lose momentum
due to x̂ rescaling that occurs following a hop.

According to Dmin, the y component of the transmitted
momentum is affected only by pseudomagnetic forces. This
prediction is consistent with results for py

n shown in Fig. 2,
where moderate deviations from the exact result can be at-
tributed to a breakdown of the FSSH algorithm in the presence
of such forces. For example, the overestimation of py

1 is due
to trajectories hopping twice in the crossing region (therefore
arriving on n = 1) and experiencing the opposite pseudomag-
netic force on the other adiabatic surface, reducing the net
transmitted momentum from the expected result of py

1 = −W
(which was derived analytically in Ref. [35]).

Similarly, py
0 is overestimated due to the randomized lo-

cation of the hops in the crossing region. In the SM [42], we
demonstrate that these sources of inaccuracy can be controlled
by confining hops to either the x > 0 or x < 0 region, yielding
an underestimation and overestimation of py

0, respectively. (In

both cases, py
1 shows a slightly improved agreement with exact

results due to the reduced number of trajectories that hop
twice, confirming that the observed inaccuracies are indeed
due to a breakdown of FSSH in the presence of pseudomag-
netic fields.) Notably, if the hops were constrained to the
x = 0 point the trajectories would arrive with exactly py

0 = 0,
having experienced the opposite pseudomagnetic forces on
both surfaces and thereby acquiring no net momentum in the
y direction. As such, the surface-hopping technique proposed
by Tully and Preston [8], in which hops occur only at avoided
crossings, would predict values of py

0 = 0, in better agreement
with exact results [35].

For Rmax, on the other hand, we find qualitative differences
from exact results to be much more pronounced. For the
applied parameters, this approach predicts ŷ rescaling when
|x| � 0.48 (|x| � 1.21) for W = 2.0 (W = 3.0) and x̂ rescal-
ing otherwise. Hence, rescalings along the y direction occur
particularly close to the crossing region. As a consequence,
the lack of initial momentum in this direction inhibits the
rate of upward transitions from the lower to upper adiabatic
surface. This is borne out in Fig. 2, where Rmax is seen
to significantly underestimate population transfer. Concomi-
tantly, significant deviations are found for py

0. Interestingly,
py

1 incidentally agrees with exact results because ŷ rescaling
prevents trajectories from hopping twice due to insufficient
momentum. Overall, however, the deviations introduced by
Rmax lead to qualitatively incorrect dynamics of the wave
packet not seen for Dmin.

B. Models B and C

The second and third models, referred to as model B and
model C, respectively, involve a rescaling direction that is
dependent on the instantaneous position. Model B uses the
same parametrization for ρ and φ as model A while modifying
θ such that it has a gradient ∇θ with a position-dependent
direction,

ρ = A, θ = −πe− 1
3 (Bxx2+Byy2 ), φ = Wy. (14)

Model C builds on model B, while parametrizing φ such that
its gradient also has a position-dependent direction,

ρ = A, θ = −πe− 1
3 (Bxx2+Byy2 ), φ = W

(
y + 1

5 xy
)
. (15)

Like model A, the Hamiltonians produced under models B
and C are topologically trivial for W = 0.0 and become in-
creasingly nontrivial for larger values of W . Unlike model A,
models B and C feature two diabatic crossings, so a trajectory
that does not switch adiabatic surfaces finds itself on the same
diabatic surface outside of the crossing region, as shown in
Fig. 1. From the survey of the metric and rescaling direction,
presented in the SM [42], it follows that, different from the
x̂ rescaling found for model A, models B and C involve ∇θ

rescaling whose direction depends on the position.
In the following, we again compare results from FSSH

within Dmin to those obtained within Rmax. We take A = 10,
Bx = 1.00, and By = 0.25 for both models B and C while
initializing the nuclear wave packet like in model A, but with
qinit = (−4,−2). Figures 3 and 4 show results for models B
and C, respectively, with the nuclear wave packet initialized
on the n = 0 diabatic surface. As before, the SM [42] includes
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. Same as Fig. 2, but for model B [Eq. (14)] with (a), (d),
and (g) W = 0.0, (b), (e), and (h) W = 1.5, and (c), (f), and (i) W =
2.0.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. Same as Fig. 2, but for model C [Eq. (15)] with (a), (d),
and (g) W = 0.0, (b), (e), and (h) W = 1.5, and (c), (f), and (i) W =
2.0.

results with initialization on the n = 1 diabatic surface, and
animations of the full wave-packet dynamics for px

init = 24
and W = 2.0 are also provided there.

