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Many protocols and tasks in quantum information science rely inherently on the fundamental notion of
contextuality to provide advantages over their classical counterparts, and contextuality represents one of the
main differences between quantum and classical physics. In this work we present a witness for preparation
contextuality inspired by optimal two-state discrimination. The main idea is based on finding the accessible
averaged success and error probabilities in both classical and quantum models. We can then construct a
noncontextuality inequality and associated witness which we find to be robust against depolarising noise and
loss in the form of inconclusive events.
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I. INTRODUCTION

In classical physics, the properties of physical objects
can be assumed to exist independently of any observation.
However, quantum mechanics shows that attributes of phys-
ical systems do not exist predeterminedly, in the sense that
it is not generally possible to consistently assign values to
measurable quantities that are independent of which other
quantities are jointly measured. This impossibility of repro-
ducing the predictions of quantum mechanics with models
that assign values independent of the measurement context
is known as quantum contextuality [1]. This concept orig-
inates with the Bell-Kochen-Specker theorem [2,3], which
demonstrates that quantum theory is incompatible with non-
contextual hidden-variable models. It has been demonstrated
that contextuality constitutes a resource for various appli-
cations in quantum information including magic states [4],
quantum key distribution [5], device-independent security [6],
and quantum randomness certification [7,8]. The traditional
definition of contextuality requires a composite system, and
its standard proof applies to Hilbert spaces of dimension three
or higher [9,10]. The notion of (non)contextualilty has been
further generalized in Ref. [11], based on operational equiva-
lences and ontological models. Similarly to Kochen-Specker,
generalized contextuality has also been proven to provide a
resource for certain quantum information tasks. For instance,
parity-oblivious multiplexing [12,13], random-access codes
[14], quantum randomness certification [15], communication
[16–18], and state discrimination [19,20]. Quantum theory has
also been shown to be less preparation contextual than the
general operational theory known as box world [21].

In this work we aim to find a simple witness for gen-
eralised contextuality in the sense introduced in Ref. [11].
While a number of contextuality witnesses exist in the lit-
erature [22–27], here we benefit from the simplicity of
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prepare-and-measure scenarios with two preparations and a
single measurement. Such scenarios are of wide importance
for both fundamental studies of quantum mechanics and
applications in quantum technology including sensing, com-
munication, and randomness generation [28–30]. We then find
a contextuality witness in this framework, which is inspired by
optimal two-state discrimination. Our results show that con-
textuality can be witnessed in the presence of both significant
depolarizing noise and loss.

The rest of the paper is organized as follows. In Sec. II
we give a brief introduction to the basic notions in state dis-
crimination in a theory-independent manner. We continue in
Sec. III presenting the prepare-and-measure scenario and the
goal that defines the main state discrimination task to properly
define the witness independently in both quantum and non-
contextual models. Finally, we discuss the main results of the
paper in Sec. IV and conclude the work in Sec. V.

II. BASIC NOTIONS IN STATE DISCRIMINATION

Any state discrimination scenario is formed by state prepa-
rations and effects [31,32]. The first are labeled by preparation
procedures x ∈ X and the second by the possible answers
b ∈ B to the questions in X . The gathered data are usually
expressed as conditional probabilities (correlations) p(b|x).
The goal in state discrimination is to determine x from the
transmitted states, i.e., to achieve b = x. For any particular
model (e.g., quantum or noncontextual), an optimization prob-
lem can be built obeying the constraints of that model. As is
customarily done in state discrimination settings, we denote
the probability p(b = x|x) of a correct answer the success
probability, whereas p(b �= x|x) for b ∈ X is called the error
probability. One must also consider events where the answer
b is not in the set of questions X (i.e., X ⊂ B). We group an-
swers not in X and label them by b = ø. We denote p(b = ø|x)
the inconclusive probability.

