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Nonrelativistic spatiotemporal quantum reference frames
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Quantum reference frames have attracted renewed interest recently, as their exploration is relevant and
instructive in many areas of quantum theory. Among the different types, position and time reference frames have
captivated special attention. Here, we introduce and analyze a nonrelativistic framework in which each system
contains an internal clock in addition to its external (spatial) degree of freedom and, hence, can be used as a
spatiotemporal quantum reference frame. We present expressions for expectation values and variances of relevant
observables in different perspectives, as well as relations between these quantities in different perspectives in
scenarios with no interactions. In particular, we show that even in these simple scenarios the relative uncertainty
between clocks affects the relative spatial spread of the systems.
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I. INTRODUCTION

In nonrelativistic classical mechanics, space and time are
absolute entities, existing independently of any physical ob-
ject. Time serves as a parameter according to which a physical
system evolves, and it is the same in every reference frame.
Investigation of electrodynamics, followed by the formula-
tion of Maxwell’s equations, caused some friction with this
notion. Maxwell’s equations are invariant not under Galilean
transformations but under Lorentz transformations, which do
not keep time as a universal parameter. Taking the operational
view that time is what is measured by clocks and clocks
are also subject to the laws of physics, Einstein resolved
the dispute between these two conflicting ideas by showing
that mechanical systems should also transform according to
Lorentz transformations. As a consequence, time is not the
same in every reference frame.

In nonrelativistic quantum mechanics of a single particle,
time serves as a Newtonian universal evolution parameter,
while the spatial coordinate becomes an operator associated
with a measurable quantity. Although the issue is more subtle
in the case of multiple particles, in which the systems live in
configuration space, this asymmetry signals a tension with the
theory of special relativity, where time and space are treated
on equal footing in Minkowski spacetime. This tension arises
from the lack of invariance properties within the algebra of
operators [1,2]. Relativistic versions of quantum mechanics
(Klein-Gordon and Dirac), where the number of described
particles and, hence, the number of degrees of freedom are
fixed, suffer from various problems and inconsistencies. So
far, the most successful and powerful theory that combines
both principles of quantum mechanics and special relativity is
relativistic quantum field theory (RQFT). In RQFT, space and
time coordinates are parameters and fields become operators
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describing an infinite number of degrees of freedom, while
particles are field excitations.

Moreover, in nonrelativistic quantum mechanics, there
have been discussions about the introduction of a time observ-
able since the early days of the theory, including the known
objection by Pauli [3], which can be resolved with the use
of positive operator-valued measures [4,5]. The possibility of
such an operator was discussed in terms of Heisenberg cut in
Ref. [6]. Alternative approaches related to these discussions
attempt to combine quantum mechanics with special relativity,
e.g., the study of relativistic quantum dynamics, introduced
by Steuckelberg in 1941 [7] and further developed after that
[8–10]. In these approaches, time becomes an operator asso-
ciated with a measurable quantity, called coordinate time, just
like space coordinates. However, in addition, these approaches
introduce an extra invariant and universal time parameter,
which is sometimes called historical or universal time and
serves as an evolution parameter like the one in nonrelativis-
tic classical and quantum mechanics. Using this framework,
several systems were described, e.g., relativistic Coulomb-like
and harmonic oscillator potentials [11] and relativistic space-
time string [12].

In this paper, the relevant approach for time is the Page
and Wootters framework [13]. Differently from Steuckel-
berg’s approach, the Page and Wootters framework introduces
relational dynamics from the constraint given by the Wheeler-
DeWitt equation with the use of clock systems. This
framework has gained considerable attention lately [14–30]
in the larger context of quantum reference frames [31–43],
where even the notion of a subsystem may depend on the
choice of reference frame [44]. We combine it with the
concept of spatial quantum reference frames (SQRFs). Specif-
ically, we consider a system of N particles, each with an
internal clock degree of freedom. This allows us to study the
expression for expectation values and variances of relevant
observables in a given perspective as well as relations be-
tween these quantities in different perspectives. As a particular
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consequence of this analysis, we show that relative uncertainty
between clocks generally affects the spatial distribution of
systems in a given perspective.

The remainder of this paper is structured as follows. In
Sec. II we briefly review the basics of spatial and temporal
reference frames. With this, we introduce our framework in
Sec. III, following up with an analytic study of expectation
values and variances of relevant observables in Sec. IV. Next,
in Sec. V we present some consequences implied by the anal-
ysis in Sec. IV. Finally, we conclude our paper and present
some prospective ideas in Sec. VI.

II. PRELIMINARIES

The fundamental concept behind this paper is the notion
of a frame of reference. In studies related to it, we typically
have a number of systems, some of which can be used as a
reference frame to describe the physics of the others. Before
any further consideration is made, the Hilbert space Hkin,
called the kinematical Hilbert space, can be constructed as
a tensor product of the Hilbert space associated with each
individual system.

However, at this stage, a reference frame has not been
chosen yet, and the system must satisfy a constraint (or a list
thereof). We will consider in this paper the case with first-class
constraints. Then, not every vector in Hkin will represent a
possible physical state [45]. This is the case because, in the
presence of a constraint Ĉ, we are interested in a subset of
vectors |�〉phys of the total space satisfying Ĉ|�〉phys = 0.
The resultant space of states that satisfy the constraint is the
physical Hilbert space Hphys. Using the technique known as
group averaging [46–50], observe that, given |�〉kin ∈ Hkin,
the vector δ(Ĉ)|�〉kin, where

δ(Ĉ) := 1

2π

∫
GC

ds eisĈ, (1)

satisfies the constraint Ĉ and, if no further constraints apply,
belongs to Hphys. In the above expression, GC refers to a set
of values that depend on the constraint Ĉ.

Within Hphys, there still exists a multiplicity of descriptions
of the systems since a frame of reference has not been chosen
yet. It turns out that this is a type of gauge freedom, and
choosing a frame is equivalent to fixing a gauge [40,51].

In this paper, we combine spatial and temporal quantum
reference frames. To better organize the presentation and
make the discussion less abstract, we first briefly review some
basics of each of them.

A. Spatial quantum reference frames

Consider a system of three particles, each with position
x̂I and momentum p̂I , where I ∈ I and I := {A, B,C}. The
kinematic space associated with the joint system is Hkin =
HA ⊗ HB ⊗ HC . Since the idea is to use any of the particles as
a position reference frame, it is, in a sense, natural to impose
the momentum constraint [40]

P̂T |�〉phys = 0, (2)

where P̂T :=∑I∈I p̂I . The inclusion of this constraint implies
that the coordinates x̂I do not have a meaning by themselves.

