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Decay of long-lived oscillations after quantum quenches in gapped interacting quantum systems
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The presence of long-lived oscillations in the expectation values of local observables after quantum quenches
has recently attracted considerable attention in relation to weak ergodicity breaking. Here, we focus on an
alternative mechanism that gives rise to such oscillations in a class of systems that support kinematically
protected gapped excitations at zero temperature. An open question in this context is whether such oscillations
will ultimately decay. We provide strong support for the decay hypothesis by considering spin models that can
be mapped to systems of weakly interacting fermions, which in turn are amenable to an analysis by standard
methods based on the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy. We find that there is a
time scale beyond which the oscillations start to decay that grows as the strength of the quench is made small.
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I. INTRODUCTION

A key question in nonequilibrium many-body quantum
dynamics is to understand how ergodicity can be broken
and thermalization avoided. The best known examples are
many-body localization (MBL) [1] and quantum integrable
systems [1,2]. The issue of ergodicity in generic systems
is addressed by the eigenstate thermalization hypothesis
(ETH) [3–5], which provides a description of the structure
of the matrix elements of observables in energy eigenstates.
In the literature, violations of ergodicity are often referred
to as either “strong” or “weak” depending on whether the
fraction of states failing to satisfy ETH remains nonzero or
vanishes in the thermodynamic limit, respectively [6]. Weak
violations of ergodicity have recently attracted a great deal of
attention in the context of so-called quantum many-body scars
(QMBS) [7–11]. This notion was first introduced to explain
the unexpected dynamics of a Rydberg atom quantum simu-
lator [12] where initializing the system in a particular initial
state resulted in long-lived oscillations in the time evolution
of observables.

A seemingly related phenomenon has been observed in
quenches in certain spin chains, referred to as “weak thermal-
ization” in Ref. [13]. Various authors [13–23] have noted that
for the Ising chain in a tilted field following a quench, there
are long-lived oscillations at frequencies corresponding to the
masses of “meson” bound states. Similar oscillations were ob-
served in the Potts model [24]. These studies have been unable
to simulate late enough times to conclude whether the meson
oscillations decayed at late times. In the paramagnetic regime
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Ref. [14] found oscillations beginning to damp following a
quantum quench in the scaling limit. Theoretical arguments
for the eventual decay have been given in Ref. [16]. In the
latter work it is moreover argued that such oscillations should
be generic to quantum systems with a quasiparticle gap and
isolated bands such as produced by bound states.

The fate of oscillations at late times is, however, controver-
sial: oscillations in the postquench dynamics of observables in
quantum field theories were predicted by Delfino and collab-
orators in Refs. [25,26], and subsequently in Refs. [27,28] it
was argued that they persist for arbitrarily long times.

The Ising chain in a tilted field is unusual in the sense
that the perturbation that leads to the formation of meson
bound states is nonlocal with respect to the fermionic ele-
mentary excitations of the transverse-field Ising chain. This
precludes the analysis of particle decay by standard perturba-
tive approaches. In light of this fact it is important to identify
models that exhibit the same phenomenology, but can be
studied by such methods. One such example was recently
reported by us in the axial next-nearest-neighbor Ising model
(ANNNI) [29], which has a nonconfining (contact) potential
for the elementary fermion excitations. In this work we give
two quench setups that we consider to be particularly simple
examples of such behavior. The first is a quantum quench in
integer spin antiferromagnetic chains, which possess a gapped
single-particle (magnon) mode according to Haldane’s con-
jecture [30,31]. This model very cleanly demonstrates that the
phenomenology is due neither to confinement, nor indeed to
bound states, but simply due to the system possessing a kine-
matically protected gapped quasiparticle excitation. However,
as integer spin antiferromagnets are strongly interacting sys-
tems, we are restricted to purely numerical investigations of
the nonequilibrium dynamics of this model by matrix product
state (MPS) methods. Secondly, we present and analyze in
detail an example of these long-lived oscillations in a model
with weak interactions that has the simplifying feature of
exhibiting a U(1) symmetry associated with particle number
conservation: a dimerized XXZ chain in a staggered magnetic
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field. In the scaling limit, the low-lying excitations of this
model can be understood in terms of solitons, antisolitons, and
a bound state known as a “breather” which can give rise to
long-lived oscillations after quantum quenches.

Many other mechanisms for producing long-lived os-
cillations are possible in quantum systems that should be
differentiated from the case we discuss. We have already
mentioned exact quantum many-body scars, which can cause
infinite lifetime oscillations if the initial state has large overlap
with scar states lying in the middle of the spectrum. There
are also Bloch oscillations of domains in the tilted field Ising
model at low domain-wall density and related models of Ry-
dberg atoms [32,33]. Long-lived oscillations can also occur
in the electric field strength in lattice gauge theories that are
related to quantum many-body scars [34,35]. Finally, in the
presence of a U(1) symmetry undamped oscillations can oc-
cur when one considers observables that connect neighboring
charge sectors and applies a Zeeman field that splits all sectors
by the same energy difference [36,37].

The organization of this paper is as follows: in Sec. II we
describe the mechanism that can give rise to long-lived oscil-
lations in models with kinematically protected single-particle
excitations before giving a simple numerical case study of
such behavior in the spin-1 bilinear-biquadratic (BLBQ) chain
in Sec. II A. The spin-1 chain provides a clear example
of the phenomenology we are interested in; however, it is
always strongly interacting. In contrast, the ANNNI and re-
lated Ising models can be mapped to fermionic chains for
which the interaction can be considered perturbatively. How-
ever, the lack of a U(1) symmetry (and in the case of a
tilted field, long-ranged interactions between fermions) sig-
nificantly complicates the application of standard methods
based on the Bogoliubov—Born—Green—Kirkwood—Yvon
(BBGKY) hierarchy [38–40]. In Sec. II B we address this
problem by introducing a dimerized XXZ chain in a staggered
magnetic field, which exhibits a U(1) symmetry as well as
long-lived oscillations of observables after quantum quenches.
In Sec. III we present two different approximations based
on the BBGKY hierarchy—a self-consistent time-dependent
mean-field theory (SCTDMFT) and the second Born ap-
proximation [41,42]—to study the quench dynamics of local
observables.

II. OSCILLATIONS AT “EARLY” TIMES

The physics underlying the oscillations explored within
this paper arises from two key requirements:

(1) The existence of a kinematically protected mode, i.e.,
a quasiparticle with a gapped dispersion ε(q) � �ex such that
there is some region in the energy-momentum plane that has
no other energy eigenstates.