Success, error, and inconclusive probabilities each play
a different role in the discrimination scenario [28,33,34].
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Different state discrimination tasks can be defined by differ-
ent figures of merits, which are functions of the observed
conditional probabilities, and different constraints on these
probabilities. For example, the goal in minimum-error state
discrimination (MESD) is to maximize the success probability
whilst inconclusive events do not occur [35–37] (hence con-
verting the goal into a minimization of the error probability
due to normalization). On the other hand, in unambiguous
state discrimination (USD), the goal is also to maximize
the success probability, with the main constraint that error
probabilities must vanish [38–40] (thus converting the goal
into a minimization of inconclusive probabilities). Lastly,
in maximum-confidence state discrimination (MCSD), the
goal is to maximize the confidence C, i.e., the probability
of receiving input x given the outcome b = x, which can
be expressed as the success probability divided by the rate
of events of interest [41–46]. Concretely, C := px p(x|x)/ηx,
for ηb = ∑

x px p(b|x), where px are the prior probabilities
for each preparation x. No further constraints are applied to
MCSD, making it rather a more general approach. Also, it can
be reduced to MESD and USD as particular cases. If C = 1
the input x must be unambiguously identified, resulting in
USD, while MESD is recovered by adopting

∑
x ηxCx as the

figure of merit.

III. SCENARIO

In the following, we focus on two-state discrimination,
characterized by the sets of preparations X = {0, 1}, con-
sidered equiprobable, and outcomes B = {0, 1, ø}. We also
introduce the averaged success psuc, error perr, and inconclu-
sive pinc probabilities as

psuc := 1
2 [p(0|0) + p(1|1)], (1)

perr := 1
2 [p(1|0) + p(0|1)], (2)

pinc := 1
2 [p(ø|0) + p(ø|1)] = 1 − psuc − perr. (3)

We will fix pinc and ask the following question: which regions
in correlation space, parameterized by psuc and perr, are feasi-
ble in quantum mechanics or in a noncontextual model? The
answer to this question is not trivial if state preparations are
not perfectly distinguishable. For a fixed inconclusive rate,
the sum psuc + perr = 1 − pinc is fixed and we can focus on
the difference. We therefore define the following witness on
the level of probabilities

W := 1
2 (psuc − perr ). (4)

For each model, we will separately formulate an optimization
problem and find a bound on W . The feasible region is neces-
sarily convex since, for two different measurement strategies
producing different behaviors, probabilistically choosing be-
tween them (using local randomness) defines another valid
measurement strategy. The corresponding behavior will then
be the convex combination of the first two behaviors. We can
thus use techniques in convex optimization to efficiently solve
the maximization problem for each model.

A. Quantum model

Consider an ensemble of two noisy states ρx =
rs |ψx〉 〈ψx| + (1 − rs)1/2 for x = 0, 1, with distinguisha-
bility characterized by the overlap δ = | 〈ψ0|ψ1〉 |. Let π̂b

represent a valid positive operator-valued measure (POVM)
for b = 0, 1, ø, such that Tr[ρxπ̂b] = p(b|x). Our goal is
to find the maximum difference between success and error
probabilities for a fixed inconclusive rate. To do so, let us
introduce the following operator

�̂x := (−1)x

2
(π̂0 − π̂1). (5)

We must find the maximum difference

WQ := max
1

2

(
pQ

suc − pQ
err

) = max
∑

x

Tr[�̂xρx], (6)

where the optimization is over all measurements forming
valid POVMs, π̂b � 0 and

∑
b π̂b = 1 and subject to pinc =

1
2 Tr[(ρ0 + ρ1)π̂ø]. This maximization can be rendered as a
semi-definite program (SDP) [47].

In Ref. [48] we found an analytical form of the optimal
measurement. The solution to Eq. (6) is given by

WQ = rs

2

√
(1 − δ2)

(
1 − 2pinc

1 + rsδ

)
for pinc � rsδ,

WQ = rs

2

√
1 − δ2

√
1 − r2

s δ
2

1 − pinc

1 − r2
s δ

2
for pinc � rsδ. (7)

