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Teleportation of a quantum particle in a potential via quantum Zeno dynamics
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We report on the possibility of teleportation of a quantum particle, a distinctly different phenomenon from
the teleportation of a quantum state through entanglement. With the first meaning, teleportation is theoretically
possible by placing the particle initially at rest (with a certain uncertainty) out of any equilibrium point of a
potential well or barrier and by frequently monitoring whether the particle remains at rest. This quantum Zeno
dynamics inhibits acceleration, and features disappearance from the classical turning point and appearance in
another turning point, if there is any other, with a probability that approaches unity by increasing the frequency
of the measurements. This phenomenon has all the ingredients attributed in science fiction to teleportation: The
particle is always at rest, cannot be found in the path between the two turning points, and saves travel time. We
discuss the feasibility, in principle, of teleportation of electrons, protons, and other particles, and conclude its
increasing impracticability as the particle gets heavier. Nevertheless, our paper establishes a basis for further
studies in which the projective and instantaneous measurements are replaced by more realistic models.
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I. INTRODUCTION

It has been known since the 1990s that quantum teleporta-
tion is a technique of transmitting quantum information from
an emitter to a receiver over a distance. It requires quantum
entanglement, and therefore several particles [1–3]. The pos-
sibility of teleportation with the meaning prior to the above
achievements, i.e., the teleportation of a single object, has
deserved very little attention. Without a scientific basis, the
hypothetical teleportation of a particle relies on science fiction
literature since the 19th century, on popular culture, and since
the advent of cinema on science fiction movies. It would
involve (1) disappearance of the particle from one location
of space, (2) appearance in another distant location, (3) being
permanently at rest, and (4) following no path joining the two
locations. Teleportation is, also hypothetically, a way to save
time on the trip. To our knowledge, only Ref. [4] discusses
the possibility of teleportation in a fractional Schrödinger
equation, approached by the high-speed limit of relativistic
quantum mechanics, and relates teleportation with supercon-
ductivity and superfluidity. Also in Ref. [4], and more closely
related to this paper, the possibility of teleportation in the stan-
dard, nonrelativistic Schrödinger equation with measurements
of wave-function parity is briefly discussed.

Here we report on the possibility of teleportation of a quan-
tum particle with all the above science fiction characteristics.
Teleportation is shown here to result from a peculiar quan-
tum Zeno dynamics (QZD). Quantum Zeno dynamics [5–9]
must be distinguished from its predecessor, the quantum Zeno

effect [10–13]. In the quantum Zeno effect, the temporal evo-
lution of a quantum system is interleaved by measurements
of whether the state remains the initial one, which results in
freezing the evolution in the initial state as the measurements
are more frequent. In QZD, measurements ascertain whether
the state remains in a set of states, or a multidimensional
subspace of the system Hilbert space. The QZD has been
studied theoretically [5–9], and has been recently realized in
a rubidium Bose-Einstein condensate in a five-level Hilbert
space [14].

Beyond a discrete and finite number of states, most of
the studies of QZD in an infinite-dimensional Hilbert space
involve repeated measurements of position which, being nec-
essarily imprecise, monitor whether the particle remains in
the region of space, say �x, where it is initially found. Refer-
ence [15] demonstrates that von Neumann projective measure-
ments of position lead to a unitary evolution confined in the
subspace defined by �x with Dirichlet boundary conditions
in the limit of continuous measurements, i.e., when the num-
ber of measurements N approaches infinity. Different QZD
with position measurements have been studied [16–18] and
featured different effects such as inhibition of wave-packet
spreading of a particle at rest [19] and stopping a freely mov-
ing particle (the Zeno arrow) in a Schrödinger cat state [20].

More recently, Porras et al. [21] have analyzed the con-
jugate QZD involving repeated measurements of momentum.
Specifically, frequently monitoring whether the momentum of
a particle directed towards a potential barrier remains positive
results in freezing the momentum direction and hence, in a
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Zeno-assisted quantum tunneling, with tunneling probability
approaching unity as the number of measurements increases.

The QZD leading to teleportation is that of a particle ini-
tially at rest, that is, 〈v〉 = 0 with a certain uncertainty �v,
out of an equilibrium point in a potential, hence experiencing a
force at a classical turning point, whose state of rest within the
uncertainty �v is frequently monitored. The resulting QZD
tends to keep the particle at rest, i.e., the quantum state in
the subspace of velocities |v| < �v, with higher probability
with growing number of measurements, and despite the force
acting on the particle.