FIG. 1. Illustration of a spatial perspective-dependent descrip-
tion when particle A is chosen to be a reference frame.

Instead, only their relative values with respect to each other
have a meaning.

An arbitrary state in Hkin can be written as

|�〉kin =
∫

d pAd pBd pC�kin(pA, pB, pC )|pA, pB, pC〉

=
∫

dP�kin(P)|P〉, (3)

where we have introduced P := {pI ; I ∈ I} and dP =∏
I∈I d pI . However, because of the constraint in Eq. (2), a

physical state is of the form

|�〉phys =
∫

d pĀψĀ(pĀ)|−pĀ, pĀ〉
ABC

(4a)

=
∫

d pB̄ψB̄(pB̄)|−pB̄, pB̄〉
BAC

(4b)

=
∫

d pC̄ψC̄ (pC̄ )|−pC̄, pC̄〉
CAB

, (4c)

where pS̄ :=∑I∈I\{S} pI for every S ∈ I, pS̄ := P \ {pS}, and

ψĀ(pĀ) := �kin(−pĀ, pB, pC ),

ψB̄(pB̄) := �kin(pA,−pB̄, pC ),

ψC̄ (pC̄ ) := �kin(pA, pB,−pC̄ ), (5)

or, in general,

ψĪ (pĪ ) =
∫

d pIδ(PT )�kin(P). (6)

Each of the three expressions in Eq. (4) includes a degree
of freedom that is now redundant, which is associated with
expressing |�〉phys from the perspective of different particles.
In case one of these perspectives is chosen, say, A’s per-
spective in Eq. (4a), this redundancy can be removed with
a projection onto |xA = 0〉 [40], as illustrated in Fig. 1. The
resulting reduced state |ψĀ〉 := √

2π〈xA = 0|�〉phys is

|ψĀ〉 =
∫

d pĀψĀ(pĀ)|pĀ〉, (7)

which belongs to HB ⊗ HC and can be constructed. It is
noteworthy that xA is a fixed parameter that can be arbitrarily
chosen. The choice of xA = 0 is generally made for conve-
nience.

The inner product between |�〉phys and |�〉phys can be de-
fined as [40,48,49,51]

(�phys,�phys)phys := kin〈�|δ(P̂T )|�〉kin. (8)

032205-2



NONRELATIVISTIC SPATIOTEMPORAL QUANTUM … PHYSICAL REVIEW A 109, 032205 (2024)

This construction is consistent with the usual requirement of
having a normalized wave function (in a given frame) and,
moreover, is independent of the choice of perspective. Indeed,
in momentum representation, the physical inner product can
be written as

(�phys,�phys)phys =
∫

d pĀψ ∗̄
A (pĀ)φĀ(pĀ)

=
∫

d pB̄ψ ∗̄
B (pB̄)φB̄(pB̄)

=
∫

d pC̄ψ ∗̄
C (pC̄ )φC̄ (pC̄ ). (9)

Now, suppose the joint system composed of A, B, and C has a
dynamics governed by the Hamiltonian

ĤT =
∑
I∈I

p̂2
I

2mI
+

∑
I,J∈I;I>J

VIJ (x̂I − x̂J ). (10)

In A’s reference frame, it becomes

ĤĀ := 1

2

∑
I �=A

p̂2
I

mI
+ ( p̂B + p̂C )2

2mA
+ V (x̂B, x̂C ), (11)

where V (x̂B, x̂C ) := VBA(x̂B) + VCA(x̂C ) + VCB(x̂C − x̂B). In
fact, it can be shown [40] that ĤĀ governs the dynamics of
|ψĀ〉, i.e.,

i
d

dt
|ψĀ(t )〉 = ĤĀ|ψĀ(t )〉, (12)

where |ψĀ(0)〉 = |ψĀ〉.

B. Temporal quantum reference frames:
Page-Wootters framework

The framework introduced by Page and Wootters was pro-
posed as a solution to a time issue that arises in the canonical
quantization of general relativistic systems [13]. Specifically,
the quantization leads to the constraint

ĤT |�〉phys = 0, (13)

known as the Wheeler-DeWitt equation [52]. This constraint
implies that the total system (supposedly the entire universe)
is an energy eigenstate and, hence, does not evolve in time. A
question then surfaces: How does one reconcile this with the
standard notion of time evolution?

Approaching this issue, Page and Wootters showed that the
standard dynamics could indeed emerge from this static sce-
nario in a relational way if the entire system was split into two
parts: The first, associated with HC , is a clock and the other,
associated with HR, is the system whose dynamics will be
analyzed. Moreover, they assumed that ĤT = ŵ + ĤR, where
ŵ is the Hamiltonian of the clock and ĤR is the Hamiltonian
of system R.

In HC , time states are defined as

|t〉 := e−iŵ(t−t ′ )|t ′〉 (14)

with the condition that
∫

G dt |t〉〈t | = 1C , where the set
G refers to the values necessary to parametrize the one-
dimensional group generated by ω̂ [23]. In this expression,

as in this entire paper, we use units such that h̄ = 1. With this,
it is possible to define the time operator

t̂ :=
∫

G
dt t |t〉〈t |, (15)

and it holds that [t̂, ω̂] = i1C and d
dt |t〉 = −iŵ|t〉 [23,28]. Ob-

serve that t̂ and ω̂ are not necessarily canonically conjugate,
i.e., a Heisenberg pair. This is the case because such pairs are
composed of Hermitian operators, but t̂ is only guaranteed to
be symmetric. In fact, t̂ is Hermitian only if 〈t |t ′〉 = δ(t − t ′)
for every t and t ′, in which case the clock is referred to as an
ideal clock. When this condition is not matched, t̂ is the first
moment of a positive operator-valued measure [16,23].

While ideal clocks do not overcome Pauli’s objection (they
require the clock’s Hamiltonian to be unbounded from below),
they can be seen as approximations for clock systems with
large spectra. Moreover, their use is convenient since they
simplify mathematical derivations. For this reason, we assume
ideal clocks throughout this paper. With this choice, we also
omit G from the integral over t in Eq. (15) since, in this case,
we have an integral over the entire real line.

With this set and defining |ψ (t )〉 := √
2π〈t |�〉phys,

Eq. (13) implies that 〈t |ĤT |�〉phys = 0, which leads to

i
d

dt
|ψ (t )〉 = ĤR|ψ (t )〉, (16)

which is the standard Schrödinger equation. The factor
√

2π

is typically not introduced in the definition of |ψ (t )〉, and has
been included here for symmetry with the spatial reference
frames.