One can also write down the optimal success and error proba-
bilities. For pinc � rsδ,

pQ
suc = 1

2

(
1 + 2WQ − pinc

1 + δ

1 + rsδ

)
, (8)

and for pinc � rsδ

pQ
suc = 1

2 (1 + 2WQ − pinc), (9)

and pQ
err = 1 − pQ

suc − pinc.
The success and error probabilities we found are the max-

imal and minimal probabilities according to quantum theory
in a qubit state-discrimination problem. Interestingly, one can
recover the bounds from other protocols as specific cases.
For instance, if the experiment only produces conclusive out-
comes (pinc = 0), the problem is reduced to the usual MESD.
Then, one recovers the Helstrom bound as a minimum error
rate perr [36,49,50]. On the other hand, if the experiment
is designed with a null error rate (perr = 0) and zero noise
(rs = 1), one recovers USD. In that case, the maximal success
probability is psuc = 1 − δ, leaving a minimal rate of incon-
clusive events pinc = δ, the minimal value for USD [51,52].
Finally, one can directly compute the maximum confidence of
the whole ensemble by writing C = psuc/(psuc + perr ). One
recovers the maximum confidence obtained in Ref. [20] if
pinc � rsδ. For larger values of the inconclusive rate, one can
still compute the maximum confidence with the same formula
since MCSD and the present scheme share the exact same goal
(maximize the success and minimize the error probabilities).
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B. Noncontextual model

We now outline a noncontextual ontological model for
the prepare-and-measure scenario [11,19,53]. The system is
associated with an ontic state space � in which each point
λ completely defines all physical properties, i.e., the out-
comes of all possible measurements. Each state preparation
x samples the ontic state space according to a probability
distribution μx(λ), referred to as the epistemic state. Each
measurement is defined by a set of response functions, that
is, nonnegative functions ξb(λ) over the ontic space, such that∑

b ξb(λ) = 1 for all λ ∈ �. The probability of obtaining the
outcome b when state μx was prepared is then

p(b|x) =
∫

�

dλ μx(λ)ξb(λ). (10)

While distinct ontic states can be perfectly discriminated,
epistemic states with overlapping distributions cannot. Dis-
tinguishability can be quantified in terms of the confusability
between two epistemic states μx and μy:

cxy :=
∫

supp[μx (λ)]
dλ μy(λ). (11)

It is the discrimination of epistemic states which we compare
against quantum state discrimination.

Furthermore, we require the ontological model to be
preparation-noncontextual. Two preparations are said to be
operationally equivalent if they cannot be distinguished by
any measurement, and an ontological model is said to
be preparation-noncontextual if all operationally equivalent
preparations are assigned to the same epistemic state. To im-
pose noncontextuality on the ontological model, we assume
the existence of a particular pair of pure states S := {μ0, μ1}
and complementary states S⊥ := {μ⊥

0 , μ⊥
1 }, i.e., μx and μ⊥

x
have nonoverlapping supports μx(λ)μ⊥

x (λ) = 0 ∀ λ. The pair-
wise confusability c01 of μ0 and μ1 is the same as for μ⊥

0
and μ⊥

1 . Preparation noncontextuality implies that preparing
μx and μ⊥

x with equal probability for x = 0 or x = 1 must
be equivalent [11,19], that is, 1

2μ0 + 1
2μ⊥

0 = 1
2μ1 + 1

2μ⊥
1 .

This statement implies that any pair from the set of states
{μ0, μ1, μ

⊥
0 , μ⊥

1 } are equal on their overlap, i.e.,

μ0(λ) = μ1(λ) ∀λ ∈ supp[μ0(λ)] ∪ supp[μ1(λ)] ∀ λ, (12)

and similarly for the other pairs. This, in turn, results in
symmetric confusabilities, c01 = c10 := c. Quantum and non-
contextual models can be then compared through δ2 = c. The
noncontextual model we use in this work can be understood
as an attempt to describe quantum theory, and in general, it
will reproduce some quantum correlations but not all, as we
explore below.

