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Thomas-Wigner rotation as a holonomy for spin-1/2 particles
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The Thomas-Wigner rotation (TWR) results from the fact that a combination of boosts leads to a nontrivial
rotation of a physical system. Its origin lies in the structure of the Lorentz group. In this article we discuss the idea
that the TWR can be understood in the geometric manner, being caused by the nontrivially curved relativistic
momentum space, i.e., the mass shell, seen as a Riemannian manifold. We show explicitly how the TWR for a
massive spin-1/2 particle can be calculated as a holonomy of the mass shell. To reach this conclusion we recall
how to construct the spin bundle over the mass shell manifold. Interpreting TWR as a holonomy means it belongs
to the same family of phenomena as Berry’s phase.
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I. INTRODUCTION

The Thomas-Wigner rotation (TWR) is a fascinating ef-
fect of special relativity, which originates in the fact that a
combination of boosts results in a nontrivial rotation of a
physical system [1–5]. If a non-relativistic system moving
with velocity v1 is boosted by velocity v2, the resulting ve-
locity is given by the familiar law of addition of velocities
v = v1 + v2. In special relativity this is not the case. Two
successive noncollinear boosts lead to a boost and rotation.
This phenomenon is called TWR and it originates in the struc-
ture of the Lorentz group, which encodes the fundamental
symmetries of special relativity and Minkowski spacetime.

An alternative approach to understand the TWR is a geo-
metric one. The TWR can be thought of as being caused by the
nontrivially curved relativistic momentum space of massive
particles, the mass shell, seen as a Riemannian manifold.
The goal of this paper is to describe TWR in the context
of relativistic quantum theory using the geometric approach.
We focus on the free massive spin-1/2 particle. Whereas the
standard approach in quantum theory is to use group theory
and the Hilbert space formalism, the advantage of the geomet-
ric approach lies in its highly intuitive conceptualization of
TWR. It explains the nonintuitive character of TWR in terms
of the fact that the momentum space is a curved Riemannian
manifold. This is in contrast to the nonrelativistic momentum
space where the familiar law for addition of velocities means
that it is a flat Euclidean space R3.

The geometric approach to TWR dates back to almost the
birth of special relativity; see for instance [6] where the idea
of a hyperbolic velocity space is tracked to the articles pub-
lished between 1910 and 1919. In more recent literature, the
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hyperbolic velocity space is described and derived from some-
what different starting points [6–8], where the last reference in
particular has inspired the present paper.

We build on prior work in the geometric approach. We start
with the common underlying idea that the relativistic momen-
tum or, equivalently, velocity space is a curved Riemannian
manifold and use the language of differential geometry to
develop the notion that the TWR is nothing but a holonomy
of the relativistic momentum space. Holonomy is the idea
that when a vector (or spinor) is parallel transported along a
closed curve, then the initial and the final vector (or spinor)
need not necessarily coincide because the manifold is curved.
The transformation between the initial and the final, parallel
transported vector is described by the holonomy matrix. This
means that TWR belongs to the larger family of classical
and quantum physical phenomena which can be described
as holonomies, such as Berry’s phase, the Aharonov-Bohm
effect, or even classical effects like the Foucault pendulum
[9,10].

The article is divided into two parts. In the first part (start-
ing with Sec. II) we review the TWR in classical and quantum
physics. Those familiar with this background may want to
skip ahead to the second part (starting with Sec. III) where
we present the main results of the article. We start by pro-
viding an intuitive picture which explains TWR in geometric
terms. This is followed by the gradual formalization of the
intuitive picture. We then describe the intrinsic geometry of
the mass hyperbola using the standard differential geometric
language of fiber bundles, connection, and curvature. After
that we add the quantum spin field to the picture and show
how the connection and curvature can be induced for the
spinor bundle. Finally we explicitly calculate the holonomy
matrix for the Thomas precession of the spin-1/2 particle. As
a result we also reproduce the holonomy angle that coincides
with the result obtained in [6]. Besides our application to the
TWR, the vector bundle understanding of spinors has recently
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also gained attention in the context of relativistic quantum
information [11,12].

We will use the following notational conventions.
Throughout we denote four-vectors by normal font with greek
indices μ, ν running from 0 to 3, where x0 is the time
component. Latin indices {1, 2, 3} which run over spatial
coordinates and spatial vectors x or 1-forms p are bold-
faced. The Minkowski space with Minkowski metric will be
denoted by E1,3 and described in canonical Cartesian co-
ordinates in which the Minkowski metric η has the form
η = diag(1,−1,−1,−1). The units are natural, h̄ = c = 1.
The invariant four-momentum of a particle is denoted by
the 1-form P, which in local Cartesian coordinates can be
expanded as

P = pμdxμ (1)

so the four-momentum of a particle with mass m is given by
pμ = (p0, p) with norm ημν pμ pν = pμ pμ = (p0)2 − p2 =
m2, where p0 =

√
m2 + p2 =: E (p).

II. THOMAS-WIGNER ROTATION IN CLASSICAL
AND QUANTUM PHYSICS

In this section we will give a quick overview of the TWR
in classical special relativistic physics and in relativistic quan-
tum mechanics. We start by discussing how successive boosts
act on classical point particle momenta. After this we examine
their action on quantum mechanical spins.

There is no geometry involved at this point. Readers
familiar with the standard account of TWR can skip ahead
to Sec. III where we discuss the geometric approach to TWR
in terms of the curved relativistic momentum space. Our ap-
proach complements and builds upon earlier treatments of
TWR using projective geometry [6].