(2) Initial density matrices ρ(t = 0) such that the energy
density deposited into the system by the quench (relative to
the postquench ground state energy EGS) is small compared to
the spectral gap of the postquench Hamiltonian

εQuench = lim
L→∞

1

L
(Tr[ρ(t = 0)H] − EGS) � �ex. (1)

If the above requirements are met, the physics can be
viewed in terms of a dilute gas of long-lived particles,

whose scattering is to a good approximation purely elastic,
cf. Refs. [43–50]. The possible emergence of long-lived os-
cillations can then be understood by considering the linear
response regime of ground state quenches. This is equivalent
to the approach of Refs. [25–28]. To that end, we consider
an initial state |ψ0〉 that is the ground state of a Hamiltonian
H0, and time evolve with H = H0 + λV . Here, V is a global
operator that is assumed to be translationally invariant (as is
H0). By construction both H0 and H feature kinematically
protected gapped single-particle excitations. Linear response
theory then gives

〈ψ0|O(t )|ψ0〉 ≈ 〈ψ0|O|ψ0〉 − iλ
∫ t

0
dt ′ χOV (t, t ′),

χOV (t, t ′) = 〈ψ0|[OI (t ),VI (t ′)]|ψ0〉,
OI (t ) ≡ eiH0tOe−iH0t . (2)

The response function χOV (t, t ′) can be expressed in terms of
a Lehmann representation using the eigenstates of H0, which
gives

χOV (t, t ′) =
∑

n

ei(t−t ′ )(E0−En )〈ψ0|O|ψn〉〈ψn|V |ψ0〉 − c.c.

(3)
We now consider perturbations V and operators O that
have nonvanishing matrix elements between the ground state
and the kinematically protected gapped excitation. As by
construction we are dealing with a ground state calcula-
tion, the contribution of this excited state will provide the
dominant contribution to the linear response function for
large t ,

〈ψ0|O(t )|ψ0〉 ≈ 〈ψ0|O|ψ0〉

+ 2λ
∑

k

Re
e−it ε̄(k) − 1

ε̄(k)
FO(k)F ∗

V (k) + · · · ,

(4)

where FO(k) = 〈ψ0|O|k〉 is the matrix element of the operator
O between the ground state of H0 and the single quasiparticle
excitation of H0 with momentum k and dispersion ε̄(k). As V
is by assumption a global, translationally invariant operator,
the only nonzero matrix element is with the zero-momentum
single-particle state

FV (k) ∝ δk,0 , (5)

which establishes that in linear response theory we obtain
persistent oscillations with frequency ε̄(0), cf. Refs. [25–28].
If instead either V or the initial state has invariance only under
translations by two sites, the matrix element will select out
momenta k = 0 and k = π . In this case oscillations will occur
at two frequencies, ε̄(0) and ε̄(π ), as long as the kinematically
protected mode exists at these momenta. The approach of
Refs. [25–28] can be straightforwardly modified by expanding
the initial state in terms of the eigenstates of the postquench
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Hamiltonian using perturbation theory. This gives

〈ψ0|O(t )|ψ0〉 ≈ 〈ψ0|O|ψ0〉

+ 2λ
∑

k

Re
e−itε(k) − 1

ε(k)
F̃O(k)F̃ ∗

V (k) + · · · .

(6)

Here, ε(k) is the dispersion of the kinematically protected
mode in H (rather than H0) and F̃O(k) = 〈0|O|̃k〉 is the matrix
element of the operator O between the ground state of H and
the single quasiparticle excitation of H with momentum k.
This way of approaching the problem is important for some
of the cases considered below, in which H has a kinematically
protected single-particle mode, but H0 does not. In these cases
the small perturbation λV leads to the creation of a bound
state, which is a nonperturbative effect. In these cases it turns
out that the perturbation theory around H as sketched above
gives a (qualitatively) correct description of the observed dy-
namics.

The question we want to address is what happens outside
the linear response regime. Linear response theory is usually
expected to describe the short-time regime for very small but
finite values of λ, but fail at late times. The question of its
regime of applicability is related to the properties of nonlinear
response functions, which have recently been analyzed in the
class of systems discussed here [51] and shown to acquire late-
time divergences in some cases.

The linear response viewpoint summarized above obscures
the fact that the quench deposits a finite energy density into
the system. A complementary viewpoint on long-lived oscil-
lations is obtained by employing a spectral representation in
terms of energy eigenstates of the postquench Hamiltonian

Tr[Oρ(t )] =
∑
m,n

ei(Em−En )t 〈m|O|n〉〈n|ρ(t = 0)|m〉. (7)

Assuming that the operator O connects states with quasipar-
ticle numbers that differ by one, oscillations with frequency
�ex may ensue for the following reason. In the gas phase
energy eigenstates can be viewed as scattering states of the
stable quasiparticles, and adding a single quasiparticle with
momentum q to an energy eigenstate (approximately) leads
to an energy eigenstate that differs in energy and momentum
by ε(q). If ρ is translationally invariant, then the only nonzero
contributions to the sum occur at q = 0. As this process works
for all energy eigenstates at the (low) energy density of inter-
est (which is set by the factor 〈n|ρ(t = 0)|m〉), one may expect
long-lived oscillations in the expectation value (7) to occur.

We stress that the oscillations produced by the mechanism
outlined above are not a finite-size effect but can persist in
the thermodynamic limit. For all examples discussed below
we have verified that varying the system size does not affect
the amplitude or frequency of the oscillations observed. This
is very different from the oscillations reported in Ref. [52],
which indeed are finite-size effects.

A. Haldane-gap chains

As a first example of a model that exhibits undamped
oscillations after quantum quenches in the linear response
regime, we consider the antiferromagnetic BLBQ chain. This

FIG. 1. Spectrum of the BLBQ Hamiltonian (8) found with QUS-
PIN [59,60] for L = 16 sites and γ = 0.25, within the magnetization
sector with Sz

Tot = 0. States are colored by their charge under a Z2

spin-flip symmetry Sz �→ −Sz, |ψ〉 �→ z|ψ〉. The dashed line is a fit
around k = π to a functional form ε(k) = √

�2
ex + v2(k − π )2.

is a family of spin-1 chains described by [53–55]

H (γ ) = J
L−1∑

i

[
(Si · Si+1) + γ (Si · Si+1)2

]
. (8)

For γ = 0 the model reduces to the spin-1 Heisenberg antifer-
romagnet, whilst for γ = 1/3 it is the Affleck-Kennedy-Lieb-
Tasaki (AKLT) chain [56], whose ground state is an exact
MPS with bond dimension χ = 2.