We now present the main problem in a noncontextual
model. The two preparations are represented by the following
epistemic states affected by depolarizing noise

μ̃0(λ) = rsμ0(λ) + (1 − rs)μ1/2(λ),

μ̃1(λ) = rsμ1(λ) + (1 − rs)μ1/2(λ). (13)

These can be characterized by the confusability of the noise-
less epistemic states c := c10 from Eq. (11). We also consider
a single measurement with two conclusive outcomes b = 0, 1
and an inconclusive result b = ø, represented by the response

FIG. 1. Space of probabilities corresponding to a two-state dis-
crimination setting. Continuous lines denote maximum confidence
measurements in both quantum (purple) and noncontextual (green)
models. Even with a bounded value of noise (rs = 0.7), the MCM
line according to the quantum model falls outside the noncontextual
region.

functions ξb(λ). Let us define the analogous observable to
Eq. (5)

�NC
x (λ) := (−1)x

2
[ξ0(λ) − ξ1(λ)]. (14)

Then, we can rewrite the problem as a maximization

WNC := max
1

2

(
pNC

suc − pNC
err

)
= max

∑
x

∫
�

dλ μ̃x(λ)�NC
x (λ), (15)

subject to ξb(λ) being valid response functions, ξb(λ) � 0 and∑
b ξb(λ) = 1, ∀λ, and a given rate of inconclusive events

pinc = 1
2

∫
dλ[μ̃0(λ) + μ̃1(λ)]ξø(λ). In Ref. [48] we showed

how this maximization can be rendered as a simple linear
problem, for which we are able to find an analytical solution

WNC = rs

2
(1 − c)

(
1 − pinc

1 + rsc

)
for pinc � (1 + rsc)/2,

WNC = 1

2
(1 − pinc)

rs(1 − c)

1 − rsc
for pinc � (1 + rsc)/2.

(16)

This results in the following success and error probabilities.
For pinc � (1 + rsc)/2,

pNC
suc = 1 + rs

2

(
1 − pinc

1 + rsc

)
− rsc

2
, (17)

and for pinc � (1 + rsc)/2,

pNC
suc = 1

2 (1 + 2WNC − pinc), (18)

and pNC
err = 1 − pNC

suc − pinc.

IV. DISCUSSION

In Fig. 1 we show the achievable probabilities in quantum
and noncontextual models. The white region delimited by
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FIG. 2. Bounds on the witness W according to quantum and noncontextual models. On the first row we show noiseless cases with different
overlaps. Below, in the second row, we fix a particular overlap and show the effects of depolarising noise on the preparation. The green
area denotes the feasible values according to quantum and noncontextual models and the blue region solely for the quantum model. The
black-dashed line shows the contextuality witness W∗ in Eq. (19). Any behavior above W∗ is an evidence of contextuality.

the black contour shows the feasible space in the case of
fully distinguishable preparations. That is, when states can
be directly identified with ontic states λ. The area shaded
in blue shows the feasible space according to quantum the-
ory. In its contour we find pQ

suc from Eq. (8), for rs = 1.
The region reproducible by the noncontextual model (green
area) is contained in the quantum set. Similarly, we find
pNC

suc, from Eq. (17), in its contour, also for rs = 1. We see
that the quantum predictions depart from classical (non-
contextual) interpretations. Increasing the overlap δ = √

c,
this distinction becomes more pronounced, and at the same
time both the quantum and noncontextual feasible spaces
shrink.

Moreover, we can identify some extremes of the quantum
region with the bounds found in each state discrimination
protocol. The diagonal line that delimits the upper-right part
of the feasible regions covers the state discrimination scenar-
ios with zero inconclusive rates. The vertices of the quantum
region on that line reproduce the Helstrom bound [49,54,55]
obtained in MESD. The same applies for the vertices cor-
responding to the noncontextual line, which reproduce the
maximal success probabilities in MESD obtained in Ref. [19].
Also, the maximal perr and psuc on the flat part of the bottom
and left-most boundary, respectively, reproduce the maxi-
mal unambiguous error and success rates for quantum [38]
and noncontextual [20] models, obtained in USD. Finally,
the entire quantum boundary (purple line) corresponds to a
maximum confidence measurement (MCM) [42,56] for the
ensemble of qubit states (i.e., maximizing the average con-
fidence). MCM thus provides optimal success probability in
any (qubit-)state discrimination scenario. Similarly, the non-
contextual boundary is obtained by a noncontextual MCM.
We can see, by writing C = psuc/(psuc + perr ), that the con-
fidence coincides with the bounds found in the literature
[20,41–43,56].