A. Boosts of relativistic momenta and TWR

Suppose a body with mass m is boosted from rest by
velocity v1. We assume the boost is rotation free, i.e., pure,
then momentum undergoes the following transformation:

L(v1)pA = pB, (2)

where pA = (m, 0, 0, 0) is the four-momentum of the system
at rest and L(v1) is a pure boost that maps the rest momentum
to pB. A second pure boost with velocity v2 with respect to the
frame with velocity v1 maps pB to pC :

L(v2)L(v1)pA = L(v2)pB = pC . (3)

If the velocity v2 is along the same direction, then the resulting
velocity v12 of the final frame C with respect to the first frame
A is given by the familiar formula for addition of relativistic
velocities,

v12 = v1 + v2

1 + v1v2
, (4)

where vi = |vi|. However, if the second boost is not in the
same direction but along a different direction that makes an
angle θ relative to the first boost, then the velocity addition is

FIG. 1. Sequence of three boosts in the two-dimensional (2D)
plane of the four-momentum space. The energy axis p0 is perpendic-
ular to the plane and the component p3 = 0 of the four-momentum
is suppressed. The plane consists of two spatial components p =
(p1, p2), where each point corresponds to a system with momentum
p. The first boost (black arrow) with velocity v1 along the p1 axis
takes a system from rest momentum pA = (0, 0) to pB = (pB, 0). The
second boost (blue arrow) with velocity v2 is along the p2 axis to pC ,
and the third (red arrow) with velocity v12 brings the system back to
rest. As a result, the 2D plane undergoes TWR by R(v1, v2) about the
p0 axis.

more involved:

v12 = 1

1 + v1 · v2

[(
1 + γ (v1)

1 + γ (v1)
v1 · v2

)
v1 + 1

γ (v1)
v2

]
,

(5)

where γ (v)−1 = √
1 − v2. Importantly, the resulting momen-

tum pC is not the momentum that one would get with a
single boost from rest by composite velocity v12. The final
momentum generally is also additionally subject to a rotation
R(v1, v2) called the Thomas-Wigner rotation. Formally, this
means

L(v2)L(v1) = L(v12)R(v1, v2), (6)

where R(v1, v2) is a rotation by angle α that depends on
velocities v1 and v2. Using Eq. (6) we can express the rotation
as a sequence of boosts,

R(v1, v2) = L(v12)−1L(v2)L(v1). (7)

This is the standard expression of the TWR as a result of a
sequence of three boosts: first boosting the system from rest
along arbitrary directions v1 and v2, and then bringing it back
to rest by the third boost as shown in Fig. 1. For nonrelativistic
velocities, the angle α by which the TWR rotates the system is
negligible. In ultrarelativistic scenarios it can approach 180◦,
depending on the geometry of the boost situation, i.e., the
angle between the velocities v1 and v2, and the magnitudes
of the velocities.

In summary, the TWR always occurs when boosts are
noncollinear. This can be generalized to an arbitrary number
of boosts where at least two are noncollinear. Group theoret-
ically, the reason is that the subset of boosts in the Lorentz
group does not form a subgroup.1 Instead, a combination of
two boosts results in a boost and a rotation as expressed in
Eq. (6).

1This is in contrast to the nonrelativistic situation: boosts in the
Galilei group do form a subgroup.
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TWR gives rise to a plethora of effects in different branches
of physics. It can be measured for satellites moving around the
Earth, it manifests as a correction term for the nonrelativistic
Hamiltonian of the hydrogen atom and it must be taken into
account when calculating scattering cross sections in quan-
tum field theory. It is also the reason why the behavior of
quantum entanglement in relativity is significantly different
from its nonrelativistic counterpart [13–19]. Because it is ul-
timately a feature of the structure of relativistic spacetime,2

the TWR is independent of the dynamics that caused the
boost [6].

Finally, one might relax the assumption we made above
that only pure Lorentz transformations or pure boosts are
used, thus considering a more generic treatment of boosts. The
latter can be realized by multiplying both sides of Eq. (2) on
the right by a momentum dependent rotation such that the rest
momentum is unchanged, leading to different kinds of boosts.
Each of these boosts is generated by a different momentum
dependent rotation. In this more general scheme, our choice of
pure boosts corresponds to the case where rotation is identity.
The other two most often used options are helicity boosts
and light front boosts [20]. In this paper, our goal is carry
out the first stage of the analysis which involves only pure
boosts. Once this analysis is carried out, one can consider
more general boosts which involve momentum dependent
rotations.3

B. Quantum mechanical spins and TWR

In this section we will summarize the standard treatment
of massive spin-1/2 particles in the Hilbert space formalism
in relativistic quantum mechanics.

In the Hilbert space theory of quantum systems, particles
with spin are described as representation spaces of the rel-
evant symmetry group. Free massive spin-1/2 particles can
be described by two different but equivalent theories, the first
using the unitary irreducible representations of the Poincaré-
group and the second the finite-dimensional representations
of the Lorentz group.4 We will work in the first approach
which relies on the Wigner representation (also called the
Wigner-Bargmann or the spin basis), and is presented in
Refs. [24–26]. Here the single particle states are given by
the unitary representations of the Poincarégroup which are
labeled by mass m > 0 and the intrinsic spin s, where the
latter takes both integer and half-integer values. The repre-
sentations are realized in the space H +

m,s = ⊕2s+1 L2(V +
m ) of

2This is sometimes expressed by saying that the TWR is a kine-
matic effect.

3We note that from the methodological point of view it makes sense
to first focus on pure boosts alone since they are the transformations
that give rise to the unexpected phenomenon of the Wigner rotation
that surprised many researches, including Einstein himself (see [21]
cited in [22]). Choosing a more general boost convention which
involves a rotation might obfuscate the situation by possibly masking
or amplifying the Wigner rotation which arises from pure boosts
alone. We would like to thank an anonymous referee for raising this
point.