The inner product between |�〉phys and |�〉phys is defined
as [16,23,48,49,51]

(�phys,�phys)phys := kin〈�|δ(ĤT )|�〉kin

=〈ψ (t )|φ(t )〉, (17)

where |φ(t )〉 := √
2π〈t |�〉phys

It is noteworthy that, while the original formulation of
the framework assumed no interactions with the clock, this
framework has been extended to the interacting case [16].
Moreover, system R may be a multipartite system and even
include multiple clocks, each of which could be a potential
reference frame for time [18,19,24,26,28].

III. 1 + 1 SPATIOTEMPORAL QUANTUM
REFERENCE FRAMES

We now combine the two frameworks presented in the
previous section. More precisely, we consider a composite
system of three particles, each with degrees of freedom asso-
ciated with time (i.e., a clock) and space, with their respective
Hilbert spaces HCI and HRI , where I ∈ I. Each particle I
has external degrees of freedom associated with the position
operator x̂I and its canonical conjugate momentum p̂I . More-
over, the internal clock of each particle I has a Hamiltonian
ω̂I and a time operator t̂I , built according to Page and Woot-
ters’ description. The full Hilbert space under consideration
is, then, Hkin ≡⊗I (HCI ⊗ HRI ), and an arbitrary element
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|�〉kin ∈ Hkin is

|�〉kin =
∫

d	 dP |	, P〉�kin(	, P), (18)

where 	 := {ωI ; I ∈ I}.
We assume the entire joint system satisfies the momen-

tum constraint in Eq. (2) and the Hamiltonian constraint in
Eq. (13). In the latter, ĤT denotes the total Hamiltonian of the
system, assumed to be of the form

ĤT :=
∑
I∈I

(
ŵI + p̂2

I

2mI

)
. (19)

Hence, [P̂T , ĤT ] vanishes everywhere in Hkin. As a conse-
quence, δ(P̂T ) and δ(ĤT ) also commute.1 Then, unequivo-
cally, we can consider the map from Hkin into Hphys:

|�〉kin �→ |�〉phys := δ(P̂T )δ(ĤT )|�〉kin. (20)

Then, we can write, in general,

|�〉phys =
∫

d	dP|	, P〉δ(HT )δ(PT )�kin(	, P) (21)

or, in perspective-dependent views,

|�〉phys =
∫

dωĀd pĀ|ωA = −HĀ, ωĀ, pA = −pĀ, pĀ〉

�kin(−HĀ, ωB, ωC,−pĀ, pB, pC )

=
∫

dωB̄d pB̄|ωB = −HB̄, ωB̄, pB = −pB̄, pB̄〉

�kin(ωA,−HB̄, ωC, pA,−pB̄, pC )

=
∫

dωC̄d pC̄ |ωC = −HC̄, ωC̄, pC = −pC̄, pC̄〉

�kin(ωA, ωB,−HC̄, pA, pB,−pC̄ ), (22)

where ωĪ := 	 \ {ωI} and HĪ is the “scalar version” of the
operator:

ĤĪ =
∑

J∈I\{I}
ω̂J + p̂2

Ī

2mI
+
∑

J∈I\{I}

p̂2
J

2mJ
=
∑

J∈I\{I}
ω̂J + K̂Ī ,

(23)

where K̂Ī ≡ p̂2
Ī /2mI +∑J∈I\{I} p̂2

J/2mJ . As will be seen
soon, this is the effective Hamiltonian of the systems from
I’s perspective. By scalar version, we mean the eigenvalue of
the operator associated with the eigenstate |ωĀ, pĀ〉.

Denoting

�Ī =
∫

dωI d pIδ(	T )δ(PT )�kin(	, P), (24)

1This would also hold if the Hamiltonian was of the form

ĤT :=
∑
I∈I

(
ŵI + p̂2

I

2mI

)
+

∑
I,J∈I;I>J

VIJ (x̂I − x̂J ).

However, for the argument to be more direct, we consider the nonin-
teracting case.

FIG. 2. Perspective in a spatiotemporal reference frame. In addi-
tion to its spatial degree of freedom, each particle is assumed to have
an internal degree of freedom identified as a clock. Here, system A is
chosen to be a reference frame. In this description, x̂B, x̂C , t̂B, and t̂C
are observables, while tA is a parameter.

or, explicitly, for the systems A, B, and C,

�Ā ≡ �kin(−HĀ, ωB, ωC,−pĀ, pB, pC ),

�B̄ ≡ �kin(ωA,−HB̄, ωC, pA,−pB̄, pC ),

�C̄ ≡ �kin(ωA, ωB,−HC̄, pA, pB,−pC̄ ), (25)

we observe that �Ā, �B̄, and �C̄ describe the same physical
state in Hphys. However, they correspond to different perspec-
tives before the removal of the redundant degrees of freedom.

With this, we follow the procedure discussed in the previ-
ous section and define the state of the system conditioned on
the spatiotemporal state of one of the particles, say, A, which
will serve as a reference frame as a “ruler” and a “clock”
(illustrated in Fig. 2). Such a reduced state is

|ψĀ(tA)〉 := 2π〈tA, xA = 0 | �〉phys, (26)

where ψĀ represents the state of systems B and C from A’s
perspective. In this picture, x̂I , p̂I , t̂I , and ω̂I are observables,
where I ∈ I \ {A}, while tA is a parameter of evolution.

In this definition, while tA is a quantity to be varied for the
study of the time evolution of the systems from the perspective
of A, xA = 0 is a fixed parameter used as a reference to give
relational meaning to the position of the other particles.

Applying the constraint in Eq. (13) and projecting it onto
|tA, xA = 0〉, we obtain the Schrödinger equation

i
d

dtA
|ψĀ(tA)〉 = ĤĀ|ψĀ(tA)〉. (27)

Observe that, from the initial conditions, we have

|ψĀ(tA)〉 = e−itAĤĀ |ψ (0)〉
= 2π〈tA = 0, xA = 0|e−itAĤĀ |�〉phys. (28)

Then, from Eq. (22), we obtain

|ψĀ(tA)〉 =
∫

dωĀ d pĀ|ωĀ, pĀ〉e−itAHĀ�Ā

=
∫

dωĀ d pĀ|ωĀ, pĀ〉ψĀ(tA, ωĀ, pĀ), (29)

where we have introduced

ψĀ(tA, ωĀ, pĀ) := 〈ωĀ, pĀ|ψĀ(tA)〉 = e−itAHĀ�Ā. (30)
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Observe that, from the definition in Eqs. (20) and (26), ap-
plying the constraints on a kinematical state and reducing the
resulting state to a perspective is equivalent to solving the
Schrödinger equation in Eq. (27).