Both values of γ lie within the gapped “Haldane gap
phase” [31] −1 < γ < 1. At γ = 1 the model is the SU(3)
symmetric Lai-Sutherland model, which is gapless [57,58].
In Fig. 1 we plot the low-energy spectrum obtained by exact
diagonalization (ED) on L = 16 sites and periodic boundary
conditions for γ = 0.25, which is representative of the Hal-
dane phase, with a gap of �ex(π ) ≈ 0.62J and group velocity
v ≈ 1.26J .

The ground state is at k = 0 and there is a gap to a triplet
band of magnons with energy minimum at k = π .

Consider first global quenches where a finite energy den-
sity is generated by quenching the ratio of exchange constants
γ → γ ′. For the Hamiltonian (8) the ground state has momen-
tum k = 0 but the Haldane gap is at k = π , with the magnon
mode only persisting in a region of the Brillouin zone around
this that does not extend to k = 0. For such a quench both the
Hamiltonian and the initial state are translationally invariant,
so local operators cannot “access” single magnon excitations
in the way described above because ρnm = 〈n|ρ(t = 0)|m〉 =
0 for energy eigenstates that differ by a single magnon, as
they differ in momentum. As a result, there are no long-lived
oscillations for translationally invariant initial states. On the
other hand, these considerations suggest a way out: we need to
choose an initial state that is invariant only under translations
by two sites, which can be achieved simply by choosing the
prequench Hamiltonian to have an additional staggered mag-
netic field

Hpre = H (γi ) + hs

∑
m

(−1)mSz
m. (9)
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FIG. 2. Result of a quantum quench keeping γ = 0.25 and
quenching the initial staggered field hs : 0.01 �→ 0. This quench pro-
duces an energy per site εQuench ≈ 3.8 × 10−4J , which corresponds to
an equilibrium temperature of T ≈ 0.12J (estimated using ED on 12
sites). TEBD performed using L = 400 and χ = 400. The final time
is window is determined by requiring that the results do not change
on increasing the bond dimension to χ = 600.

Hpre now has a ground state that is invariant only under
translation by two sites and ρnm 
= 0, and so, as discussed in
the previous section, we therefore expect to see oscillations
at ε(π ) (the magnon does not extend to k = 0, so this will
be the only frequency present). As a numerical test of these
ideas in the BLBQ chain, we perform a quench using the
ITENSOR [61] library, which enables us to use the density
matrix renormalization group (DMRG) algorithm to compute
an approximation to the ground state of H (γi, hs), and then
to time evolve the state according to H (γ f , 0) using time-
evolving block decimation (TEBD). Here and elsewhere, the
time window in which we plot TEBD data is determined such
that the TEBD results do not change when suitably increasing
the bond dimension; in Figs. 2 and 3 we have plotted data for
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FIG. 3. Same as Fig. 2 but with an initial staggered field hs =
0.05. The energy per site εQuench ≈ 7.86 × 10−3J produced by the
quench corresponds to an equilibrium temperature of T ≈ 0.23J .
TEBD parameters are L = 400, χ = 400.

χ = 400 and ensured no change in the corresponding plots for
χ = 600.

The results are shown in Figs. 2 and 3 for two quenches
of different strengths. For the weaker quench we see that
there are oscillations in the quantity 〈Sz

L/2〉 with little to
no visible damping, whilst the evolution of 〈Sz

L/2Sz
L/2+1〉 is

strongly damped. In light of the previous section, this is
to be understood as due to a discrete spin-flip symmetry
as follows: the oscillations can only occur when the matrix
element 〈GS|O|QP(k)〉 
= 0, where |QP(k)〉 is the quasipar-
ticle at momentum k and |GS〉 is the ground state of the
postquench Hamiltonian. For the BLBQ chain the ground
state is invariant under Sz �→ −Sz but the magnon mode is
odd under this symmetry. Therefore, the matrix elements are
only nonzero when the observable is Z2 odd, such as Sz

itself, and conversely the oscillations decay rapidly when the
observable is Z2 even. The oscillations in the magnetization
have frequency ω very close to the magnon gap at k = π as
expected,

ω ≈ 0.621 02, . . . , J, �ex(π ) ≈ 0.620 96J. (10)

Figure 3 shows a somewhat larger quench from hs = 0.05,
which still has an energy per site well below the gap. The av-
erage interparticle distance after this quench is approximately

� = �ex/εQuench ≈ 79. (11)

From the perspective of a low-density gas of quasiparticles,
the finite lifetime of the oscillations is caused by scattering
events [23]. Therefore, one would not expect to see appre-
ciable decay at times vt � �. From ED we estimate that the
group velocity is roughly v ≈ 1.26J , and so the slight decay
by Jt = 50 makes sense within the quasiparticle gas picture.
Conversely, for the quench in Fig. 2 the mean-free path is
� ≈ 1600 and thus the lack of decay is also consistent with
this rough estimate. For even larger quenches than in Fig. 3
we find that, as expected on the basis of our quasiparticle gas
picture, the decay becomes more easily visible at short times.

The quenches in Haldane-gapped models explored above
yield several insights; the first is that for weak quenches os-
cillatory behavior results as predicted [25–28] when there is
a quasiparticle mode. This confirms that such oscillations are
unrelated to the formation of bound states or of confinement,
except inasmuch as they provide a mechanism for kinemat-
ically protected quasiparticles to exist. It also highlights the
importance of symmetries which can cause the relevant ma-
trix elements to be zero and relaxation to be consequently
much faster. Perhaps most importantly, we have evidence that
the oscillations do decay, which was suggested in previous
studies [17,19] but not observed in the models considered
therein. Our findings also show that in the case studied above
the regime of validity of the perturbative approach used in
Refs. [25–28] is limited to short times.

B. Dimerized XXZ model

Generally the quasiparticle gas can consist of several
species, for instance, in models with “elementary” quasi-
particle excitations as well as (multiparticle) bound states.
We have already mentioned two examples of this situation:
the Ising model with both longitudinal and transverse field
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[15,17,19,26] and the Ising model with transverse field only,
but additional next-nearest-neighbor Ising interaction [29].
Neither of these lattice models analyzed in the context of
persistent oscillations exhibits a U(1) symmetry associated
with particle number conservation, which greatly compli-
cates the application of perturbative approaches based on the
BBGKY hierarchy or the flow equation approach [41,42,62–
67]. In order to study the fate of these oscillations at very
late times, we therefore introduce a spin-1/2 dimerized XXZ
model in a staggered field, which can be mapped to a model
of spinless interacting fermions with particle number con-
servation. This enables us to apply the equations of motion
techniques developed in Refs. [41,42]. This model features el-
ementary fermionic excitations as well as bosonic two-particle
bound states. Moreover, in the appropriate scaling limit the
model reduces to the sine-Gordon quantum field theory in the
attractive regime. The Hamiltonian of our model is

H (�,α, hs) = −J

2

L−1∑
m=0

[1 + α(−1)m][S+
m S−

m+1 + H.c.]