4See [23] for a good overview, including a detailed explanation of
how the two approaches are related.

square integrable functions on the forward mass hyperboloid
V +

m = {pμ ∈ E1,3 | ημν pμ pν = m2, p0 > 0}, where the scalar
product is defined as

〈φ|ψ〉 =
2s+1∑
σ=1

∫
dμ(p) φ∗

σ (p)ψσ (p) (8)

with dμ(p) = [2E (p)]−1d3p being the Lorentz invariant inte-
gration measure and φσ (p), ψσ (p) elements of L2(V +

m ). The
state space H +

m,1/2 of single spin-1/2 particle with mass m is
given by L2(V +

m ) ⊗ C2. Using basis states which are labeled
by the three-momentum p and spin σ , a generic state can be
written as

|ψ〉 =
∑

σ

∫
dμ(p) ψσ (p) |p, σ 〉 . (9)

The general Lorentz transformation 
 acts on the basis ele-
ment as follows:

U (
) |p, σ 〉 =
∑

λ

|
p, λ〉 Dλσ [W (
, p)], (10)

where we write 
p for the spatial part of the vector 
p, with
p = (E (p), p), and W (
, p) is the Wigner rotation,

W (
, p) = L−1(
p)
L(p) (11)

which leaves p0 invariant. Note that W (
, p) exhibits the
same form as R(v1, v2) in (7) since L(p) is the boost that maps
the rest momentum to p, 
 performs an arbitrary boost and
L−1(
p) maps the system back to rest. For massive particles,
W is an SO(3) rotation and D[W (
, p)] the corresponding
representation. The latter is an element of SU(2) for spin-1/2
particles and it can be generally written as

D(α) = exp (−i α n̂ · σ/2), (12)

where α is the Wigner rotation angle and the three unit vec-
tor n̂ defines the rotation axis. This rotation matrix can be
parametrized in terms of momenta and rapidities [27].

We can now relate the action of boost operator U (
) in
Eq. (10) to the two-boost scenario described above in Fig. 1.
The label p in the quantum state |p, σ 〉 of Eq. (10) refers to
a system moving with velocity v1 = p/E (p) after the first
boost. This corresponds to pA in Fig. 1. Boost 
 in corre-
sponds to the second boost by velocity v2 in Fig. 1. The TWR
W (
, p) is the rotation that the quantum system undergoes
as a result of boost 
 when its state of motion changes
from |p, σ 〉 at point pA to state U (
) |p, σ 〉 at point pB in
Fig. 1.

But why do two noncollinear boosts lead to a rotation?
In the next section we will see that interpreting the boost
sequence in Fig. 1 in the geometric context provides a natural
explanation of the phenomenon.

III. THE GEOMETRY OF CURVED MOMENTUM
SPACE AND TWR

In this section we embark on the geometric study of
TWR. We begin by discussing the intuitive picture of boosts
from the perspective of the curved momentum space. Sec-
tion III B describes the geometry of the mass hyperboloid in
terms of standard differential geometry. Thereafter we discuss
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FIG. 2. The 2D relativistic mass hyperboloid. Component
p3 = 0 is not shown. The black dot indicates rest momentum at
pA = (m, 0, 0, 0) where the hyperboloid intersects the p0 axis.

quantum spins in terms of spinor bundles over the mass hyper-
boloid. We give an explicit derivation of the bundle connection
in Secs. III C and III C 3. Finally in Sec. III D we concep-
tualize TWR as the holonomy of the curved momentum
space.

A. Prelude: The intuitive picture

The account of how a sequence of noncollinear Lorentz
boosts results in a rotation, and why they behave differently
from the more familiar Galilei boosts discussed in Sec. II, re-
lies on group theoretic properties of Lorentz boosts. However,
an alternative perspective on TWR gives a geometric explana-
tion for its appearance. In terms of projective geometry this is
discussed in [6], and in [25] the authors consider the curved
velocity space.

Our aim is to discuss the TWR as being caused by curved
momentum space. This picture is particularly suitable since
quantum mechanical spinors in momentum space representa-
tion can be understood precisely in terms of a spinor bundle
over the relativistic curved momentum space. The latter is also
key to understanding the reason why Lorentz boosts behave
differently from Galilei boosts. While the nonrelativistic
momentum is given by R3, which a flat space, the relativistic
momentum space is given by a curved manifold: the mass
hyperboloid, shown in the 2D case in Fig. 2. Points on the
hyperboloid correspond to physically viable momenta, satis-
fying the relativistic dispersion relation ημν pμ pν = m2. For
instance, we can consider a physical system (an inertial frame
or a spin of a particle or an observer) at point pA = (m, 0, 0, 0)
on the hyperboloid, which corresponds to the system being at
rest. There is a natural way to think of boosts of the physical
system in the curved setting. A pure boost corresponds to
parallel transporting the system along a geodesic from the
initial to the final state of motion. For example, boosting a
system from momentum pA to pB means the system is parallel
transported along a geodesic from point pA to pB on the
hyperboloid.

Using the hyperboloid, let us visualize the action of the
boost sequence previously shown in Fig. 1. For the visual-
ization, we consider boosting a 2D frame F (p); see Fig. 3.
Without loss of generality, let us orient this 2D frame initially,
when it is at rest at pA = (m, 0, 0, 0), along the p1 and p2 axes.
The first boost L(v1) transports the frame along a geodesic of

FIG. 3. Sequence of three boosts on the 2D mass hyperboloid.
The black dot indicates rest momentum at pA = (m, 0, 0, 0) where
the hyperboloid intersects the p0 axis. The first (black) boost is
along the geodesic from rest to point pB, the second (blue) along the
geodesic from point pB to pC . The third (red) brings the system back
to rest. The resulting final frame (red) at the origin is Thomas-Wigner
rotated relative to the initial (black) frame.

the hyperboloid (shown black) to pB. There is no rotation as a
result of the boost, the frame remains oriented in the original
direction. Now, applying the second boost L(v2) along the p2

axis means the frame (shown blue) travels along a geodesic
which does not intersect with the origin. Parallel transporting
the frame along that geodesic to point pC means the frame
is rotated relative to the frame at the origin. We can see this
clearly when we boost the frame (shown red) back to the
origin pA along a geodesic. This geodesic does intersect the
origin, hence there is no rotation involved when the frame is
parallel transported along that geodesic. The final (red) frame
shown in Fig. 3 is TWR rotated relative to the initial (black)
frame.

This example demonstrates the power of the geometric
picture. Since boosting is conceptualized as parallel transport
between points on the hyperboloid, one can easily see why the
final frame is rotated relative the initial one. Other scenarios
can be analyzed in a similar manner. In general, one recog-
nizes that whether or not a frame will be rotated as a result of
a series of boosts depends on the path that the frame follows
on the hyperboloid. For instance, all geodesics that intersect
the origin do not rotate the frame. Rotation occurs only when
the system is boosted along a geodesic that does not inter-
sect the origin [6]. Hence parallel transport along a generic
path on the hyperboloid will give rise to rotation.