Repeating the above steps, one may obtain a description
with respect to any subsystem. For example, the state from
B’s perspective is of the form

|ψB̄(tB)〉 =
∫

dωB̄d pB̄|ωB̄, pB̄〉ψB̄(tB, ωB̄, pB̄) (31)

with

ψB̄(tB, ωB̄, pB̄) = e−itBHB̄�B̄, (32)

which obeys the following Schrödinger equation:

i
d

dtB
|ψB̄(tB)〉 = ĤB̄|ψB̄(tB)〉. (33)

Based on previous approaches derived from the coherent
group averaging technique [23,46–49,51], we introduce the
inner product

(�phys,�phys)phys := kin〈�|δ(ĤT )δ(P̂T )|�〉kin. (34)

Observe that (�phys,�phys)phys = 〈ψ (tI ) | φ(tI )〉 for every I ∈
I, i.e., the normalization of reduced states is independent of
perspective.

IV. EXPECTATION VALUES, VARIANCES,
AND COVARIANCES

We now explore the perspective-dependent expressions
describing expectation values and variances of the relevant
operators in the framework just introduced. Different from the
simplification considered in the previous section, we will as-
sume a general number of subsystems, i.e., I := {A, B,C, . . .}.

Recall that the expression for the expectation value of an
operator ÔĪ (that does not depend explicitly on time) from the
perspective of the system I at an instant of time tI is

〈ÔĪ〉I (tI ) = 〈ψĪ (tI )|ÔĪ |ψĪ (tI )〉. (35)

Similarly, its variance is

σ 2(ÔĪ )I (tI ) = 〈Ô2
Ī

〉
I (tI ) − 〈ÔĪ〉2

I (tI ). (36)

When it is sufficiently clear, we omit the dependency on tI .
Moreover, for any integrable function f (	, P) and for ev-

ery I, J ∈ I, it holds that∫
d	dPδ(HT )δ(PT ) f (	, P)

=
∫

dωĪ d pĪ f (ωI = −HĪ , ωĪ , pI = −pĪ , pĪ )

=
∫

dĪ fĪ =
∫

dJ̄ fJ̄ , (37)

where fĪ ≡ f (ωI = −HĪ , ωĪ , pI = −pĪ , pĪ ) and dĪ ≡
dωĪ d pĪ .

A. Momentum and energy

We start by observing that the expectation value of the
momentum of subsystem I is time independent and indepen-
dent of the reference frame. Indeed, (eitJ HJ̄ � ∗̄

J )pI (e−itJ HJ̄ �J̄ ) =

� ∗̄
J pI�J̄ and then, for every tJ ∈ G,

〈p̂I〉J =
∫

dJ̄�
∗̄
J pI�J̄ =

∫
dK̄� ∗̄

K pI�K̄ = 〈p̂I〉K , (38)

where J, K ∈ I \ {I}. Moreover, using Eq. (37), we have

〈p̂I〉J =
∫

d	 dP�kin∗
(	, P)δ(PT )δ(HT )pI�

kin(	, P)

=
∫

dĪ�
∗̄
I (−pĪ )�Ī

= −〈p̂Ī〉I = −
∑

K∈I\{I}
〈p̂K 〉I . (39)

Furthermore, using the notion of covariance between
operators

cov(Â, B̂) := 〈ÂB̂〉 − 〈Â〉〈B̂〉, (40)

we conclude, as shown in Appendix A, that the covariance
between p̂I and p̂J (for I �= J) in an arbitrary reference frame
M ∈ I \ {I, J} is

cov( p̂I , p̂J )M = −σ 2( p̂I )J −
∑

L∈I\{I,J}
cov( p̂I , p̂L )J , (41)

i.e., it can be computed in terms of quantities associated with
the reference frame of system J (or of system I) alone.

Similarly, for the clocks’ energies, the expectation value of
I’s clock energy from J’s perspective satisfies

〈ω̂I〉J =
∫

dJ̄�
∗̄
J ωI�J̄ =

∫
dK̄� ∗̄

KωI�K̄ = 〈ω̂I〉K . (42)

Moreover, as we show in Appendix A, the covariance be-
tween ω̂I and ω̂J (for I �= J) in an arbitrary perspective M ∈
I \ {I, J} can also be given in terms of quantities associated
with the reference frame of system J (or system I) alone. More
precisely,

cov(ω̂I , ω̂J )M = −σ 2(ω̂I )J −
∑

L∈I\{I,J}
cov(ω̂I , ω̂L )J

− cov(ω̂I , K̂J̄ )J . (43)

B. Time

Since there is no interaction between the systems and the
clocks or even among different clocks, one might expect that
the “flow of time” is the same in every clock. This idea can be
indeed validated by the fact that

〈t̂I〉J (tJ ) = 〈ψJ̄ (tJ )|t̂I |ψJ̄ (tJ )〉

=
∫

dJ̄�
∗̄
J eitJ HJ̄ i

d

dωI
(e−itJ HJ̄ �J̄ )

=
∫

dJ̄�
∗̄
J

(
i

d

dωI
+ tJ

)
�J̄

= 〈t̂I〉J (tJ = 0) + tJ . (44)

Moreover, as shown in Appendix B,

σ 2(t̂I )J (tJ ) = σ 2(t̂I )J (tJ = 0), (45)

i.e., the variance of a clock in a given frame is time inde-
pendent. This means that besides an initial offset between the
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FIG. 3. Representation of reciprocal temporal descriptions. In
general, the clocks are not synchronized but have the same variance
in each other’s reference frames.

clock’s average value, their main difference is associated with
their initial variance.

If the initial average value and variance of a clock I in
the reference frame J are known, according to Eq. (B3), the
reciprocal quantities are also known. The reciprocal temporal
expectation values are opposite,

〈t̂I〉J (tJ = 0) = −〈t̂J〉I (tI = 0), (46)

and the variances coincide,

σ 2(t̂I )J (tJ ) = σ 2(t̂J )I (tI ), (47)

as proved in Appendix B and illustrated in Fig. 3.

C. Velocity

Before considering expectation values and variances of
systems’ positions in different reference frames, it is conve-
nient to introduce the (noncanonical) velocity operator. Based
on the standard notion that velocity is the time derivative of
the position, the velocity v̂I|J of a particle I in the reference
frame of system J is introduced as [53–56]

v̂I|J := i[ĤJ̄ , x̂I ] = p̂I

mI
+ p̂J̄

mJ
. (48)

This coincides with the definition of relative velocity between
I and J in the kinematical space. Indeed, the latter corresponds
to

v̂IJ := p̂I

mI
− p̂J

mJ
. (49)

With this, it can be checked that (v̂IJ )J̄ ≡ v̂I|J or, equivalently,
(v̂JI )Ī ≡ v̂J|I . Since it follows from the definition that v̂IJ =
−v̂JI , it holds that

〈v̂I|J〉J = −〈v̂J|I〉I , (50)

which corresponds to an expected property of reciprocal
velocities.