Notably, both models B and C involve deviations in py
n even

for W = 0.0, which reflects inherent inadequacies of FSSH
in treating these models in the absence of geometric phase
effects. When geometric phase effects are turned on by taking
W = 1.5 or W = 2.0, deviations in py

n grow appreciably for
both Dmin and Rmax, although the former retains a well-
behaved trend overall, and its deviations from exact results are
less pronounced, especially for py

1. As for model A, it is plau-
sible that these deviations are attributable to shortcomings of
the FSSH algorithm in the presence of pseudomagnetic fields,
rather than the Dmin approach, although it is challenging to
assess this as we did for model A due to the nontrivial depen-
dence of the momentum rescaling direction on the position
for models B and C. Nonetheless, this attribution is consis-
tent with calculated values of ρnn, for which Dmin is once
more seen to reach quantitative accuracy. For Rmax signifi-
cant deviations are observed for this quantity. Both rescaling
approaches generally perform well for px

n.

IV. CONCLUSION AND OUTLOOK

To conclude, our bottom-up construction of parametric
Hamiltonians establishes a continuity between topologically
trivial and topologically nontrivial systems, resolving a con-
ceptual discontinuity in how such systems have previously
been treated in trajectory surface hopping methods. By defin-
ing a functional representation, the gauge ambiguity arising
for topologically nontrivial systems is brought on equal foot-
ing with that of the topologically trivial case. This provides
a framework by which the gauge freedom of the derivative
couplings can be restricted, even in the presence of geometric
phase effects, and momentum rescaling directions can be de-
termined within trajectory surface hopping techniques.

The resulting approach, Dmin, produces FSSH results in
favorable agreement with exact quantum modeling and offers
a general improvement over a previously proposed rescaling
approach [35], here referred to as Rmax. Notably, while Rmax

was found to disagree with exact results for the parameters
used here, it was previously shown to yield good agreement
with exact results for model A under a wide range of parame-
ter choices [35]. Notably, for all of these cases Rmax predicts
a momentum rescaling along x̂. As such, the Dmin approach
introduced in this article emerges as an equally viable means
of momentum rescaling in these particular instances, but one
that is more broadly generalizable.

In closing, we would like to share a perspective on the
application of our approach beyond the two-dimensional
avoided crossings explored in the present work. Notably, es-
tablishing the functions for a given Hamiltonian can be done
numerically by using a grid of q points, avoiding the need
for deriving their analytic expressions. In the SM [42], we
present a proof of concept of a fully numerical evaluation
of the functions and resulting metrics for model A, where
it is noted that the sum in Eq. (6) fortuitously is prone to
truncating at finite order and that minimizing the metric can, in
principle, be performed iteratively, similarly to how a molecu-
lar geometry optimization is performed. Such fully numerical
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evaluations open potential opportunities for the application
of our approach to ab initio trajectories, which additionally
requires the use of a diabatization scheme [45–52].

Although applications of our approach to high-dimensional
systems may generally pose a challenge, an interesting ex-
ception is formed by simple lattice models, which provide
a popular route for studying the fundamental physics of
topological materials [53] and for which our approach can
be readily applied by virtue of them being analytically
parametrized in a well-defined diabatic basis. Hence, our
present work is of particular relevance to emergent efforts
applying trajectory surface hopping techniques to lattice mod-
els. It is noteworthy that our approach is fully consistent
with our previous study [54], which found that truncated
reciprocal-space lattice Hamiltonians may yield complex-
valued derivative couplings. In this case, a truncated discrete
Fourier transform can be applied to bring the system into a
preferred basis in order to find real-valued derivative cou-
plings. This reflects the lack of geometric phase effects in
the equivalent real-space Hamiltonian [55]. In addition to
lattice models, it is conceivable that other classes of problems
provide similar analytical routes through which our approach
can be applied readily.
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APPENDIX A: CONSTRUCTION OF V FROM THE
GENERATORS OF SU(N)