We find that the way of remaining at rest is at least a
bit striking (see video in Supplemental Material [22]). The
particle disappears from its initial location while appearing on
another classical turning point, if there is any other, exhibiting
all the above-mentioned characteristics of teleportation. When
the number of measurements N increases, the probability of
teleportation approaches unity in a teleportation time that is
independent of N . The teleportation time is proportional to the
mass and �v, but shorter as the force is stronger, and can be
made much shorter than the time taken by the particle to travel
up to the other turning point (see also video in Supplemental
Material [22]).

We demonstrate the extremely small probability flux in the
path between the two turning points, which amounts to a vio-
lation of the equation of continuity for the probability in this
QZD, and rigorously supports referring to it as teleportation.
Eventually, we examine how the mass affects the teleporta-
tion probability with different schemes of measurements. The
conclusion here is that teleportation remains possible, in prin-
ciple, for heavier particles, but becomes increasingly difficult
and completely impracticable for macroscopic objects.

II. ZENO DYNAMICS OF A PARTICLE IN A POTENTIAL
MONITORED AT REST

We start with the Schrödinger equation for a particle of
mass m in a potential V , ih̄∂|ψ〉/∂t = Ĥ |ψ〉 = ( p̂2/2m)|ψ〉 +
V̂ |ψ〉 written for the wave function ψ (x, t ) = 〈x|ψ〉 in one
dimension and in atomic units (h̄ = 1, me = 1) as

i
∂ψ

∂t
= − 1

2m

∂2ψ

∂x2
+ V (x)ψ . (1)

For simplicity we will take symmetric potentials about x = 0.
The particle is initially at rest and localized about a position
x0 = 〈x〉 different from an equilibrium point, i.e., at a classical
turning point experiencing a force, and such that there is only
one other turning point −x0. For the moment we consider
a potential well. Later we show that the same results hold
almost identically for the well inverted to a barrier, and also
almost identically for a harmonic potential and for the inverted
harmonic potential. Being initially at rest means 〈v〉 = 0 with
a certain uncertainty �v. Considering initial Gaussian-like
wave functions ψ (x, 0) = 〈x|ψ0〉 and ψ̂ (p, 0) = 〈p|ψ0〉 of
half Gaussian widths (1/e2 decay in probability) �x and �p,
such minimal wave packets verify �x�p = 2; hence, given
�v, �x = 2/m�v, but this is only a choice to fix ideas.

We next consider the following QZD. In a given time
interval T , the particle wave function is left to evolve in small
time intervals �t = T/N according to Eq. (1), interleaved

with measurements of whether the particle remains at rest
with the same uncertainty �v about zero as initially. The
number of measurements of velocity is then N . They are
modeled as projections of the state onto the subspace of veloc-
ities |v| < �v, or equivalently onto the subspace of momenta
|p| < m�v. We consider only positive outcomes (|v| < �v)
in all the measurements, i.e., the measurements are selective,
and wonder about the probability P(S)

N that all measurements
are positive. Upon a negative outcome the measurements are
terminated.

The QZD with these selective measurements can then be
symbolized as

|φN 〉 = 1√
PN

�e−iĤ�t. . .
1√
P2

�e−iĤ�t 1√
P1

�e−iĤ�t |ψ0〉 ,

(2)

where � = ∫ m�v

−m�v
|p〉〈p|d p is the projector onto

[−m�v, m�v], and Pn is the probability that the velocity
is in [−�v,�v] (momentum in [−m�v, m�v]) at the
n intermediate measurement, so that the factors 1/

√
Pn

normalize the state after each projective measurement.
After the N measurement at time T , the probability that all
outcomes were positive is the product P(S)

N = P1P2 . . . PN .
To obtain P(S)

N , however, it is traditional in QZD, and faster
computationally, to evaluate the un-normalized state

|ψN 〉 = �e−iĤ�t N − 3 times
. . . . . . �e−iĤ�t�e−iĤ�t |ψ0〉 , (3)

which is obviously related to the normalized state |φN 〉 in (2)
by |ψN 〉 = √

P1P2 . . . PN |φN 〉, and whose norm,

〈ψN |ψN 〉 = P1P2 . . . PN = P(S)
N , (4)

yields directly the probability P(S)
N that all outcomes were

positive. In all figures, the un-normalized state at any inter-
mediate step n is represented since its norm informs us about
the probability that the velocity remains in �v about 〈v〉 = 0
at the intermediate step n.