D. Position

We are now ready to study a few properties of expectation
values and variances of position operators in different frames.
Details of the calculations presented here can be found in
Appendix C.

FIG. 4. Representation of reciprocal spatial descriptions. Due to
the different reference frames for time associated with each system,
there is generally a shift that violates the antisymmetric position
expectation value and, moreover, the reciprocal spatial variance is
not the same.

To start, observe that the expectation value of x̂I in J’s
reference frame for some I �= J satisfies

〈x̂I〉J (tJ ) = 〈ψJ̄ (tJ )|x̂I |ψJ̄ (tJ )〉

=
∫

dJ̄�
∗̄
J eitJ HJ̄ i

d

d pI
e−itJ HJ̄ �J̄

= 〈x̂I〉J (tJ = 0) + 〈v̂I|J〉JtJ . (51)

Then, on average, the expression for the position of particle
I is the same given by a free nonrelativistic classical particle.
Deviations from the classical case can be seen from the time
evolution of the variance of x̂I , which is

σ 2(x̂I )J (tJ ) = σ 2(x̂I )J (tJ = 0) − tJ c̃ov(x̂I , v̂I|J )J (tJ = 0)

+ t2
J σ 2
(
v̂2

I|J
)

J (tJ = 0), (52)

where

c̃ov(Â, B̂) := 1
2 (〈ÂB̂ + B̂Â〉) − 〈Â〉〈B̂〉. (53)

When considering the reciprocal of expectation values,
the symmetry observed in Eqs. (46) and (47) does not hold.
Indeed, it can be shown that the relation between the initial
expectation value of position in a given frame and its recipro-
cal, according to Eq. (C3), is

〈x̂I〉J (tJ = 0) = −〈x̂J〉I (tI = 0) + 〈v̂J|I t̂J〉I (tI = 0). (54)

Finally, we can write the following for the initial variance of
a clock and its reciprocal:

σ 2(x̂I )J (tJ = 0) = σ 2(x̂J )I (tI = 0)

− c̃ov(x̂J , v̂J|I t̂J )I (tI = 0)

+ σ 2(v̂J|I t̂J )I (tI = 0). (55)

Then, as illustrated in Fig. 4, the reciprocal variance between
systems I and J is not the same. In particular, we note that the
state of a clock in a given perspective may affect the variance
of position and, hence, the spatial distribution of the latter in
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the perspective of the former. This aspect is one of our main
results and will be further explored in Sec. V B.

Before moving to the next section, we briefly discuss the
conditions for the reduction of an spatiotemporal quantum
reference frame (STQRF) into an SQRF. Intuitively, since the
SQRF has a single “classical” notion of time, this reduction
occurs when all clocks are synchronized and have zero relative
uncertainty. With the tools introduced here, we can formalize
this idea, as we do in Appendix D.

V. CLOCK RELATIVE UNCERTAINTY AND THE SPATIAL
DISTRIBUTION OF SYSTEMS

In this section, we illustrate two of the main results we have
just derived. In particular, we show how the temporal parts
of a system affect their spatial distribution upon a change of
reference frame. This is the case even though, for simplicity,
we assume no interactions with any of the temporal parts.

Consider a joint system of three subsystems (A, B, and C),
each with spatial coordinates and individual clocks. Assume
the initial state of the system in a given frame, say A, is
of the form |ψĀ(tA = 0)〉 = |ξB〉 ⊗ |λB〉 ⊗ |ξC〉 ⊗ |λC〉, where
|ξI〉 := ∫ dωI ξ̃I (ωI )|ωI〉 and |λI〉 := ∫ d pI λ̃I (pI )|pI〉 for I =
B,C. Then, using Eq. (30), we identify

ψĀ(tA = 0, ωĀ, pĀ) = �kin(−HĀ, ωĀ,−pĀ, pĀ)

= I �=Aξ̃I (ωI )λ̃I (pI ) (56)

and

ψĀ(tA, ωĀ, pĀ) = e−itAHĀI �=Aξ̃I (ωI )λ̃I (pI ). (57)

Taking the Fourier transform of the last expression, we write

ψĀ(tA, ωĀ, xĀ) = 1

2π

∫
d pĀei(xB pB+xC pC−tAHĀ )

× ξ̃B(ωB)ξ̃C (ωC )λ̃B(pB)λ̃C (pC ). (58)

Similarly, from Eqs. (25), (32), and (56), we have

ψB̄(tB, ωB̄, pB̄) = e−itBHB̄ ξ̃B(−HB̄)ξ̃C (ωC )λ̃B(−pB̄)λ̃C (pC ),
(59)

which has Fourier transform

ψB̄(tB, ωB̄, xB̄) = 1

2π

∫
d pB̄ei(xA pA+xC pC−tBHB̄ )

× ξ̃B(−HB̄)ξ̃C (ωC )λ̃B(−pB̄)λ̃C (pC ). (60)

This expression will be the basis for our analysis in this
section.

A. Frame dependency of entanglement

The form of the initial conditions just discussed reveals
that, while there was no entanglement between the systems
from A’s perspective, particles A and B may be entangled from
C’s perspective.

This can be seen from the factor λ̃B(−pB̄) in Eq. (60) since
it suggests that the state of systems A and C will generally
be mixed for an arbitrary λB. To give a concrete example,
consider the special case in which ξB and ξC are constant
functions, λB(xB) = eikBxB , and λC (xC ) = δ(xC − x0), where
kB and x0 are real constants. Then, following the analysis
presented at the beginning of this section, it can be checked
that

ψB̄(tB = 0, ωB̄, xB̄) = e−ikBxAδ(xC − xA − x0). (61)

Observe that this function can be equivalently written as
e−ikB (xC−x0 )δ(xC − xA − x0). This means that A and C behave
individually as plane waves. However, when one is measured,
the other is localized a distance x0 away from the location
of the measured particle. In the above scenario, we see that
particles that were not entangled in one frame become entan-
gled in the other. This fits the spatial quantum reference frame
treatment without using a dynamical time [35,38].

B. Clock states and spatial localizability of systems

We now turn our attention to the term ξB(−HB̄) in Eq. (60).
The Hamiltonian HB̄ depends on spatial and temporal quan-
tities of systems A and C. As a result, depending on ξB the
various subsystems might be correlated in B’s perspective.
Another way to put it is by saying that the state of a clock
in a given perspective affects even the spatial distribution of
particles in the perspective of the system to which that clock
belongs.