+ �J
∑

m

Sz
mSz

m+1 + hsJ
∑

m

(−1)mSz
m. (12)

Here, α tunes the degree of dimerization in the xy plane and
hs is a staggered applied field. For α = hs = 0 and |�| < 1
the model reduces to the integrable spin-1/2 XXZ chain in
the massless Luttinger liquid phase, whilst nonzero values of
α and hs break the integrability and open a gap in the zero
magnetization sector. A Jordan-Wigner transformation maps
the Hamiltonian (12) to one of interacting spinless fermions
with interaction strength �. As in the case of the BLBQ chain,
discrete symmetries play a role in allowing or disallowing
persistent oscillations. When only one of α or hs is present
in (12) there is a discrete spatial Z2 symmetry correspond-
ing to reflection across a bond or site, respectively. We will
elaborate the importance of retaining both parameters after
presenting data from quenches.

Rotational symmetry about the z axis corresponds to U(1)
particle number conservation in the fermionic variables. In the
low-energy limit, the Hamiltonian (12) for |�| < 1 reduces
to a sine-Gordon model [68], whose low-lying excitations for
� > 0 are solitons, antisolitons, and soliton-antisoliton bound
states known as “breathers.” In the lattice model we determine
the spectrum of low-lying excitations in the Sz

Tot = 0 sector by
exact diagonalization, cf. Fig. 4. We can see that throughout
the Brillouin zone there is a bound state visible below a con-
tinuum of states. The bound state is kinematically protected
and therefore stable. This establishes that our model fulfils the
first of our requirements.

We investigate the time evolution using both TEBD,
which is capable of exactly describing the evolution of states
with sufficiently low entanglement, and perturbative methods
which are valid at small �. The latter is needed because fol-
lowing a quench the entanglement entropy generically grows
linearly in time [69–71]. As such, the true time-evolved state
quickly leaves the manifold of states that can be accurately de-
scribed by matrix-product states with finite bond dimensions.
We adopt open boundary conditions when performing TEBD
numerics; when working with the equivalent fermionic model

−π/2 −π/4 0 π/4 π/2
K

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E

FIG. 4. Low-energy spectrum of the Hamiltonian (12) in the
Sz

Tot = 0 sector for α = 0.4, h = 0.2, and � = 0.65, calculated for
L = 28 spins. The dotted black curve is a fit of the bound state to
ε(k) = M − v

2 (cos 2k − 1), where v ≈ 0.78 is the maximal group
velocity.

it suffices to work in the sector with fixed fermion number, and
we adopt periodic boundary conditions out of convenience.
We also ensure that our system sizes are sufficiently large to
rule out finite-size effects such as traversals [2] on the time
scales we are interested in.

To ensure a long window of applicability of the pertur-
bative approaches [41,42], we consider quantum quenches
from an initial thermal state of the noninteracting model
ρ(0, α, hs, β ), where

ρ(�,α, hs, β ) = exp [−βH (�,α, hs)]

Tr{exp [−βH (�,α, hs)]} . (13)

As the perturbative approaches expand around thermal states
of free Hamiltonians, they are able to describe states with
volume law entanglement, unlike MPS methods. Instead, they
are limited by their assumption that higher particle cumulants
are negligible. This is then time evolved using the Schrödinger
equation for H (�,α′, h′

s). We focus on expectation values of
local observables such as the staggered magnetization within
a unit cell and nearest-neighbor spin-bilinears

ms = 〈ψ (t )|Sz
2n − Sz

2n+1|ψ (t )〉,
Sαα

m,m+1 = 〈Sα
mSα

m+1〉. (14)

We plot these quantities in Fig. 5 computed using TEBD on
L = 400 sites with the ITENSOR [61] library and two approx-
imate calculations, self-consistent time-dependent mean-field
theory and the second Born approximation, both detailed in
Sec. III. Figure 5 shows the case where the time evolution
has a Z2 symmetry (reflection in a bond as h′

s = 0) but the
initial state does not. In this case, the staggered magnetization
initially has a nonzero value and then oscillates about the
thermal value of 0. The frequency agrees with the energy
difference between the postquench ground state and the bound
state, which have opposite Z2 parities and are thus connected
by the Z2 odd operator mz

s . Conversely, the operator Sxx
m,m+1 is
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FIG. 5. Time evolution following a quench from the ground
state with � : 0 �→ 0.2, hs : 0.1 �→ 0 and αs = 0.4 before and af-
ter the quench. Upper: staggered magnetization, showing persistent
oscillations. Lower: Time evolution of 〈Sx

mSx
m+1〉, where m = L/2.

Calculations use L = 400 sites and a maximum bond dimension of
χ = 1000 for the TEBD.

Z2 even and thus has decaying expectation value at late times.
We note that in the bottom panel of Fig. 5 the SCTDMFT does
not appear to accurately capture the early time evolution. This
is despite the fact that SCTDMFT is expected to be accurate
at early times, as will be explained in Sec. III A. We have
checked that the difference between it and the second Born ap-
proximation scales like O(�2) and so this deviation indicates
that for the observable in question the O(�) contribution is
either very small or absent.

III. DECAY OF OSCILLATIONS IN THE STAGGERED
XXZ MODEL AT LATE TIMES

We now turn to the “intermediate” time regime. This
is no longer accessible to TEBD for the reasons set out
above, but can be studied by appropriate truncation schemes
of the BBGKY hierarchy. We first consider the simplest
such scheme, a self-consistent time-dependent mean-field the-
ory [29,72–77].

A. Self-consistent time-dependent mean-field theory

The correct degrees of freedom for constructing a mean-
field approximation for (12) are fermions rather than spins.
Applying a Jordan-Wigner transformation to the Hamiltonian
gives

H (�,α, hs) = −J

2

L−1∑
m=0

(1 + α(−1)m)(c†
mcm+1 + H.c.)

+�
∑

m

nmnm+1 − hs

∑
m

(−1)mnm, (15)

where cn are spinless fermions and nm = c†
mcm. If the fermion

parity is odd the cn have periodic (Ramond) boundary
conditions, whilst if the fermion parity is even they have
antiperiodic (Neveu-Schwarz) boundary conditions. We work
at half filling such that these conditions correspond to the

number of unit cells being odd or even, respectively. In SCT-
DMFT the interaction terms in Eq. (15) are decoupled in a
time-dependent way, which corresponds to normal ordering
with respect to the time-evolving state of the system and
retaining only terms that are quadratic in fermionic creation
and annihilation operators

nmnm+1 �→ −〈c†
mcm+1〉t c

†
m+1cm − c†

mcm+1〈c†
m+1cm〉t

+ 〈nm〉t nm+1 + nm〈nm+1〉t

+ |〈c†
mcm+1〉t |2 − 〈nm〉t 〈nm+1〉t . (16)

Here, the expectation values 〈.〉t in the time-evolving state
are determined self-consistently. This produces a mean-field
Hamiltonian HMFT(t ) with the following key properties:

(1) HMFT(t ) is quadratic at all times and thus time evolving
a Gaussian state with HMFT(t ) ensures that Wick’s theorem
holds at all times.