We have implemented the above QZD in a numerical
code, where unitary evolutions in �t are performed using
a standard symmetrized split step Fourier method to solve
the Schrödinger equation, and measurements by truncat-
ing the wave function in momentum representation outside
[−m�v, m�v]. In the symmetrized split step Fourier method,
the time interval �t is divided in small steps h. The effect of
the kinetic-energy term in (1) in half a step h/2 is trivially
evaluated in Fourier space through a fast Fourier transform,
the effect of the potential term in (1) in the interval h is applied
at the midpoint h/2 in direct space after inverse fast Fourier
transform, and the effect of the kinetic energy in the remainder
h/2 is again evaluated as above in Fourier space [23].

For the Gaussian potential well V (x) = −V0 exp(−x2/x2
p)

of width xp, the initial location is far from the equilibrium
point x = 0 by setting x0 ∼ xp. This choice also implies a sig-
nificant force, which accelerates the phenomenon of interest,
as seen below. Also, the uncertainty �v is chosen such that
�x = 2/�p = 2/m�v is much smaller than xp so that the
probability of being located at the other turning point is zero
for all practical purposes.
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FIG. 1. [(a), (c), (d)] Contour plots of the probability density as a function of time for a particle of mass m = 1 initially at the state
ψ (x, 0) = (1/π )1/4 exp[−(x − x0 )2/2], x0 = 30 in the potential well V (x) = −V0 exp(−x2/x2

p), xp = 30 and V0 = 10. All quantities are in

atomic units. (a) Without any measurement. (b) Probability that the particle remains at rest with uncertainty �v = √
2 at the final time T = 30

as a function of number of measurements N . [(c), (d)] The same as (a) but with the indicated number of measurements.

Typical results for m = 1 (an electron) are shown in Fig. 1.
Without measurements, the wave function oscillates in the
well, as seen in Fig. 1(a) [the Gaussian well is represented in
Fig. 2(a)]. With measurements of whether the particle remains
at rest within �v, the particle tends to remain at rest with
probability P(s)

N approaching unity as the number of measure-
ments N within the time T increases, as seen in Fig. 1(b). This
QZD then features freezing the velocity about zero against
the permanent force acting on it. Figures 1(c) and 1(d) show
the striking way in which the particle stays still: The particle
“finds” the other turning point where it can stay still, −x0,

FIG. 2. (a) Gaussian well V (x) = −V0 exp(−x2/x2
p) (GW),

Gaussian barrier V (x) = V0 exp(−x2/x2
p) (GB), harmonic potential

V (x) = ax2 (H), and inverted harmonic potential V (x) = −ax2 (IH).
In all them V0 = 10, xp = 30, and we chose a = eV0/(x2

p) so that the
magnitude of the force at the initial position x0 = xp is the same.
[(b)–(d)] Contour plots of the probability density as functions of
time for the same particle and initial state as in Fig. 1 with N = 211

measurements of whether the particle remains at rest with uncertainty
�v = √

2 within the total time T = 30.

and appears and disappears periodically in −x0 and x0 with a
period substantially independent of N and ostensibly smaller
than the natural period of the oscillations.

In Fig. 2(a) different potential wells and barriers are de-
picted. Figure 2(b) shows that this phenomenon is almost
identical for a Gaussian well and the inverted Gaussian well
to form a Gaussian barrier. Also, Figs. 2(c) and 2(d) illustrate
the existence of the same phenomenon in a harmonic potential
and inverted harmonic potential. In all three cases the initial
wave function corresponds to the same particle at rest as in
Fig. 1 and the particle experiences a force of the same magni-
tude (the absolute values of the slopes at x0 are the same).

III. TELEPORTATION

From now on we set T equal to the time that the particle
takes to teleport from one to another turning point, or telepor-
tation time Ttelep, defined as the time at which the probability
density at −x0 is maximum. Since no appreciable norm is
left at Ttelep at x0, the probability P(S)

N is the probability of
teleportation. A closer look at examples allows us to identify
the mechanism of teleportation and to estimate Ttelep.