With this intuitive picture at hand, we will next give
a formal, differential geometric description of the mass
hyperboloid.

B. The geometry of the mass hyperboloid

In the previous section we described the momentum space
as a hyperboloid and argued heuristically that boosting a sys-
tem means parallel transporting it along a particular trajectory.
We now turn to the formal, differential geometric description
of the relativistic curved momentum space. The state space
of a spin-1/2 particle as a field over this manifold will be
introduced below in Sec. III C and the TWR as holonomy in
Sec. III D.

We start with Minkowski spacetime E1,3 and note that, as
a manifold, this space comes equipped with a tangent TxE1,3

and cotangent space T ∗
x E

1,3 at each point x ∈ E1,3. The mass
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hyperboloid V +
m is defined as a subset of the cotangent space,

V +
m,x = {P ∈ T ∗

x E
1,3 | η(P, P) = ημν pμ pν = m2, p0 > 0}.

(13)

Since the Minkowski space is flat, we can identify the mass
hyperboloids at different points of spacetime and omit the
subscript x that labels the base point, V +

m,x = V +
m . As a result,

we speak of a single momentum hyperboloid in which the
particle moves.5

To describe the intrinsic geometry of the hyperboloid, we
consider V +

m as the image of a mapping of spherical polar
coordinates z = (ρ, θ, φ), where ρ ∈ [0,∞), θ ∈ [0, π ), φ ∈
[0, 2π ), into the cotangent space T ∗

x E
1,3,

f (ρ, θ, φ) 
→ p(ρ, θ, φ) ,

p(ρ, θ, φ) = (√
m2 + ρ2, ρ sin θ cos φ, ρ sin θ sin φ, ρ cos θ

)
,

(14)

where

ρ = |p| = √
p · p, tan θ =

√
p2

1 + p2
2

p3
, tan φ = p2

p1
.

(15)

For θ = π/2 this parametrization of the mass hyperboloid
encodes motion of a particle in the spatial 1-2 plane. The
energy E := E (ρ) of the particle is identified as

E (ρ) =
√

m2 + ρ2, (16)

and the relativistic γ (v) = 1/
√

1 − v2 factor for a particle
with velocity v in this language is given by

γ (v) = E

m
=

√
m2 + ρ2

m
⇔ ρ = mv√

1 − v2
. (17)

We next induce a metric tensor g on the hyperboloid via
pullback of the Minkowski inner product from T ∗

x E
1,3 to V +

m :

g = −
(

m2

E2 dρ ⊗ dρ + ρ2dθ ⊗ dθ + ρ2 sin2 θdφ ⊗ dφ
)
.

(18)

This metric is negative definite since we started from the
Minkowski metric of signature (+,−,−,−). It defines the in-
trinsic geometry of V +

m via the Levi-Civita connection which
determines the parallel transport of vectors, and whose non-
vanishing Christoffel symbols �i

jk = 1
2 gip(∂ jgpk + ∂kgp j −

∂pg jk ) are given as follows:

�ρ
ρρ = − ρ

m2+ρ2 ,

�ρ
θθ sin2 θ = �ρ

φφ = − ρ

m2 (m2 + ρ2) sin2 θ ,

�θ
ρθ = �θ

θρ = 1
ρ

,

�θ
φφ = − cos θ sin θ ,

�φ
ρφ = �φ

φρ = 1
ρ

,

�φ
θθ = cot θ . (19)

5In general, this cannot be done in curved spacetimes since there is
no canonical way to identify hyperboloids at neighboring points.

The Riemann curvature tensor of the hyperboloid can be
also easily evaluated, Rp

qi j = ∂i�
p

q j − ∂ j�
p

qi + �p
si�

s
q j −

�p
s j�

s
qi, and its Ricci scalar is constant R = gq jRp

qp j =
6/m2. The latter is not surprising since the hyperboloid is a
maximally symmetric space with constant curvature.

In order to describe the parallel transport of spinors later
in Secs. III C–III D, we need another geometric ingredient:
the spin connection coefficients induced by the Levi-Civita
connection. Loosely speaking, we need to express the infor-
mation encoded in the Levi-Civita connection as a collection
of 1-forms ωA

B on the curved momentum manifold V +
m ,

ωA
B =

∑
i∈{ρ,φ,θ}

ωA
Bi dzi, (20)

whose components can be computed using the relation

ωA
Bi = eA

keB
j�k

i j + eA
k∂ieB

k, (21)

where eA
i are components of an orthonormal coframe �A =

eA
i dzi of the momentum space metric g. In other words, we

write the Christoffel symbols in an orthonormal frame basis
θA, while reserving the index i for the coordinate basis. The
momentum space 1-forms ωA

B are the components of a SO(3)
connection 1-form ω on V +

m , which we will later on map to
the SU(2) spinor connection over V +

m .
Using the following frame and coframe of the metric (18),

e1 = E

m
∂ρ, e2 = 1

ρ
∂θ , e3 = 1

ρ sin θ
∂φ,

�1 = m

E
dρ, �2 = ρ dθ, �3 = ρ sin θ dφ, (22)

we can display the coefficients ωA
B as the matrix

ω =

⎡⎢⎢⎢⎣
0 −E

m dθ − sin θ E
m dφ

E
m dθ 0 − cos θ dφ

sin θ E
m dφ cos θ dφ 0

⎤⎥⎥⎥⎦. (23)

Similarly, we can express the curvature of the Levi-Civita
connection as a collection of 2-forms �A

B:

�A
B = 1

2 RA
Bi jdzi ∧ dz j = 1

4 RA
Bi j (dzi ⊗ dz j − dz j ⊗ dzi )

= 1
2 RA

Bi jdzi ⊗ dz j, (24)

where RA
Bi j = Ra

bi jeA
aeb

B are the components of the Rie-
mann curvature tensor of the metric g partially expressed in
the orthonormal frame and coframe e and �. The momentum-
space 2-forms �A