(2) The equations of motion for the two-point functions
obtained using HMFT agree with the equations of motion ob-
tained using the full Hamiltonian, under the approximation
that Wick’s theorem is valid.

Since our initial state is a thermal state of the free fermion
Hamiltonian H (0, α, hs), it is Gaussian and the SCTDMFT
is thus accurate at early times by construction. The time-
dependent mean-field Hamiltonian takes the form

HMFT(t ) = −
L
2 −1∑
s=0

[
J0(t )

2
c†

s,0cs,1 + J1(t )

2
c†

s,1cs+1,0 + H.c.

+heff (t )(c†
s,0cs,0 − c†

s,1cs,1)
] + E0(t ), (17)

where s now labels the unit cell and a = 0, 1 the sites within
it such that the spin labeled (s, a) is at position m = 2s + a in
the chain. The constant term E0(t ) does not have any effect on
the equations of motion, but ensures that the expectation value
of energy is conserved. The mean-field Hamiltonian contains
the effective couplings

J0(t ) = J (1 + α) + �〈c†
s,1cs,0〉t ,

J1(t ) = J (1 − α) + �〈c†
s+1,0cs,1〉t ,

heff (t ) = hs − �〈c†
s,0cs,0 − c†

s,1cs,1〉t . (18)

Note that J0,1(t ) are generically complex at intermediate
times and that heff is (up to a constant shift and rescaling)
equal to the staggered magnetization ms(t ). The mean-field
Hamiltonian can be block diagonalized by the canonical trans-
formation

cs,a = 1√
L

∑
s

eik(2s+a)[c+(k) + (−1)ac−(k)], (19)

where k = 2πn/L for n = 0, . . . L/2 − 1. We find

HMFT(t ) = −
∑

k

∑
μν∈{+,−}

h̃MFT
μν (k, t )c†

μ(k)cν (k),

h̃MFT
μν (t ) =

(
A(k, t ) B(k, t ) − iB′(k, t )

B(k, t ) + iB′(k, t ) −A(k, t )

)
. (20)

032208-6



DECAY OF LONG-LIVED OSCILLATIONS AFTER … PHYSICAL REVIEW A 109, 032208 (2024)

0 100 200

−0.1350

−0.1325

−0.1300

−0.1275

−0.1250

−0.1225

−0.1200

1400 1500 1600
Jt

m
s

FIG. 6. Mean-field evolution of the staggered magnetization af-
ter a quench with initial state ρ(0, 0.4, 0.2, 4.0) and time evolved
using the Hamiltonian H (0.1, 0.4, 0.2). The oscillations are un-
damped at late times in this approximation up to the light-cone time
set by the system size (here L = 2000).

Here, A(k, t ), B(k, t ), and B′(k, t ) are real functions that can
be expressed in terms of J±(t ) = J0(t ) ± J1(t ) and heff (t ) as

A(k, t ) = Re[J+(t )] cos k − Im[J+(t )] sin k,

B(k, t ) = heff (t ),

B′(k, t ) = Re[J−(t )] sin k + Im[J−(t )] cos k. (21)

The time evolution of the momentum space two-point
functions nμν (k) = 〈c†

μ(k)cν (k)〉, μ, ν ∈ {+,−} is now easily
obtained from the Heisenberg equations of motion

dn++(k, t )

dt
= 2B′ Re(n+−) − 2B Im(n+−),

dn−−(k, t )

dt
= −2B′ Re(n+−) + 2B Im(n+−),

dn+−(k, t )

dt
= (B′ − iB)(n−− − n++) − 2iA(k)n+−. (22)

These equations can alternatively be derived by a first-order
truncation of the BBGKY hierarchy, cf. Ref. [42].

We solve these equations of motion numerically, updating
the mean fields J±(t ) and heff (t ) every time step and plot the
resulting staggered magnetization following a quench from an
initial thermal state in Fig. 6, which shows clear oscillations
that become highly monochromatic and undamped at late
times. The choice of thermal state is made to ensure that the
system has an energy per site well above the ground state but
still small compared to the gap. This ensures that there is a
low density of quasiparticles in the system and that they can
be treated as a dilute gas.

We now return to the physical origin of the oscillations
and their frequency. To that end we have considered ground
state quenches at α = 0.4, hs = 0.3, i.e., initial density matri-
ces ρ(0, 0.4, 0.3,∞), for several �. In this case we observe
essentially a single oscillation frequency ωB at intermediate
and late times. For example, in Fig. 7 we show the evolu-
tion of the mean fields. Performing a fast Fourier transform
using data from t = 50 up to t = 2000 gives a single sharp
peak at the frequency ωB. We compare this to the energy

FIG. 7. Evolution of the mean fields t0 = 〈c†
s,0cs,1〉, t1 =

〈c†
s,1cs+1,0〉, ns = 1

2 〈c†
s,0cs,0 − c†

s,1cs,1〉 following a quench from the
initial state ρ(0, 0.4, 0.3, ∞) and evolved with the Hamiltonian
H (0.3, 0.4, 0.3).

of the first excited state computed by exact diagonalization
on system sizes up to L = 30 in Fig. 8. We observe that
the oscillation frequency observed in SCTDMFT is in very
good agreement with the bound state gap at q = 0 for small
interaction strengths � � 0.25J . For small interaction
strengths � ≈ 0 the ED results exhibit sizable finite size
effects that are discussed in Appendix A. Using the extrapo-
lation procedure summarized there provides us with the curve
labeled “ED (Extrapolated)” in Fig. 8.

The emergence of persistent oscillations of the expec-
tation values of observables in the SCTDMFT can be
understood as follows. The solutions to the self-consistency
equations reported above exhibit periodic behavior with a
single frequency. As a result the SCTDMFT is equivalent
to a periodically driven system with a Hamiltonian that is
quadratic in fermions. It is well known that such systems typ-

0.0 0.2 0.4 0.6
Δ/J

1.00

1.05

1.10

1.15

1.20

1.25

ω
B
/J

ED (L=26)

ED (L=28)

ED (L=30)

ED (Extrapolated)

MFT

FIG. 8. Estimation of the bound state mass using ED compared
to the persistent frequency extracted from the mean-field evolution of
the initial state ρ(0, 0.4, 0.3, ∞) by the Hamiltonian H (�, 0.4, 0.3).
The ED exhibits large finite size effects when � → 0, so we plot the
result of extrapolating to L = ∞ by fitting the gap to a power series
in 1/L2 up to L−4.
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ically synchronize at late times and physical observables then
display persistent oscillations at the driving frequency [78].