A. Teleportation mechanism

Figure 3 shows the probability densities in position and
momentum spaces at the selected times (a) t = 0, (b) Ttelep/2,
and (c) Ttelep for the same initial state and potential well as in
Fig. 1. The number of measurements N = 210 is high, hence
the probability of teleportation P(s)

N = 0.93 is also high. A
video of the whole dynamics can be found in the Supplemen-
tal Material [22]. At no time does |ψ (x, t )|2 take significant
values in the path between x0 and −x0 (first row in Fig. 3).
We discard a significant probability current or flux j(x, t ) =
(1/m)Im{ψ�∂ψ/∂x} between x0 and −x0 (second row). This
point is further discussed below.

The mechanism of teleportation can be understood from
the dynamics of the wave function in momentum representa-
tion. We observe in the third row of Fig. 3 that the repeated
measurements create a sharp potential well in momentum
space extending from −�p = −m�v to �p = m�v. In
the limit of continuous measurements, N → ∞, the well
would become infinitely high, with the momentum wave
function ψ̂ (p) satisfying Dirichlet boundary conditions at
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FIG. 3. For the same Gaussian potential well and initial wave function as in Fig. 1, probability density (first row), probability current
(second row), and momentum probability density (third row), at (a) t = 0, (b) t = Ttelep/2, and (c) t = Ttelep = 11.533 a.u. The number of
measurements is N = 210 and the final probability of finding the particle at −x0 is P(s)

N = 0.93. The Gaussian potential well is depicted as a
dashed curve in panel (a), top.

−�p = −m�v and �p = m�v, in a similar way as in
Ref. [15] for position measurements. With finite measure-
ments the reflections produce norm losses that are smaller as
N increases. We also observe that the reflection is about the
time Ttelep/2 at which the particle is located at x0 and −x0

with approximately equal probabilities, and that the return to
the original location of the momentum wave function about
p = 0 coincides with Ttelep at which the particle is only located
at −x0.

Thus, writing the initial wave function as ψ (x, 0) = ψ (x −
x0), or ψ̂ (p, 0) = ψ̂ (p)e−ix0 p in momentum representation,
the wave function transforms upon reflection into a super-
position αψ̂ (p)e−ix0 p + βψ̂ (p)eix0 p of left and right moving
momentum wave functions, which originates the observed
interference fringes, with decreasing α and increasing β as
the reflection takes place, or equivalently, a position wave
function αψ (x − x0) + βψ (x + x0) disappearing from x0 and
appearing in −x0.

The expectation value of momentum in this reflection fol-
lows approximately the laws of classical mechanics. Since the
particle does not appreciably move from x0 while it disap-
pears, the force acting on it takes the approximately constant
value F = −V ′(x0), where V ′ = dV/dx. With constant force,
the mean momentum as a function of time is then 〈p〉 	
−V ′(x0)t , which equated to −�p yields the reflection time as
�p/V ′(x0). Similarly, from the reflection onwards, the mean
momentum changes with time as 〈p〉 	 −�p − V ′(−x0)t =
−�p + V ′(x0)t for a symmetric potential, which equated to
zero when the momentum wave function comes back to the
center yields again a time �p/V ′(x0). The teleportation time
is then twice this quantity. The same reasonings apply to the

potential barrier obtained from inversion of the well, except
that reflection occurs on the right of the sharp potential well
in momentum space with the positive force F = −V ′(x0) > 0.
Thus, for well or barrier, the teleportation time is

Ttelep 	 2�p

|V ′(x0)| = 2m�v

|V ′(x0)| . (5)

This expression provides an excellent approximation to the
time at which the probability of finding the particle at its
original location is zero. Small deviations are due to the slight
deviation of the force from −V ′(x0) when the particle slightly
moves at x0 or at −x0. For a nonsymmetric potential the
teleportation time would be m�v/|V ′(x0)| + m�v/|V ′(x1)|,
where x1 is the second turning point. It is also clear from
(5) that a force is essential to teleportation. In particular, if
the particle is placed at an equilibrium point, teleportation to
another equilibrium point requires infinite time, i.e., does not
occur at all.

Figure 4 illustrates that the teleportation mechanism con-
tinues to work, although with less efficiency, when unsharp
projections are performed. With the unsharp projective mea-
surements in Fig. 4(a), Eq. (5) continues to yield the correct
teleportation time, but the probability is about one half that
with sharp measurements, as seen in Fig. 4(b).