In its most general form an eigenvector matrix V0 is an ele-
ment of U(N) by virtue of its unitarity. By the multiplicativity
of the determinant, V0 can be made into an element of SU(N)
through a gauge transformation that leaves H0 unchanged. It
therefore suffices to construct a generic eigenvector matrix V

as an element of SU(N), i.e.,

V (I, R, G) =
∏

ni

exp
(
Ini T

I
ni

)∏
nr

exp
(
Rnr T

R
nr

)

×
∏
ne

exp
(
Gne T

E
ne

)
, (A1)

where I = (I1, I2, . . . , IN ′ ), R = (R1, R2, . . . , RN ′ ), and G =
(G1, G2, . . . , GN−1) are functions associated with the subsets
{T I

ni
}, {T R

nr
}, and {T E

ne
}, respectively.

The ordering of generators in Eq. (A1) is taken as a
convention, and the inclusion of the terms associated with
{T E

ne
} in Eq. (A1) is an intentional one meant to emphasize

their role as gauge transformations. Variations in G leave
the Hamiltonian unchanged, so these terms can be discarded.
Therefore, instead of SU(N) we represent V by a subset of
SU(N) which still accounts for every possible Hamiltonian,
leading to Eq. (2).

APPENDIX B: CONSTRUCTION OF H FROM THE
GENERATORS OF SU(2)

For N = 2, H can be constructed by employing the gener-
ators of SU(2), given by

T E =
(

i 0
0 −i

)
, T R =

(
0 −1
1 0

)
, T I =

(
0 i
i 0

)
.

(B1)

A generic eigenvector matrix can be written following Eq. (2),

V (I, R) = exp(IT I ) exp(RT R). (B2)

The eigenvalue matrix, on the other hand, follows from
Eq. (1),

E (λ) =
(−λ 0

0 λ

)
, (B3)

upon which the Hamiltonian follows from Eq. (3) as

H (λ, I, R) = V (I, R)E (λ)V †(I, R)

= λ

( − cos(2R) cos(2I ) − sin(2R) + i cos(2R) sin(2I )
− sin(2R) − i cos(2R) sin(2I ) cos(2R) cos(2I )

)
. (B4)

APPENDIX C: DERIVATION OF CLASSICAL EQUATIONS
OF MOTION

Trajectory surface hopping techniques assume adiabatic
evolution of a quantum state on a single adiabatic surface in
between hops, denoted by α. This corresponds to the Born-
Huang approximation under which the classical Hamiltonian
takes the form [6]

H cl = 1
2 ( p̃ − Aα )2 + Vα (q). (C1)

Here, p̃ is the gauge-dependent canonical momentum, and
Aα ≡ i〈α|∇α〉 is the gauge potential. Classical mechanics
involves the kinetic momentum p = p̃ − Aα = q̇, where the
second equality assumes all classical masses are set to unity.
Note that in the main text it is the kinetic momenta that are

sampled to represent the nuclear wave packet and the canon-
ical momenta are never explicitly utilized. This approach is
consistent with how FSSH is ordinarily applied, seeing that
for topologically trivial systems the difference between the
kinetic and canonical momenta vanishes in the appropriate
gauge.

The equations of motion then follow as

q̇ν = ∂H cl

∂ pν

(C2)

and

ṗν = −∂H cl

∂qν

− dAν
α

dt
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=
∑

μ

(
p̃μ − Aμ

α

)∂Aμ
α

∂qν

− ∂Aν
α

∂qμ

q̇μ − ∂Vα

∂qν

=
∑

μ

pμ

(
∂Aμ

α

∂qν

− ∂Aν
α

∂qμ

)
− ∂Vα

∂qν

, (C3)

where we made use of the chain rule to obtain the gauge-
invariant pseudomagnetic force terms, which are reminiscent
of the Lorentz force on a charged particle in a magnetic
field.
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