B. Second Born approximation

The lack of damping in SCTDMFT is in fact not surprising,
as the method is perturbative to first order in � (at the level of
the equations of motion). In thermal equilibrium we have to
evaluate the self-energy to second order in � in order to obtain
a nonvanishing imaginary part that signals a finite lifetime
of the fermions. This suggests that finite lifetime effects in

the nonequilibrium setting of interest here can be captured
by the “second Born approximation” [41,42,65]. We follow
Ref. [41] in deriving the equations of motion for fermionic
bilinears n̂μν (k, t ) = b̂†

μ(k, t )b̂ν (k, t ), where b̂†
μ(k) are

Bogoliubov fermions

ĉm = 1√
L

∑
k>0

∑
μ=0,1

γμ(m, k; α, hs)b̂μ(k), (23)

chosen to diagonalize the quadratic part of the Hamiltonian

Ĥ (�,α, hs) =
∑

k>0,μ

εμ(k)b̂†
μ(k)b̂μ(k),+�

∑
μ

∑
k1,...k4>0

Vμ(k)Âμ(k), (24)

where we have introduced shorthand notations k = (k1, k2, k3, k4),μ = (μ1, μ2, μ3, μ4), and Âμ(k) =
b†

μ1
(k1)b†

μ2
(k2)bμ3 (k3)bμ4 (k4). Explicit expressions for γμ(m, k|α, hs) and Vμ(k) are given in Appendix B.

The equations of motion to second order in � for nμν = 〈n̂μν (k, t )〉 are obtained by truncating the BBGKY hierarchy as
derived in Refs. [41,42]. The result is

∂t nμν (k) = iεμν
(k)nμν (k) + 4i�

∑
Vμ1μ2μ3μ(k, q, q, k)ei(εμ1ν (k)+εμ2μ3 (q)t nμ1ν (k, 0)nμ2μ3 (q, 0)

− 4i�
∑

Vνμ2μ3μ1 (k, q, q, k)ei(εμμ1 (k)+εμ2μ3 (q))t nμμ1 (k, 0)nμ2μ3 (q, 0)

−�2
∫ t

0
dt ′ ∑ Kγ

μν (k1, k2; k; t − t ′)nγ1,γ2 (k1, t ′)nγ3,γ4 (k2, t ′)

−�2
∫ t

0
dt ′ ∑ L{αi}

μν (k1, k2, k3; k; t − t ′)nα1,α2 (k1, t ′)nα3,α4 (k2, t ′)nα5,α6 (k3, t ′), (25)

where the kernel functions Lμν and Kμν are given by

Kγ
μν (k1, k2; k; t ) = 4

∑
k3,k4>0

∑
η,η′

X γ1γ3ηη′;ηη′γ4γ2

k;k′ (μ, ν; k; t ),

L{αi}
μν (k1, k2, k3; k; t ) = 8

∑
η

∑
k4>0

X α1α3α6η;ηα5α4α2

k;k′ (μ, ν; k; t ) − 16
∑

η

X α1α3ηα4;α5ηα6α2
k1k2k1k2;k3k1k3k1

(μ, ν; k; t ),

X γ ;η
k;q (μ, ν; q; t ) = Y γ

μν (k, q)Vη(q)eiEγ (k)t − (γ, k) ↔ (η, q), (26)

and where Eγ (k) = εγ1 (k1) + εγ2 (k2) − εγ3 (k3) − εγ4 (k4).

The derivation of Eq. (25) is summarized in Appendix B.
We note that nμν are different from the quantities n±±(k, t )
considered in the SCTDMFT of the previous section. Taking
this into account, one sees that the SCTDMFT agrees with
(25) up to order O(�1) and disagrees with the O(�2) terms as
expected. Solving Eq. (25) requires a runtime of O(L3 × T ),
where T is the simulation time reached. Since simulating up
to time T requires a system size at least 2vLRT , where vLR is
the Lieb-Robinson velocity, investigating up to time T scales
as O(T 4).

The second Born approximation is premised on the
assumption that many-particle cumulants are small at interme-
diate times, whilst going beyond SCTDMFT by allowing for
a non-Gaussian state. A priori, this is an uncontrolled approx-
imation. However, we start in a Gaussian state in which all
cumulants vanish and so the approximation must be accurate
for early times, and becomes better as the interaction strength
� becomes small. Furthermore, it gives rise to a Boltzmann
equation at late times [41,42], which is believed to become

exact in the “Boltzmann scaling limit.” This suggests that the
approximation remains accurate on time scales t ∼ �−2. At
intermediate times one expects the second Born approxima-
tion to continue to provide useful physical insights even if it
may not retain full quantitative accuracy. What we wish to
establish in this paper is that whilst the SCTDMFT treatment
agrees with the prediction of Refs. [25–28], the leading cor-
rection provided by the second Born approximation causes the
oscillations to damp. Finally, we note that the second Born ap-
proximation is complementary to TEBD in such cases, since
the former can reproduce volume law entanglement but cannot
fully capture strong interactions, whilst the latter method can
only describe states with a finite amount of entanglement
related to the bond dimension used but can describe strongly
correlated states at sufficiently low entanglement.

In order to clearly exhibit some of the issues associated
with the damping of oscillations we first consider ground state
quenches, in which we initialize the system in the ground state
of H (0, 0.4, 0.3) and time evolve with H (0.2, 0.4, 0.3) for a
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FIG. 9. Staggered magnetization for a ground state quench from
ρ(0, 0.4, 0.3, ∞) and time evolving with H (0.2, 0.4, 0.3). This cor-
responds to a very small quench with quasiparticle density ∼1.6 ×
10−3. Accordingly, very large system sizes and late times would be
required to observe decay of oscillations. Inset: half chain entan-
glement entropy, which grows linearly for all times shown. TEBD
calculation done with maximum bond dimension χ = 800.

system size of L = 300. Figure 9 shows the time evolution of
the staggered magnetization and notes long-lived oscillations
with no apparent damping on the long time scales considered.
This is, however, entirely expected, as the quench produces
a very small energy per site εquench ≈ 0.0019J whilst the gap
to create a quasiparticle is �ex ≈ 1.18J . The resulting aver-
age interparticle distance is therefore � = �ex/εQuench ≈ 640.
That this exceeds the system size simulated means that fi-
nite size effects such as traversals will matter long before
the many-body effects that would dampen the oscillations.
The fact that we are effectively dealing with the linear re-
sponse regime is also apparent from the fact that TEBD is
able to access very large time scales Jt ∼ 100, which means
that the volume-law contribution to the entanglement entropy
is still negligible.