B. Teleportation as a violation of the continuity equation

The idea of teleportation, or translation at rest along no
path, can more rigorously be associated with the extinc-
tion of the probability of presence in a region of space and
emergence of probability in another separate region without
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FIG. 4. Teleportation with unsharp measurements of whether the
particle remains at rest with uncertainty �v = √

2. (a) Unsharp pro-
jector �(p) = 1 if |p| � 1.3, exp[−(p − 1.3)2/0.252] if p > 1.3,
and exp[−(p + 1.3)2/0.252] if p < −1.3. (b) For the same Gaussian
well and initial wave function as in Figs. 2 and 3, probability den-
sity at the teleportation time t = Ttelep = 11.533 a.u. with N = 210

unsharp measurements. The teleportation probability has decreased
from 0.93 to 0.57.

probability flux through their boundaries. This is a violation
of the continuity equation. While the continuity equation is
always satisfied in Schrödinger evolution alone, it is not nec-
essarily satisfied in a QZD.

In one dimension the continuity equation reads ∂|ψ |2/∂t +
∂ j/∂x = 0, or in integral form, (d/dt )

∫ b
a |ψ |2dx = j(a, t ) −

j(b, t ), stating that the variation of the probability in the inter-
val [a, b] per unit time must be due to a probability flux across
its boundaries. We take here the relevant interval as [0,∞)
since the particle is initially at the positive x axis. Therefore

d

dt

∫ ∞

0
|ψ (x, t )|2dx = j(0, t ) − j(0,∞) = j(0, t ) . (6)

Further integration in time and some rearrangement lead to

1 −
∫ ∞

0
|ψ (x, t )|2dx = −

∫ t

0
j(0, t )dt , (7)

expressing that, in Schrödinger evolution, the decrement of
the probability in [0,∞) [left-hand side of (7)] is due to the
outgoing probability through x = 0 (right-hand side). Without
measurements, this is illustrated in Fig. 5(a) with the same
example as in Fig. 1(a) (half an oscillation in the potential
well). The norm is constant in time (black solid curve), the
decrement of the probability of finding the particle in [0,∞)
is complete (dashed curve), and it coincides with the outgo-
ing probability through x = 0 (gray solid curve). Figure 5(b)
shows the same quantities but for the example of Fig. 3
with N = 211 measurements. In the QZD the norm is almost
constant (would be exactly constant in the limit N → ∞),
and the decrement of probability of finding the particle in
[0,∞) is also complete, but this decrement is not equal to the
outgoing probability through x = 0 (gray horizontal curve),
which is negligible at any time. Hence (6) and (7) are not
satisfied, supporting that the particle does not follow a path,
but disappears from [0,∞), and, the norm being almost unity
at the end, the particle is located in (−∞, 0].

The outgoing probability from [0,∞) through x = 0 (gray
horizontal curve) is negligible compared to the probability
appearing in (−∞, 0], but is not exactly zero. A closer ex-
amination of the probability density (e.g., in log scale) shows
a myriad of ripples filling the whole well at very low level,

FIG. 5. (a) For the example of Fig. 1(a) (no measurements) in
the same potential well, the norm is unity (black solid curve), and
the decrement of the probability of finding the particle in [0, ∞)
(dashed curve) is equal to the outgoing probability through x = 0
(gray solid curve), as required by the continuity equation. (b) For the
same example in Fig. 3 with N = 211 measurements, the decrement
of the probability of finding the particle in [0, ∞) (dashed curve)
is not equal to the outgoing probability through x = 0 (gray solid
curve).

of the order of 10−5 in Fig. 3. These are caused by the
measurement operator �, which in momentum representation
is the truncation �(p)ψ̂ (p) = ψ̂ (p) if |p| � [−m�v, m�v],
0 otherwise, and in position representation the convolution
�(x)ψ (x) = 2(m�v/h̄) sin(m�vx/h̄)/(m�vx/h̄) ∗ ψ (x). In
Fig. 5(a) the outgoing probability from [0,∞) through x = 0
due to these ripples during Ttelep is − ∫ Ttelep

0 j(0, t )dt = 0.0029,
which is indeed very small compared to P(s)

N = 0.9691. It
can be said that actual teleportation probability is P(s)

N +∫ Ttelep

0 j(0, t )dt , or 0.9662 in this example.
It is not surprising that the continuity equation is not

satisfied in a QZD involving von Neumann measurements,
where the role of the measurement apparatus is to project
the wave function in a subspace of momenta: The continu-
ity equation derives from the Schrödinger equation for the
temporal evolution without any type of measurement. What is
surprising is the way it is violated: The outgoing probability
through x = 0 might just have differed from the decrement
of probability, but in this QZD the outgoing probability is
negligible, supporting the idea of teleportation.