B are the components of the SO(3) curvature
2-form of the over V +

m . For the frame (22) we obtain, again in
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matrix notation,

� =

⎡⎢⎢⎢⎣
0 −

√
E2−m2

Em dρ ∧ dθ −
√

E2−m2

Em sin θ dρ ∧ dφ
√

E2−m2

Em dρ ∧ dθ 0 − (E2−m2 )
m2 sin θ dθ ∧ dφ

√
E2−m2

Em sin θ dρ ∧ dφ (E2−m2 )
m2 sin θ dθ ∧ dφ 0

⎤⎥⎥⎥⎦. (25)

Constructing the connection 1-form ω and the curvature 2-
form � of the mass hyperboloid V +

m concludes the necessary
geometric ingredients we need to describe spinors on the mass
hyperboloid. However, note that at this point the picture is
incomplete since it does not contain the quantum state space;
all we have is a bare basis manifold with the tangent structure.
In the next section we will finish the construction: we will
add the state space of a free spin-1/2 particle over the basis
manifold.

C. Spinors on the mass hyperboloid

In this section we turn to the geometric approach of the
same Hilbert space that describes a free massive spin-1/2
particle discussed in Sec. II B. We stress that we are not con-
structing a new state space. Rather, we focus on the geometric
structure that is inherent in the same space while using the
language of differential geometry to describe how the state
space of a relativistic particle arises in the geometric context.
This is common practice when working with the gauge theo-
retic structure of quantum theory. We begin with an intuitive
picture and then move on to a more formal description.

Intuitively, when we think about the particle in flat space-
time, its wave function can be represented in the position
representation ψ (x) or the momentum representation ψ (p).
For relativistic particles, momentum space is the mass hyper-
boloid V +

m , which, as we have seen above, is a Riemannian
space with constant curvature. Then, ψ is a map from V +

m to
the Hilbert space Hp at p ∈ V +

m . Technically, we can inter-
pret this in the language of fiber bundles, where V +

m is the
base manifold, Hp is the typical fiber, and ψ is a section of
the fiber bundle given by the union of spaces Hp over all
p ∈ V +

m . Common notation in the literature for fiber bundles
is (π : E → M, F ), where E is the total space of the bundle,
M the base manifold, F the fiber, and π the projection from
the total space to the base manifold. Hence in the case under
study we write (π : E → V +

m ,Hp). For single particles, i.e.,
for spinors, the state space of the particle arises as the space of
square integrable sections of the vector bundle with a suitable
representation of the group SU(2). This state space is the
space H +

m,s we referred to in Sec. II B.
From the differential geometric perspective it is clear that

one cannot directly compare wave functions ψ (p) at different
points p since they belong to different spaces Hp. In order
to compare them we need to map the wave functions into
the same space, which is usually done by a nontrivial path
dependent parallel transport. The latter in general leads to
nontrivial state change as shown in Fig. 3.

For clarity, let us next recall how to construct the bundle for
spin-1/2 particles, which is the spinor bundle over the three-
dimensional curved manifold V +

m equipped with the metric

g. In this case the typical fiber Hp = C2 is endowed with an
action of SU(2) and spinors are sections ψ : V +

m → C2.

1. Spin group and spinors: Algebra

In order to construct spinors, one starts with a Clifford
algebra and then identifies the spin group as a particular subset
of the algebra. A Clifford algebra is defined as a pair (A, γ )
for a quadratic space (V, g), where V is a vector space over
R, g a scalar product on V , and γ : V → A a linear map. The
elements of the algebra satisfy the Clifford multiplication rule

γ (v)γ (u) + γ (u)γ (v) = 2g(v, u)1A (26)

for all u, v ∈ V . In the case where g has signature p + q =
n, the corresponding Clifford algebra is denoted Cl(p, q) :=
Cl(Rp,q). A generic element of the algebra need not have an
inverse, hence Cl(p, q) is not a group. However, the subset of
elements that do have inverses are normalized and consist only
of products of even number of elements, forms the spin group
Spin(p, q). Specifically for our purposes p = 3 and q = 0,
then the algebra is Cl(3, 0) and the corresponding spin group
is Spin(3). It can be shown that the latter is isomorphic to
SU(2).

The isomorphism provides the matrix representation of
Spin(3). This way we have arrived at spinors: they are the
elements of spaces on which the spin group acts. In other
words, spinors are real or complex column vectors which
come with the rule that specifies how they are transformed
by the elements of the Clifford algebra [28].

Thus, Clifford algebras lead to the identification of the spin
group, which in turn gives rise to spinors.

2. Spin and spinor bundles

Having recalled the spin group and spinors we can con-
struct the corresponding bundles. How does one accomplish
this technically? Historically, it was not clear how to construct
spinors on Riemannian manifolds. It was only after the devel-
opment of the formalism of principal fiber bundles at the end
of 1940s that spinors could be transferred from flat spaces to
Riemannian manifolds [29]. Following treatments in [28,30],
we will construct the spinor bundle as an associated bundle of
a spin bundle. Spinor fields are defined as cross sections of the
spinor bundle.

To construct a spin bundle (PSpin(3)
π̃s−→ V +

m , Spin(3)), we
first focus on the tangent bundle of the manifold under consid-
eration; here the tangent bundle of the mass shell, T V +

m = E ,
which is a six-dimensional vector bundle over (V +

m , g). The
bundle of orthonormal frames PSO(3)(E ) over the mass shell

is a principal bundle (PSO(3)(E )
π̃−→ V +

m , SO(3)), with group
SO(3) as typical fiber.
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The spin bundle is now the principle bundle in which
the orthogonal group, here SO(3), is replaced by its double
covering, here Spin(3) ∼= SU(2), such that two sheeted cover-
ing map ξ : PSpin(3)(E ) −→ PSO(3)(E ) exists and the following
relation holds:

(27)

where π̃ and π̃s are, respectively, projections that define the
PSO(3)(E ) and PSpin(3)(E ) bundles.