These considerations show that the energy per site de-
posited by the quench should be small compared to the bound
state energy, however it should not be so small that quasi-
particle interactions are negligible on accessible time scales.
To overcome this problem, we consider larger quenches of
the interaction parameter as well as thermal initial states,
which provide us with a simple parameter—the prequench
temperature—to vary the postquench energy density. For
finite prequench temperatures we cannot use TEBD since
the initial state has volume law entanglement, and so only
show the second Born and SCTDMFT results. We compare
the results obtained by the second Born approximation to
SCTDMFT, which as discussed before exhibits persistent os-
cillations at a frequency that is very close to the bound state
energy gap. In Fig. 10 we show results for quench initial-
ized in the ground state of H (0, 0, 0.23) and time evolved
with H (0.2, 0.4, 0.3). Here, the postquench energy per site is
εQuench ≈ 0.040, corresponding to a mean-free path � ≈ 29,
which is much smaller than our system size of L = 200. We
observe that the second Born approximation clearly shows the
decay of the oscillatory behavior of the staggered magneti-
zation. We plot the TEBD results only up to times Jt = 40,

0 25 50 75 100 125 150
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−0.225

−0.200

−0.175

−0.150

−0.125

m
s

SCTDMFT

2nd Born

χmax = 800

FIG. 10. Staggered magnetization for a quench from the ground
state of H (0, 0, 0.23) and time evolved with H (0.2, 0.4, 0.3) using
mean-field theory, the second Born approximation, and a TEBD
calculation with maximum bond dimension χ = 800 and L = 200.

where our criterion is agreement of the numerical results for
bond dimensions χ = 600 and our maximal bond dimension
χmax = 800. The TEBD data show the beginning of a decay,
consistent with the second Born results. In Figs. 11 and 12
we show the behavior of the staggered magnetization after
quenches from thermal initial states. In Fig. 11 we initialize
the system in the thermal state of the noninteracting system at
inverse temperature Jβi = 4, which corresponds to the same
energy density as in Fig. 10. We again observe decaying
oscillations. In the inset in that figure, we estimate the decay
time by fitting a decaying exponential A exp(−t/τ ) to the suc-
cessive peak to peak amplitudes, and the resulting decay time
for this particular quench is Jτ ∼ 200. Finally, in Fig. 12, we
consider a lower temperature Jβi = 10, which corresponds to
energy per site εQuench ≈ 0.0037 and mean-free path � ≈ 250.
Here, the oscillations are seen to decay very slowly.
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0 300Jt
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FIG. 11. Main: staggered magnetization for a quench from the
thermal state ρ(0, 0.4, 0.3, 4.0) of the noninteracting system and
time evolved with H (0.2, 0.4, 0.3). L = 448 used for the second
Born approximation. The initial state is chosen such that the energy
density is approximately the same as in Fig. 10. Inset: successive
peak-to-peak amplitudes of the oscillations in the second Born ap-
proximation, with an exponential fit (dashed black line). The gray
scatter points are excluded from the fit.
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FIG. 12. Staggered magnetization for a quench starting in
the thermal state ρ(0, 0.4, 0.10, 10.0) and time evolved with
H (0.2, 0.4, 0) on a ring with L = 400. Other than the finite pre-
quench temperature Jβi = 10.0 this is the same as Fig. 5.

IV. SUMMARY AND CONCLUSIONS

In this work we have carried out a detailed study of a
mechanism that gives rise to long-lived oscillations in the ex-
pectation values of local observables after quantum quenches.
This mechanism is very different from quantum scars and oc-
curs after small quenches in interacting many-particle systems
with an excitation gap, which generate a regime that can be
understood in terms of a low-density gas of (long-lived) kine-
matically protected quasiparticles. Long-lived oscillations can
then occur in expectation values of observables that have
matrix elements between the ground state and excited states
that contain a single quasiparticle.

We have presented very strong evidence using a com-
bination of matrix-product state methods and perturbative
approaches based on truncations of the BBGKY hierarchy that
these oscillations decay at late times in all models we have
considered. This is an important difference to models with
exact quantum scars [8,10].

Our results show that the linear response theory predic-
tion is upheld only at the level of self-consistent mean-field
theory. Going beyond mean-field theory to the second Born
approximation provides evidence of damping. For small in-
teraction strengths U the timescale of the decay is therefore
generally expected to be O(U −2). Whilst it is not impossible
that higher-order corrections would cause the oscillations to
remain at late times, this is highly unlikely as there is no
reason to anticipate such an effect. Instead, truncating the
BBGKY hierarchy at higher orders should merely modify
the lifetime. We presented nonperturbative numerics using
TEBD for the oscillations in both the spin-1 chain (Fig. 3) and
dimerized XXZ chain (Fig. 10) which indicate our qualitative
conclusions that the oscillations damp at intermediate times
are robust to including higher orders.

Our results differ from the prediction made in Refs. [27,28]
that the oscillations have infinite lifetime regardless of the
quench strength λ. Whilst those papers are formulated in the
continuum, the same arguments made therein lead to oscilla-
tions on the lattice that we have shown to decay.

Our perturbative analysis generalizes straightforwardly to
other interacting fermion and boson models with interactions
that are local with regards to the elementary excitations of the
unperturbed theory. We note that the much-studied Ising chain
in a tilted field [13,15–19,21,23] does not fall within this class
of models. This is because when viewed as a perturbation
of the transverse-field Ising chain, which maps onto nonin-
teracting fermions by the Jordan-Wigner transformation, the
perturbing operator is not local in terms of these fermions, i.e.,
involves interaction vertices with arbitrarily large numbers
of particles. This precludes employing approaches based on
truncating the BBGKY hierarchy for the fermionic degrees of
freedom.
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APPENDIX A: FREE LIMIT

In this Appendix we briefly discuss the properties of the
model (12) and its fermionic version (15) that are important
to understanding the main text at its free point � = 0. The
spins Sα

m obey periodic boundary conditions Sα
m+L = Sα

m. Con-
sequently, the fermion operators obey boundary conditions

cn+L = −(−1)N̂ cn, (A1)

where N̂ = ∑
n c†

ncn is the total fermion number. At half fill-
ing we must therefore consider periodic (Ramond) boundary
conditions when there are an odd number of unit cells and an-
tiperiodic (Neveu-Schwarz) boundary conditions when there
are an even number.