IV. TELEPORTATION OF HEAVIER PARTICLES
AND THE CLASSICAL LIMIT

The above results simply show the theoretical possibility
of teleportation according to standard quantum mechanics.
Hereinafter we discuss whether this effect could be possible,
also in principle, in hypothetical experiments monitoring rest
with typical uncertainties of velocity of particles at rest of
different masses, and ultimately, with macroscopic particles.

For an electron �v = √
2 a.u. (≈106 m/s) and �x = √

2
a.u. (≈10−10 m) in the above examples may be reasonable, but
not for heavier particles that tend to slow down and to localize.
This is reflected by the Boltzmann distribution of veloci-
ties ∝ e−mv2/a of one-dimensional particles (a would be a =
2kBT , where kB is the Boltzmann constant and T is the tem-
perature), of mean value 〈v〉 = 0 and width vth = √

a/m. If
these are statistically expected values of classical particles at
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FIG. 6. Probability of teleportation in different measurements
schemes for four particles: electron (m = 1, open circles), muon
(m = 206.767, diamonds), pion (m = 273.767, squares), and pro-
ton (m = 1836, closed circles). (a) Initial wave function for the
electron ψ(x, 0) = (2/π�x2)1/4 exp{−[(x − x0)/�x]2}, with x0 =
1414.2 and �x = 2/

√
am, a = 1.856 × 10−3 a.u. (the initial wave

functions of the other three particles are narrower), and the po-
tential well V (x) = −V0 exp(−x2/x2

p), xp = 1000. All quantities are
expressed in atomic units. (b) The potential depth is set to V0 =
0.4396

√
m/me, where me = 1 is the electron mass, so that it grows

for heavier particles and all of them have the same teleportation time
Ttelep = 512 a.u. (c) The potential depth V0 = 0.4396 is kept constant
and therefore the teleportation time increases with mass as in Eq. (8),
Ttelep = 512, 7362, 8463, and 21 940 a.u. (d) Teleportation times are
the same as in panel (c), but the interval between measurements, �t ,
is the same for all particles.

temperature T , it is then reasonable to take for our initial pure
state �v = vth, leading to �p = √

am and the increasingly
localized wave function with �x = 2/

√
am. Note however

that this state does not represent a thermal particle, but sim-
ply that the statistical uncertainty is assigned to the quantum
uncertainty. This assignment yields, e.g., �v ≈ 9 × 104 m/s
and �x ≈ 2 × 10−9 m for an electron, and �v ≈ 9.2 × 102

m/s and �x ≈ 2 × 6−11 m for a proton at room temperature.
The teleportation time (5) becomes

Ttelep =
√

4am

|V ′(x0)| . (8)

A particle with the above wave-function properties is placed
in a potential well, as in Fig. 6(a). For a comparison of the
behavior of particles of different masses, the potential has the
same shape for all particles, and all particles are placed at
the same position x0 for the teleportation distance 2x0 to be
the same.

We consider four particles of increasing mass. To strictly
adhere to the QZD scheme, the teleportation time Ttelep is
the same for the four particles by making the potential depth
V0 grow with mass. The location x0 is also chosen so that

Ttelep = 512 a.u. is sufficiently long, making not completely
unreasonable a high number of measurements; In the example
of Fig. 6(b), N = 29 measurements would correspond to a
measurement each �t = 1 a.u., about 24 as. This figure shows
the probability of teleportation as the number of measure-
ments grows for an electron, a muon, a pion, and a proton.
One could of course prolong the curves to a higher number
of measurements and all curves will approach unity, but these
curves suffice to illustrate the increasing difficulty of teleport-
ing heavier particles.