To illustrate this, consider the case in which
λB(xB) = (2/π�2)1/4e−x2

B/�2
eiq0xB , λC (xC ) = eikC xC , and

ξI (ωI ) ∝ e−αI |ωI |, where kC, q0 ∈ R, � > 0, αI > 0, and
I = B,C. According to Eq. (58), the wave function describing
particles B and C from A’s perspective at an arbitrary instant
of time tA is

ψĀ(tA, ωĀ, xĀ) ∝ e−αB|ωB|e−αC |ωC | exp

{
−itA

[
ωB + ωC + (kC + q0)2

2mA
+ q2

0

2mB
+ k2

C

2mC

]}

×
√

π

�2

4 + itA
2μBA

exp

⎧⎨⎩−
[
xB − tA

( kC+q0

mA
+ q0

mB

)]2
4
(

�2

4 + itA
2μBA

)
⎫⎬⎭eikC xC+iq0xB , (62)

where μAB = (1/mA + 1/mB)−1 is the reduced mass of particles A and B. Using Eq. (60), the state of the system in B’s perspective
can be obtained. We analyze here the resulting state for ωA, ωC > 0. A similar analysis can be made for other relevant regions
of the spectrum associated with ωA and ωC . In the aforementioned domain, the wave function describing particles A and C from
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B’s perspective at an arbitrary instant of time tB is

ψB̄(tB, ωB̄, xB̄) ∝ e−αCωC exp

{
−(itB + αB)

(
ωA + ωC + (kC + q0)2

2mA
+ q2

0

2mB
+ k2

C

2mC

)}

×
√

π

�2

4 + αB
2μAB

+ itB
2μAB

exp

⎧⎨⎩−
[
xA + (tB − iαB)

( kC+q0

mA
+ q0

mB

)]2
4
(

�2

4 + αB
2μAB

+ itB
2μAB

)
⎫⎬⎭eikC xC−i(q0+kC )xA . (63)

Observe that even in the limit � → 0, when, in A’s perspec-
tive, particle B is localized at tA = 0 [since λB(xB) → δ(xB)],
the terms associated with the spatial distribution of particle
A from B’s perspective (i.e., the terms in the last line of the
above equation) reveal that it has the form of a Gaussian for
any tB. This is due to the relative uncertainty of clock B in A’s
perspective. In fact, in the limit αB → 0, where the relative
uncertainty between clocks A and B vanishes, it is possible
to obtain a localized state for system A at tB = 0 in B’s
perspective. Similarly, we may choose a different normalized
dependence of the clocks in ωI . Consider the case λB(xB) =
δ(xB − x0), λC (xC ) = eikC xC , and ξI (ωI ) = rectWI (ωI ), where
x0, kC , and WI are positive real constants, I = B,C, and

rectWI (z) =
{

1
WI

, −WI
2 < z < WI

2

0, elsewhere
. (64)

Let a = 1/2μAB, b = kC/mB, and c = ωA + ωC +
k2

C/2μCB. If −WB
2 < c − b2

4a < WB
2 , the initial state of particles

A and C from B’s perspective is

ψB̄(tB = 0, ωB̄, xB̄) = ξC (ωC )eikC (xC+x0 )2e−i b
2a (xA+x0 )

× sin[peff(xA + x0)]

peff(xA + x0)
, (65)

where peff =
√

b2

4a2 − 1
a (c − WB

2 ).

In the limit WB → ∞, peff → √
WB/2a, the result does not

depend on any ωI . Precisely,

lim
WB→∞

e−i b
2a (xA+x0 ) sin[peff(xA + x0)]

peff(xA + x0)
� δ(xA + x0). (66)

This is the case because, in this limit, the relative uncertainty
between the clocks vanishes.

Observe that the results discussed here hold even though
we do not apply any relativistic correction and, moreover,
no interaction between the clocks and the spatial coordinates
takes place. In fact, this can be seen as a consequence of
the physical space not having the tensor product structure
from the kinematical space, and the tensor product notation
being used simply as a label for the systems [23]. More-
over, because of the relative uncertainty between the clocks,
the well-defined moment tA = 0 in A’s perspective becomes
“fuzzy” in B’s perspective [19], hence the influence of the rel-
ative uncertainty between the clocks in the spatial distribution
of systems.

VI. DISCUSSION AND OUTLOOK

In this paper, we have introduced a simple framework for
1+1 nonrelativistic spatiotemporal quantum reference frames,

which combines position reference frames with the Page-
Wootters approach. In our model, we have assumed each
physical system contains, in addition to an external degree
of freedom associated with its position, an internal degree
of freedom that can be used as a clock. With this, each
system can be used as a spatiotemporal reference frame
and, moreover, the remaining systems satisfy the Schrödinger
equation in the chosen perspective.

In Sec. IV we presented our main results, which consist
of the derivation of formal expressions for perspective-
dependent expectation values and variances associated with
space, time, momentum, and the clock’s energy degrees of
freedom. We also presented relations between these quantities
in different reference frames.

Recently, relativistic and nonrelativistic spatiotemporal
reference frames have been considered in the literature
[57–60]. While Ref. [59], like the present paper, investigates
a nonrelativistic framework, the authors consider a scenario
with a single clock system to be used as a reference for
time. One may think that this should indeed be enough for
a nonrelativistic treatment, in particular in scenarios without
interactions with the clock. However, as we have shown, the
clock states in one perspective influence the spatial degrees
of freedom of the systems when changing perspectives. For
example, when only the spatial frame is considered, if a par-
ticle B is localized in A’s perspective, then particle A is also
localized in B’s perspective [40]. However, in the spatiotem-
poral framework investigated here, this is not always the case.
Depending on the state of clock B in A’s perspective, particle
A might have a spatial spread in B’s reference frame even if
B is localized in A’s perspective, as shown in Sec. V. This
happens despite the notion of time in every clock being the
same in our paper, as discussed in Sec. IV B. In fact, it can be
observed that the Heisenberg dynamics of the time operator t̂J
in system I’s perspective is

dt̂J
dtI

= i[ĤĪ , t̂J ] = 1J (67)

for every J �= I .
There are several directions that can be approached with

the framework studied here. For instance, one could consider
more general forms of the Hamiltonian ĤT that include inter-
actions between the different parts of the system, including
the clocks. One could even consider a Hamiltonian whose in-
teracting terms are such that the Hamiltonian and momentum
constraints do not commute everywhere in the kinematical
Hilbert space.