A spinor bundle S(E ) of E is defined as an associated
vector bundle to the spin bundle PSpin(E ),

S(E ) = PSpin(E ) ×ρ V, (28)

where V is a vector space which carries the representation ρ

and action of the group Spin. For spin-1/2 particles over the
base manifold (V +

m , g), we have Spin = Spin(3), the vector
space is V = C2, and ρ is the fundamental 2 × 2 matrix
representation of Spin(3) ∼= SU(2).6

With this the construction is complete and we can regard
spinor fields as sections ψ of the spinor bundle S(E ).

3. The spinor connection and curvature

Let us take stock of where we are and what needs to be
accomplished next. We have constructed the spinor bundle
and defined spin states as sections of the bundle. We have col-
lected almost all the components needed to realize the geomet-
ric idea of a boost as parallel transport except for one crucial
component: a connection that tells us how to transport spinors.
Recall, however, that above in (23) we computed the connec-
tion for the tangent bundle; this describes parallel transport
of tangent vectors. It turns out that that computation was not
in vain. We can use the connection on the tangent bundle to
generate a connection on the spinor bundle. In this section,
we will explicitly compute the spinor connection, following
the discussion in Refs. [28,30].

The key idea is that the two-sheeted covering ξ in (27)
gives rise to a Lie algebra isomorphism between the su(2) and
so(3) algebras, which enables one to lift the SO(3) connection
to the spin connection, which in turn induces a connection on
the associated spinor bundle. Let us elaborate on this.

We start by noting that we regarded the 1-form ω as an
SO(3) connection over momentum space V +

m . This means it
maps a given vector field X on V +

m to ω(X ), which is an
element of the Lie algebra so(3), and thus ω can be written
in the basis of the algebra as

ω = ω1
2E1

2 + ω1
3E1

3 + ω2
3E2

3, (29)

6Treating spinors as sections of a vector bundle with V = C2 over
the mass shell has also been discussed in the context of relativistic
quantum information theory in [11,12].

where Ei
j are the antisymmetric matrices with −1 at the i, j

entry, 1 at the j, i entry, and 0 elsewhere:⎡⎢⎢⎢⎢⎢⎣
(i) ( j)
...

...

(i) · · · 0 · · · −1 · · ·
( j) · · · 1 · · · 0 · · ·

...
...

⎤⎥⎥⎥⎥⎥⎦, (30)

which form a basis of the Lie algebra so(3). The components
are given by the 1-form components we computed in (23),

ω1
2 = E

m
dθ, ω1

3 = sin θ
E

m
dφ, ω2

3 = cos θ dφ. (31)

The connection 1-form (29) can be elevated to a global
connection ω̃ over the frame bundle PSO(3)(E ); see an
overview of structures used in the paper in Appendix A. The
resulting connection contains the same information as the
collection of local connections defined on patches O ⊂ V +

m .
The two connections are related by a pullback ω = σ̃ ∗ω̃ with
a section σ̃ : V +

m → PSO(3)(E ) of the principal bundle. For-
mally, both connections are 1-forms taking values in the Lie
algebra of the structure group of their respective bundles. In
fact, although formally ω and ω̃ live in different spaces, the
coordinate expressions of both connections turn out to be
identical, so the matrix of ω̃ is the same as ω.

The central idea in constructing the spinor connection is
that once a connection on the frame bundle PSO(3)(E ) is fixed,
a connection on the spin bundle PSpin(3)(E ) is uniquely de-
termined. This is because the double covering ξ induces an
isomorphism φ that determines the spin connection ω̃s from
the frame bundle connection ω̃, where the precise relationship
is given by [28]

ξ ∗ω̃ = φ(ω̃s). (32)

To obtain the spinor connection ωs we need to pull down ω̃s

to the base manifold V +
m using a section σ̃s of PSpin(3),

ωs = σ̃ ∗
s ω̃s. (33)

Using also the fact that a section σ̃s on the spin and a section
σ̃ of the frame bundle are related by σ̃ = ξ ◦ σ̃s, we obtain
a simple relationship between the connections on the base
manifold V +

m ,

ωs = φ(ω), (34)

which tells us that as a practical computation for obtaining the
spinor connection ωs from the local Levi-Civita connection ω,
one needs to express the connection ω in the su(2) basis (see
details in Appendix B). The latter is given in terms of Pauli
matrices by

J1 = −1

2
iσ1 = −1

2
i

(
0 1
1 0

)
,

J2 = −1

2
iσ2 = −1

2
i

(
0 −i
i 0

)
,

J3 = −1

2
iσ3 = −1

2
i

(
1 0
0 −1

)
. (35)
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This basis satisfies

[Ji, Jk] =
∑

j

εik jJ
j . (36)

The isomorphism φ between the so(3) and su(2) bases is given
by

Ei
j ↔ εi

jkJk, (37)

where ε is the totally antisymmetric Levi-Civita tensor of g in
the frame basis. Explicitly we have

E1
2 ↔ − 1

2 iσ3 = J3, E1
3 ↔ 1

2 iσ2 = −J2,

E2
3 ↔ − 1

2 iσ1 = J1. (38)

Using (29), the spinor connection ωs takes the form

ωs = − i

2

(
ω1

2σ
3 − ω1

3σ
2 + ω2

3σ
1
)

= − i

2

(
E

m
dθ σ 3 − E

m
sin θ dφ σ 2 + cos θ dφ σ 1

)
. (39)

Similar reasoning applies to the computation of spinor curva-
ture. Starting with (25), which is expressed in the so(3) basis,
we rewrite curvature in the su(2) basis and obtain

�s = i

2

(
−

√
E2 − m2

Em
dρ ∧ dθ σ3

+
√

E2 − m2

Em
sin θ dρ ∧ dφ σ2

−E2 − m2

m2
sin θ dθ ∧ dφ σ1

)
. (40)

These two quantities—spinor connection and curvature—
represent an important milestone. They encode the necessary
geometric information for realizing the goal we have been
working for: to describe how the spin of a quantum particle
changes when it follows a path in the curved momentum
space. In the next section, we will look at a concrete example
and calculate the holonomy matrix that characterizes the state
change of the spin.