We may also keep the same well depth for all four particles.
Then the teleportation time increases with the square root of
mass, Ttelep = 512, 7362, 8463, and 21 940 a.u. With the same
conditions as in Figs. 6(a) and 6(b) except the constant depth
V0, Fig. 6(c) shows the probability of teleportation at each
teleportation time for the same four particles. Again, heavier
particles are teleported with less probability with each given
number of measurements.

We may still argue that in the scheme in Fig. 6(c), with
longer and longer teleportation times and the same number of
measurements, the time interval �t between them is longer.
We then consider, as a third possibility, the probability of
teleportation when �t is kept constant for all four particles
along the respective teleportation times. Figure 6(d) shows
again the probability of teleportation for constant �t dur-
ing the respective teleportation times. In this case, all four
particles teleport with almost equal probability approaching
unity as �t → 0, and the same would happen for atoms and
molecules, with the “only” added difficulty of sustaining the
measurements for longer and longer times.

Ultimately, the coherent state of being located at x0 and
at about −x0 at the same time will collapse to x0 or −x0

if any interaction with the environment (in addition to inter-
actions involved in the velocity measurements in the QZD)
would inform where the particle is located. With increasing
environmental interactions of heavier particles and increas-
ing teleportation times, the state will most likely collapse at
the very beginning of the teleportation process to the state
located at x0.

Finally, it is of interest to consider the “velocity” of tele-
portation (although the particle is always at rest). A reasonable
definition would be the distance between the original and final
positions over the teleportation time, vtelep = 2x0/Ttelep in the
above examples. This yields vtelep = 5.5 a.u. for all particles in
the scheme in Fig. 6(b), and vtelep = 5.5, 0.38, 0.33, and 0.13
a.u. for the four particles in the schemes in Figs. 6(b) and 6(c).
These velocities are significantly smaller than the velocity of
light c 	 137 a.u., which justifies the use of the nonrelativistic
Schrödinger equation. However, it is not difficult to conceive
of situations in which vtelep is arbitrarily high. For example,
setting V0 = 10.9

√
m/me a.u. in the scheme in Fig. 6(b) yields

vtelep = c, and arbitrarily superluminal teleportation velocities
for higher V0. These are unphysical situations in the frame of
the Schrödinger equation that call for an analysis of teleporta-
tion from relativistic equations such as the Dirac equation.

V. CONCLUSIONS

We have unveiled a mechanism in which a quantum par-
ticle at rest at a classical turning point of a potential, and
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therefore subjected to a force, remains at rest more likely the
more frequently it is measured if the particle remains at rest.
This is an example of QZD which, interestingly, leads to the
following phenomenon: teleportation of the quantum particle,
whereby the particle appears and disappears from the location
where it is at rest and appears at another location where
it can be at rest, if there is any location. Disappearing and
appearing means here that there is no appreciable probability
flux exiting the boundaries of the original location or entering
the boundaries of the final location. This entails a violation
of the continuity equation of the probability density, which is,
in our opinion, the fact that makes this phenomenon deserve
the name “teleportation.” We have set realistic values of the
involved physical quantities showing the increasing difficulty
of performing teleportation as the particle gets heavier.

Nonselective measurements in this QZD, as in
Refs. [21,24], have not been considered because the “no path”
property is lost. While the probability of finding the particle
at the other turning point would be higher than with selective
measurements [21,24], the wave functions corresponding
to negative outcomes tend to fill the path between the two
turning points. Thus, QZD-assisted teleportation requires
selective measurements.

We believe that the possibility of teleportation established
here deserves further study with more realistic models of
measurements and relativistic quantum equations. In partic-
ular, the impact of the Heisenberg position-momentum and

energy-time uncertainty relations on the feasibility of fast
measurements should be analyzed. A possible implementation
of teleportation could be based on the Doppler shift of scat-
tered photons, whose frequencies would be differently shifted
depending on whether the particle is at rest or not. Measure-
ments should be insensitive to the position of the particle at
the original location or at its teleportation destination, which
would require photon wave packets longer than the potential
dimensions, ≈2xp in our examples, which in turn appears to
limit the repetition rate of the measurements to �t ≈ 2xp/c.
Increasing the repetition rate with shorter pulses would re-
quire erasing the position information carried by the photons
(e.g., different travel times) with adequate experimental strate-
gies. Finally, we insist that the teleportation of the mass of a
particle described here must be clearly distinguished from the
current studies and experiments of teleportation in quantum
information.
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