The presence of the staggering causes the states at k and
k + π to hybridize into two states, which we denote (k,+)
and (k,−), which have a dispersion relation that can be found
from Eq. (20) upon setting � = 0 and diagonalizing the 2 × 2
matrix h̃μν . The result is that the free part of the Hamiltonian
is diagonalized with the canonical transformation

cm =
√

2

L

∑
k,μ

e−ikmγm,μ(k)bμ(k), (A2)

where the Bogoliubov coefficients γμ(k) are

γ2m,0 = −e−iϕk sin
θk

2
, γ2m−1,0 = cos

θk

2
,

γ2m,1 = e−iϕk cos
θk

2
, γ2m−1,1 = sin

θk

2
; (A3)

Here, the two Bogoliubov angles ϕk and θk are given by

cos
θk

2
=

√
εk + hs

2εk
, sin

θk

2
=

√
εk − hs

2εk
,

e−iϕk (α) = − cos k + iα sin k√
cos2 k + α2 sin2 k

, (A4)
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FIG. 13. Dispersion at � = 0, with the ground state indicated.
Filled circles indicate states that are occupied and empty circles ones
that are unoccupied, drawn at L = 16 for clarity. Note that k = π/2
is not an allowed single-particle state for any finite system size.

where εk is the dispersion of the free part of the Hamiltonian
and equal to

ε±(k) =
√

α2J2 + h2
s + (1 − α2)J2 cos2 k. (A5)

The ground state is then a Fermi sea where the entire (−)
band is filled and the (+) band is empty, illustrated in Fig. 13.
This picture of the ground state at � = 0 allows us to under-
stand why the ED results are poorly converged with respect
to system size when estimating the gap for small �. In the
thermodynamic limit the minimum energy excitation corre-
sponds to a hole in the filled band at k = π/2 and a particle
in the empty upper band at k = π/2, with a corresponding
gap of Egap(∞) = 2ε+(π/2) = 2

√
α2J2 + h2

s . However, if the
number of unit cells L/2 is even then we must work in
the Neveu-Schwarz sector and so have antiperiodic boundary
conditions with k = (2n + 1)π/L, which never equals exactly
π/2. Likewise, for an odd number of unit cells we work in the
Ramond sector, where k = 2nπ/L 
= π/2. For finite L the gap
is therefore

Egap(L) = 2ε+
(π

2
+ π

L

)
= Egap(∞) + δEgap(L), (A6)

and for large L the finite size effects become

δEgap(L) = d2ε

dk2

∣∣∣∣
k=π/2

π2

L2
= J

1 − α2√
α2 + h2

s

π2

L2
. (A7)

These considerations motivate the following form of a fitting
function:

Egap(L) = Egap(∞) + BL−2 + CL−4. (A8)

This functional form indeed provides a good description of
our numerical results for the gap deduced from ED on L ∈
{20, 22, 24, 26, 28, 30} sites when � is small.

APPENDIX B: EQUATIONS OF MOTION IN SECOND
BORN APPROXIMATION

The method we use for deriving the equations of motion
(25) is given in more detail in Refs. [41,42]; here, we sim-
ply briefly recap the main points for completeness. The first

step is to diagonalize the free part of the Hamiltonian using
Eqs. (A2)–(A4).

The next step is to rewrite the interaction in this basis.
Whilst in the original real-space basis the interaction is the
same as that considered in Refs. [41,42], we find a different
final form since we obtain different bμ(k) of the free part of
the Hamiltonian, which agrees with the expression there when
setting hs = 0. We antisymmetrize the interaction in the first
and second pairs of indices,

Vμ(k) = −1

4

∑
P∈Z2×Z2

sgn(P)V ′
P(μ)[P(k)]. (B1)

Here, P is an element of Z2 × Z2, where the first Z2 swaps
μ1 ↔ μ2, k1 ↔ k2 and the second Z2 factor acts likewise on
3,4. We define sgn(P) as the product of the sign of each
permutation. The unsymmetrized interaction components are
equal to

V ′
μ(k) = 2ei(k2−k3 )

L

[
gμ1 (k1) fμ2 (k2) fμ3 (k3)gμ4 (k4)

× ei(ϕk1 −ϕk4 )
(
δk1+k2,k3+k4 + δk1+k2−k3−k4,±π

)
× + fμ1 (k1)gμ2 (k2)gμ3 (k3) fμ4 (k4)

× ei(ϕk2 −ϕk3 )(δk1+k2,k3+k4 − δk1+k2−k3−k4,±π

)]
, (B2)

where we have defined

fμ(k) = (1 − μ) cos
θk

2
+ μ sin

θk

2
,

gμ(k) = μ cos
θk

2
− (1 − μ) sin

θk

2
. (B3)

The Heisenberg equations of motion are
∂ n̂μν (k, t )

∂t
= iεμν n̂μν + i�

∑
Y μ

μν (k, q)Âμ(q), (B4)

where εμν (k) = εμ(k) − εν (k) and the coefficients of the quar-
tic operators appearing are given explicitly in terms of the
interaction potential Vμ(k) by

Y μ
αβ (k, q) = δβμ4δk,q4Vμ1μ2μ3α (q) + δβμ3δk,q3Vμ1μ2αμ4 (q)

− δαμ2δk,q2Vμ1βμ3μ4 (q) − δαμ1δk,q1Vβμ2μ3μ4 (q).

(B5)

The quartic operators Âμ(k) likewise evolve according to
the following Heisenberg equations of motion:

∂

∂t
Âμ(k, t ) = iEμ(k)Âμ(k, t )

+ i�
∑

γ

∑
q>0

Vγ (q)[Âγ (q, t ), Âμ(k, t )],

(B6)

where Eμ(k) = εμ1 (k1) + εμ2 (k2) − εμ3 (k3) − εμ4 (k4). This
equation contains products of up to six fermionic operators on
the right-hand side, and carrying on in this way generates the
BBGKY hierarchy of equations of motion. The second Born
approximation consists of truncating at this level, which we
do by formally integrating Eq. (B6) to obtain an integral ex-
pression for Âμ(k, t ) in terms of its value at t = 0, which can
be substituted into the Heisenberg equations of motion (B4),
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which gives

∂

∂t
nμν (k, t ) = iεμν (k)nμν (k, t ) + i�

∑
η

∑
q>0

Y η
μν (k, q) 〈Âη(q, 0)〉 eitEη(q) + �2

∑
η,γ

∑
q,p>0

∫ t

0
ds 〈Âγ (p, s)Âη(q, s)〉

× [
Y γ

μν (k, p)ei(t−s)Eγ (p)Vη(q) − (p, γ ) ↔ (q, γ )
]
. (B7)

Neglecting the four- and six-particle cumulants in (B7) then leads to Eq. (25).
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