Furthermore, the results presented here can be extended to
the 3+1 spatiotemporal scenario. In this case, the translational
invariance constraint becomes effectively three individual
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constraints, one for each spatial direction. Additionally, one
should also consider rotational invariance [61,62], which also
introduces one constraint per rotational direction. Interest-
ingly, let x̂s

I be the spatial coordinate of system I in the
direction s ∈ R := {x, y, z} and let p̂s

I be its associated canon-
ical momentum. Consequently, P̂r

T =∑K∈I p̂r
K is the total

momentum in the direction r ∈ R and L̂u
T =∑J∈I �̂u

J is the
total angular momentum about the axis u ∈ R with �̂u

J =∑
v,s∈R εuvsx̂v

J p̂s
J . Hence, it follows that

[
L̂u

T , P̂r
T

] =
∑

J,K∈I

[
�̂u

J , p̂r
K

]
=
∑

J,K∈I

∑
v,s∈R

εuvs
[
x̂v

J p̂s
J , p̂r

K

]
= i
∑
J∈I

∑
s∈R

εurs p̂s
J = i

∑
s∈R

εursP̂
s
T , (68)

where εuvs is the Levi-Civita symbol. Then, although these
operators do not commute everywhere in the kinematical
Hilbert space, they do commute everywhere in the hypersur-
face characterized by the translational invariance constraint.
As a result, the rotational invariance constraint can be added,
and the resulting physical Hilbert space coincides with the one
obtained with the Hamiltonian and the total linear momentum
constraints alone.

Finally, one could build the relativistic version of the
framework we have considered here. In other words, by con-
sidering a system in which each subsystem contains external
(i.e., spatial) degrees of freedom and an internal degree of
freedom that serves as a clock, one should aim at modifying
the constraints applied here in order to obtain the dynamics
and frame transformations in the relativistic regime.
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APPENDIX A: MOMENTUM AND ENERGY
EXPECTATION VALUES AND COVARIANCES

To derive the relation for the covariance between a pair of
momenta in Eq. (41), we use Eqs. (38) and (39) to write

〈p̂I〉M〈p̂J〉M = −〈p̂I〉J

∑
L∈I\{J}

〈p̂L〉J

= −〈p̂I〉2
J −

∑
L∈I\{I,J}

〈p̂I〉J〈p̂L〉J . (A1)

Moreover, we compute

〈p̂I p̂J〉M =
∫

dM̄� ∗̄
M pI pJ�M̄

=
∫

dPd	δ(PT )δ(HT )�∗ pI pJ�

= −
∫

dJ̄�
∗̄
J pI

∑
L∈I\{J}

pL�J̄

= −
∑

L∈I\{J}
〈p̂I p̂L〉J = −〈p̂2

I

〉
J
−

∑
L∈I\{I,J}

〈p̂I p̂L〉J .

(A2)

This allows us to write Eq. (41).
Now, to derive the covariance for a pair of clock energy op-

erators in Eq. (43), we first use the Wheeler-DeWitt constraint
to rewrite the expectation value in Eq. (42) as

〈ω̂I〉J =
∫

dJ̄�
∗̄
J ωI�J̄

=
∫

dĪ�
∗̄
I (ωI )Ī�Ī

= −
∫

dĪ�
∗̄
I (HĪ )Ī�Ī

= −〈ĤĪ〉I

= −
∑

L∈I\{I}
〈ωL〉I − 〈KĪ〉I . (A3)

With the above expression and Eq. (42), we write

〈ω̂I〉M〈ω̂J〉M = −〈ω̂I〉J

⎛⎝ ∑
L∈I\{J}

〈ω̂L〉J + 〈K̂J̄〉J

⎞⎠
= −〈ω̂I〉2

J −
∑

L∈I\{I,J}
〈ω̂I〉J〈ω̂L〉J − 〈ω̂I〉J〈K̂J̄〉J .

(A4)

Moreover, we compute

〈ω̂I ω̂J〉M =
∫

dM̄� ∗̄
MωIωJ�M̄

=
∫

dPd	δ(PT )δ(HT )�∗ωIωJ�

=
∫

dJ̄�
∗̄
J ωI

⎛⎝ ∑
L∈I\{J}

ωL + KJ̄

⎞⎠�J̄

= −
∑

L∈I\{J}
〈ω̂I ω̂L〉J − 〈ω̂IK̂J̄〉J

= −〈ω̂2
I

〉
J −

∑
L∈I\{I,J}

〈ω̂I ω̂L〉J − 〈ω̂IK̂J̄〉J . (A5)

With the last two expressions, we derive the relation in
Eq. (43).
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APPENDIX B: TIME EXPECTATION VALUES
AND VARIANCES

We start by deriving the variance of a time operator t̂I in
the reference frame of a system J seen in Eq. (45). For that,
we compute

〈
t̂2
I

〉
J (tJ ) = −

∫
dJ̄�

∗̄
J eitJ HJ̄

d2

dω2
I

(e−itJ HJ̄ �J̄ )

= 〈t̂2
I

〉
J (tJ = 0) + 2tJ〈t̂I〉J (tJ = 0) + t2

J . (B1)

Together with Eq. (44), this leads to the expression for the
variance in Eq. (45).

Now, to derive the reciprocal relation for the expectation
values in Eq. (46), we observe that

d

dωI
�J̄ = d

dωI
�kin(ωJ = −HJ̄ , ωJ , pJ = −pJ̄ , p

J
)

=
(

∂�J̄

∂ωI
+ ∂�J̄

∂ (−HJ̄ )

∂ (−HJ̄ )

∂ωI

)
=
[(

d

dωI
− d

dωJ

)
�

]
J̄

. (B2)

In the last part of the above expression, the derivatives are
taken in the kinematical Hilbert space (before the reduction
to J’s perspective). This, together with Eq. (37), allows us to
write

〈 f (t̂I )〉J (tJ = 0) =
∫

dĪ

[
�∗ f

(
i

d

dωI
− i

d

dωJ

)
�

]
Ī

= 〈 f (−t̂J )〉I (tI = 0) (B3)

for an arbitrary integrable real function f . In particular, if
f (x) = x, we are lead to Eq. (46), which we repeat here:

〈t̂I〉J (tJ = 0) = −〈t̂J〉I (tI = 0). (B4)

Moreover, if f (x) = x2, we have〈
t2
I

〉
J (tJ = 0) = 〈t2

J

〉
I (tI = 0), (B5)

which, in turn, implies the reciprocal formula for the clocks’
variance in Eq. (47).