D. TWR as holonomy

Up until now we have been claiming that in the geometric
framework boosting the particle can be understood as parallel
transporting the vector which represents the state of the parti-
cle from the initial to the final momentum. We saw above that
the simplest form of TWR occurs when the particle is boosted
along a triangular, closed path in the momentum space where
the initial and the final momenta correspond to the rest mo-
menta of the system. This leads to the notion of holonomy.
Holonomy is the idea that we can associate with every closed
curve C a transformation matrix which maps the initial state
ψi of the system to its final state ψ f when the particle has
been parallel transported along the closed curve. The set of all
such transformation matrices forms a group which is called
the holonomy group. To determine the transformation matrices
belonging to a specific loop C, one needs to solve the parallel
transport equation along this loop. Formally, one can express
the transformation with help of the path ordered exponential

[31] as

Hol(ωs,C) = P
[

exp

(
−

∫
C

ωs

)]
. (41)

This means TWR can be understood as the holonomy trans-
formation which arises due to the curvature of the relativistic
momentum space.

By way of an example, let us calculate the holonomy
matrix for a particular boost scenario. Consider a spin-1/2
particle that follows a circular path C in the momentum space
given by

C : [0, 2π ] → V +
m

τ 
→ C(τ ) = (ρ(τ ), θ (τ ), φ(τ )) = (ρ0, π/2, τ ).
(42)

One can think of the particle that is moving with momentum
of constant norm ρ0 = mV/

√
1 − V 2, or with speed V [see

(17)], as undergoing infinitesimal parallel transports when it
travels around the circular trajectory. Each small boost gives
rise to TWR, all of which accumulate when the particle
has completed one revolution. This is the famous case of
Thomas precession. The holonomy matrix Hol is a function
of connection ω and path C along which the vector is parallel
transported. The holonomy of C can be expressed in terms of
the curvature of the connection as

Hol(ωs,C) = exp

(
−

∫
D

�s

)
, (43)

where D is the disk with boundary C. Using (40) with dθ = 0,
the holonomy integral becomes

−
∫

D
�s = −

∫ ρ0

0

∫ 2π

0
dρ dφ

i

2

ρ√
m2 + ρ2m

σ2

= −iσ2π

(√
m2 + ρ2

0 − m
)

m
= −iσ2π

(
E (ρ0)

m
− 1

)
= −iσ2π (γ (V ) − 1).

(44)

Introducing α = 2π (γ (V ) − 1) we get the following holon-
omy matrix:

Hol(ωs,C) = exp
(
−i

α

2
σ2

)
=

(
cos(α/2) − sin(α/2)
sin(α/2) cos(α/2)

)
.

(45)

This SU(2) matrix acting on spin-1/2 particles corresponds to
an SO(3) rotation Re2 by angle α around the e2 = 1

ρ
∂θ axis;

see Appendix C.
With this result we have demonstrated how to derive the

TWR and in particular the Thomas precession of spinors,
using the formalism of the differential geometry of curved
relativistic momentum space, the mass hyperboloid. Our re-
sults coincide with the results obtained by the authors in [6]
for the same scenario in terms of projective geometry. The
fact that the two approaches converge on the same result
demonstrates that both reproduce the essential characteristics
of the phenomenon albeit with somewhat different means.

Let us briefly discuss the advantages offered by the two
approaches. They belong to the same family since both
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offer geometric conceptualization of TWR. The approach in
[6] provides valuable insight into TWR by making the phe-
nomenon easy to grasp visually as well as conceptually. It
also serves as an inspiration for the current paper.7 On the
other hand, the approach adopted here builds on this using
the language of modern differential geometry. The advantage
of the modern theory lies in that it provides a toolbox for
calculating interesting quantities in a coherent framework. For
instance, it allows one to compute the holonomy matrix based
on the quantities that describe the intrinsic geometry of the
mass shell manifold: the connection and curvature. In other
words, it allows one to conceptualize the TWR as holonomy,
associate it with structure, and relate it to the characteristics
of the manifold: holonomy forms a group which is nontrivial
if the manifold has curvature.

IV. CONCLUSIONS

We have discussed how the TWR of a spin-1/2 particle can
be understood in a geometric manner as the holonomy of the
curved relativistic momentum space, the mass hyperboloid.
We explicitly demonstrated how to construct the spin bundle
over the mass hyperboloid and how to derive the holonomy
matrix.

Since holonomies describe numerous physical effects,
for example Berry’s phase, the Aharonov-Bohm effect, the
Foucault pendulum, or gravitational effects on matter wave in-
terferometers, one sometimes groups them as being geometric
or topological, and classical or quantum holonomies [9]. For
instance, the famous case of Berry’s phase is a geometric and
a quantum holonomy because it originates in the curvature of
the quantum bundle. TWR, on the other hand, is a classical
and a geometric holonomy since it arises from the curvature
of the relativistic momentum space.

Having understood the TWR geometrically on Minkowski
spacetime, our work paves the way to extending this approach
to curved spacetimes. To do so, we aim to develop a geometric
framework which allows one to describe spinors on a curved
spacetime as sections of the spinor bundle over the nonequiv-
alent curved momentum spaces—the mass hyperboloids—at
each point of spacetime. This necessitates the construction of
differential geometric structures that incorporate both curved

spacetimes and curved momentum spaces. A promising candi-
date here is Hamilton geometry or its generalizations [32,33].
Previous approaches to describe TWR on curved spacetimes
rely on the Dirac approach to the spin-1/2 particle, and do
not refer to curved momentum spaces [34]. Moreover, the
geometric approach to TWR allows us to study how deformed
mass shells change the predictions for the TWR. Deformed
mass shells appear in deformed or doubly special relativity
(DSR) theories employed in quantum gravity phenomenology
[35], the most studied one being the κ-Poincaré framework,
or in Lorentz invariance violating theories like the standard
model extension.