APPENDIX C: POSITION EXPECTATION VALUES
AND VARIANCES

To derive the expectation value of x̂I in J’s reference frame
in Eq. (51), we observe that

d

d pI
HJ̄ = d

d pI

⎛⎝ ∑
K∈I\{J}

ωK + p2
J̄

2mJ
+

∑
K∈I\{J}

p2
K

2mK

⎞⎠
= pI

mI
+ pJ̄

mJ
= (vIJ )J̄ (C1)

and

〈x̂I〉J (tJ = 0) =
∫

dJ̄�
∗̄
J i

d

d pI
�J̄ . (C2)

As a result,

〈x̂I〉J (tJ ) =
∫

dJ̄�
∗̄
J eitJ HJ̄ i

d

d pI
e−itJ HJ̄ �J̄

=
∫

dJ̄�
∗̄
J

[
tJ

(
d

d pI
HJ̄

)
+ i

d

d pI

]
�J̄

=
∫

dJ̄�
∗̄
J

[
(vIJ )J̄ tJ + i

d

d pI

]
�J̄

= 〈x̂I〉J (tJ = 0) + tJ〈v̂I|J〉J , (C3)

which leads to Eq. (51).
Moreover, to derive the variance σ 2(x̂I )J , we first compute

〈
x̂2

I

〉
J
(tJ ) =

∫
dJ̄�

∗̄
J e−itJ HJ̄

(
i

d

d pI

)2

eitJ HJ̄ �J̄

=
∫

dJ̄�
∗̄
J

[(
i

d

d pI

)2

+ tJ

(
i

d

d pI
(vIJ )J̄

+ (vIJ )J̄ i
d

d pI

)
+ t2

J (vIJ )2
J̄

]
�J̄

= 〈x̂2
I

〉
J (tJ = 0) + (〈v̂I|J x̂I〉J (tJ = 0)

+ tJ〈x̂I v̂I|J〉J (tJ = 0)) + t2
J

〈
v̂2

I|J
〉
J
(tJ = 0). (C4)

The last two expressions lead to Eq. (52).
Now, observe that

d

d pI
�J̄ = d

d pI
�kin(ωJ = −HJ̄ , ωJ , pJ = −pJ̄ , p

J
)

= ∂�J̄

∂ pI
+ ∂�J̄

∂ (−pJ̄ )

∂ (−pJ̄ )

∂ pI
+ ∂�J̄

∂ (−HJ̄ )

∂ (−HJ̄ )

∂ pI

=
[(

d

d pI
− d

d pJ
− vIJ

d

dωJ

)
�

]
J̄

. (C5)

Then, for an arbitrary real analytic function f , it holds that

〈 f (x̂I )〉J (tJ = 0)

=
∫

dJ̄

[
�∗ f

(
i

d

d pI
− i

d

d pJ
− vI|J i

d

dωJ

)
�

]
J̄

=
∫

dĪ

[
�∗ f

(
i

d

d pI
− i

d

d pJ
+ vJ|I i

d

dωJ

)
�

]
Ī

=
∫

dĪ

{
�∗ f

[
−
(

i
d

d pJ
− i

d

d pI
− vJ|I i

d

dωI

)
+ vJ|I i

(
d

dωJ
− d

dωI

)]
�

}
Ī

= 〈 f (−x̂J + v̂J|I t̂J )〉I (tI = 0). (C6)

With this, if f (x) = x, we obtain Eq. (54). Moreover, letting
f (x) = x2, we have〈

x̂2
I

〉
J (tJ = 0) = 〈x̂2

J

〉
I (tI = 0) − 〈(x̂J v̂J|I + v̂J|I x̂J )t̂J〉I

× (tI = 0) + 〈v̂2
J|I t̂

2
J

〉
I
(tI = 0). (C7)

Finally, from Eqs. (50) and (B3), we have

〈v̂I|J t̂I〉J (tJ = 0) = 〈v̂J|I t̂J〉I (tI = 0) (C8)
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and 〈
v̂2

J|I t̂
2
J

〉
I
(tI = 0) = 〈v̂2

I|J t̂2
I

〉
J
(tJ = 0). (C9)

Using this and Eqs. (C3) and (C7), we are led to the relation
between the reciprocal spatial variances at initial instances in
Eq. (55).

APPENDIX D: SQRF LIMIT

Repeating the steps in Sec. IV D for SQRFs (described in
Sec. II A), the expectation value of x̂I in J’s reference frame,
as a function of t , is of the form

〈x̂I〉J (t ) = 〈ψJ̄ (t )|x̂I |ψJ̄ (t )〉

=
∫

d pJ̄ψ
∗̄
J (pJ̄ )eitHJ̄ i

d

d pI
e−itHJ̄ ψJ̄ (pJ̄ )

=
∫

d pJ̄ψ
∗̄
J (pJ̄ )

(
(vIJ )J̄ t + i

d

d pI

)
ψJ̄ (pJ̄ )

= 〈x̂I〉J (t = 0) + 〈v̂I|J〉Jt, (D1)

where the expectation value at the initial instant of time is
given by

〈x̂I〉J (t = 0) =
∫

d pJ̄ψ
∗̄
J (pJ̄ )i

d

d pI
ψJ̄ (pJ̄ )

=
∫

d pK̄

[
ψ∗(i∂pI − i∂pJ

)
ψ
]

K̄

= −〈x̂J〉I (t = 0). (D2)

Moreover, as expected, it can be seen that the reciprocal
variances coincide, i.e., σ 2(x̂I )J (t ) = σ 2(x̂J )I (t ), and the spa-
tial description is mirror opposite, i.e., 〈x̂I〉J (t ) = −〈x̂J〉I (t ).
More generally, for an arbitrary analytic real function f of a
single variable, it holds that

〈 f (x̂I )〉J (t ) = 〈 f (−x̂J )〉I (t ). (D3)

The above expression contrasts with the analog expression in
STQRFs, derived in Appendix C, which is

〈 f (x̂I )〉J (tJ = 0) = 〈 f (−x̂J + v̂J|I t̂J )〉I (tI = 0). (D4)

From the last two expressions, we see that there are two
ways for the STQRF to be reduced into a standard SQRF. The
first, which is not physically interesting, requires all systems
to have a fixed distance from one another (i.e., zero relative
velocity). The other possibility coincides with the intuitive
way to reduce to a SQRF: all clocks are synchronized and
have zero relative uncertainty. Indeed, this follows from the
condition that

t̂J |ψĪ (0)〉 = 0 (D5)

for every I �= J , which means that the states of all clocks in
a given perspective are a Dirac delta distribution centered at
zero.

To conclude, we note that, although the state in Eq. (D5)
is non-normalizable, it is always possible to use a limit
of normalizable wave packets to have that behavior as an
approximation.
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