Since it has also been demonstrated that viewing spinors
as vector bundles over the curved momentum space, or mass
shell, is well suited for analyzing the ambiguities in rela-
tivistic quantum information (RQI) theory [11,12], extending
our approach to curved spacetimes will also lead to a better
understanding of RQI on curved spacetimes.

Thus the treatment of TWR presented here in terms of
the geometry of spinor bundles over curved momentum space
explicitly exploits the connection between special relativistic
effects and the geometry of momentum space. It lays the foun-
dation for future investigations in the context of momentum
spaces whose geometry differs from the special relativistic
one, and also for the addition of spacetime curvature to the
picture.
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APPENDIX A: SUMMARY OF STRUCTURES
USED IN THE PAPER

The following diagram summarizes the structure and ob-
jects used in constructing the spinor connection:

su

su

(A1)

7Many facts about the behavior of boosts can be readily grasped using projective geometry. Reference [6] provides an excellent and accessible
treatment of TWR in the geometric setting.
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In the diagram, E = T V +
m is the vector bundle: the tangent

bundle of the forward mass hyperboloid V +
m for particle with

mass m. We denote O ⊂ V +
m and, to avoid making the fig-

ure even more crowded, we omit the spin section σ̃s : V +
m →

PSpin(3)(E ) and the frame bundle section σ̃ : V +
m → PSO(3)(E ),

but show how their pullbacks map connections over principal
bundles to connections for the respective associated bun-
dles, for instance ωs = σ̃ ∗

s ω̃s. We also occasionally abbreviate
PSpin(3)(E ) ≡ PSpin(3) and PSO(3)(E ) ≡ PSO(3). The dotted lines
show which space a particular connection operates on. For
instance, ω belongs to the space �1 of so(3) algebra valued
1-forms defined on O, and it defines a map on E . In the same
vein, ω̃ is a connection on the SO(3) principal bundle, ω̃s

on the Spin(3) principal bundle, and ωs on the spinor bundle
S(E ).

APPENDIX B: THE SPINOR CONNECTION

Given the (local) Levi-Civita connection 1-form ω on V +
m ,

we can compute the (local) spinor connection ωs on V +
m . We

follow the discussions in [28,30]. Using the notation of (A1),
we denote connections on the corresponding principal bundles
with ˜, i.e. the global connection ω̃ on PSO(3)(E ) and the spin
connection ω̃s on PSpin(E ). The relationship between the two
connections is given by

ξ ∗ω̃ = φ(ω̃s). (B1)

In order to obtain the spinor connection ωs we need to pull
down ω̃s to the base manifold V ∗

m using a section σ̃s of the
spin bundle PSpin(3)(E ),

ωs = σ̃ ∗
s ω̃s. (B2)

We can now check that the pulled down sections σ̃ ∗ω̃ and
σ̃ ∗

s ω̃s are related by the isomorphism φ. Using the fact that
a section σ̃s on the spin and a section σ̃ of the frame bundle
are related by σ̃ = ξ ◦ σ̃s, we compute

σ̃ ∗ω̃ = (ξ ◦ σ̃s)∗ω̃ (B3)

= σ̃ ∗
s (ξ ∗ ω̃) (B4)

= σ̃ ∗
s (φ(ω̃s)) (B5)

= σ̃ ∗
s

(
ω̃A

s φ(EA)
)

(B6)

= (
σ̃ ∗

s ω̃A
s

)
φ(EA) (B7)

= φ
((

σ̃ ∗
s ω̃A

s

)
EA

)
(B8)

= φ(σ̃ ∗
s ω̃s). (B9)

Since the pulldown of the Levi-Civita connection ω = σ̃ ∗ω̃,
we obtain the isomorphism between connections on the base

manifold V +
m ,

ω = φ(ωs). (B10)

APPENDIX C: IDENTIFYING SU(2) AND SO(3)

Below equation (45) we claimed that the obtained SU(2)
holonomy transformation corresponds to an SO(3) rotation
around the e2 axis. Here we quickly recall the relation between
SU(2) elements and SO(3) rotations for completeness and for
a self-contained discussion.

Consider (M, h) being a three-dimensional Rieman-
nian manifold. Let Z = Zaea ∈ TxM ∼ R3, where ea is a
orthonormal basis of TxM, i.e., h(ea, eb) = δab. Let Ẑ = Z

h(Z,Z ) ,
be the normalization of Z and define the su(2) representation
Z of Z as Z = ZaJa [the Ja are defined in (35)]. Then

U (Z) = exp(Z)

= 1 cos

(√
h(Z, Z )

2

)
− 2

(
Z√

h(Z, Z )

)
× sin

(√
h(Z, Z )

2

)
, (C1)

is a representation of an element U (Z) of SU(2), generated by
the su(2) element Z, on C2, parametrized by the components
Za of the vector Z . It is easy to check that det (U (Z)) = 1.
Call

√
h(Z, Z ) = ϕ; then the SU(2) elements become

U (Z) = exp (Z) = 1 cos
(ϕ

2

)
− 2Ẑ sin

(ϕ

2

)
= 1 cos

(ϕ

2

)
+ iẐaσa sin

(ϕ

2

)
. (C2)

They corresponds to a SO(3) element RZ which represents a
rotation around the Z axis of an angle ϕ in the following way.

Let X aea and Y = Y aea be vectors in TxM expanded in a
orthonormal basis of TxM. Then, they can be identified with
the elements X = X aJa and Y = Y aJa in su(2). The scalar
product is encoded as

h(X,Y ) = −2Tr(X Y). (C3)

Define

RZ (X ) = RU (Z)(X) = U (Z) X U (Z)−1, (C4)

which is a map from TxM to TxM. It preserves the scalar
product

h(X,Y ) = −2 Tr (X Y) = −2 Tr (RU (Z)(X)RU (Z)(Y))

= h(RZ (X ), RZ (Y )). (C5)

Thus RZ (X ) are the rotations of X around the Z axis by an an-
gle ϕ = h(Z, Z ) expressed in terms of SU(2) elements U (Z).
It is clear that U (Z ) and −U (Z ) generate the same rotations,
which makes visible the fact that SU(2) is the double covering
of SO(3).
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