When depolarizing noise is included, the bounds on all
protocols depart from the borders of the quantum region.
The Helstrom bound from both quantum and noncontextual
MESD comes closer to the center of the probability space as
noise increases. Also, when noise is taken into account, USD
is not possible as here we can see that the bottom and left-most
borders are not reachable. The space enclosed by the MCM
lines also narrows. Indeed, noise makes the prepared physical
states less distinguishable in both models. For a given noisy
ensemble, the points on the quantum region outside the MCM
lines are not accessible.

A different perspective is plotted in Fig. 2. Contextual
behavior is manifested in the blue -shaded region above the
dashed black line, which corresponds to the inequality

W � W∗ = WNC|rs=1 = 1 − δ2

2

(
1 − pinc

1 + δ2

)
, (19)

for noiseless preparations with distinguishability bounded
by overlap δ (quantum) or confusability δ2 (noncontextual).
Here, W∗ is the noncontextual bound without noise. Note
that it is sufficient to lower-bound the confusability (or equiv-
alently the overlap) because our bounds on W decrease as
preparations become less distinguishable. Also, note that the
witness places no assumptions on the measurement, which is
completely uncharacterised. We see, from the two lower-right
plots in Fig. 2 that noncontextuality can be witnessed in the
presence of fairly high values of noise (for example, rs = 0.7
equivalent to 30% depolarizing noise).

We finally look at the amount of depolarizing noise that our
witness can tolerate while still being able to detect contextu-
ality. Depolarizing noise in the preparation is parameterized
through rs [see above Eq. (5)]. In Fig. 3 we show the min-
imum tolerable rs for which contextuality can be witnessed,
i.e., for which WQ � W∗. Two noiseless preparations with

032202-4



CONTEXTUALITY WITNESS INSPIRED BY OPTIMAL … PHYSICAL REVIEW A 109, 032202 (2024)

FIG. 3. Tolerable amount of depolarizing noise for which our
witness can detect quantum contextuality as function of inconclusive
rate pinc for different overlaps δ. Contextuality is witnessed in the
shaded regions above the solid lines (larger rs means less noise).

confusability c = δ2 in a noncontextual model can reproduce
all quantum correlations from a two-state discrimination sce-
nario with fixed pinc, as long as rs is below the plotted lines.
Noise tolerance is higher for larger confusabilities. The cases
with null inconclusive outcomes are covered in Refs. [19,57].
Remarkably, observe that for low noise, the appearance of
inconclusive events strengthens robustness, as is, e.g., the case
for δ = 0.3 or δ = 0.5 in Fig. 3. An intuitive explanation
for this might be that, in the absence of noise, the optimal
rate of inconclusive events is pinc = δ (USD is impossible
for lower pinc). With noise, however, the error probability
cannot be zero, which allows for lower optimal inconclusive
probabilities. This is reflected in Fig. 3, where the minima
in each curve is given by an inconclusive probability lower
than δ.

V. CONCLUSION

In this work, we presented a witness of contextuality in
two-state discrimination scenarios. We started by formulating
the problem of finding the optimal measurement in two-state

discrimination settings. We consider a measurement to be
optimal if it maximizes the difference between success and
error probabilities. This leads to correlations reaching the
boundary of the feasible space parameterized by success and
error probabilities. Parametrizing the correlation space in this
manner allows us to clearly distinguish the feasible sets for the
quantum and noncontextual models. Additionally, allowing
for inconclusive events we found that maximum-confidence
measurements are optimal in both quantum and noncontex-
tual models. That led to the definition of the witness W in
Eq. (4) and the inequality Eq. (19). This inequality allows
for a flexible rate of inconclusive events (e.g., due to losses)
and is robust against depolarizing noise, as we show in Fig. 3.
Even more importantly, our results show that, in some cases,
incorporating inconclusive results can help strengthening the
noise tolerance in terms of witnessing quantum contextuality.
Thus, our results open new avenues for exploring contextual
advantages in realistic scenarios, using inconclusive results as
a benefit towards noise robustness. The results we present in
this work are explicitly derived for two state discrimination
scenarios. However, we strongly believe they can be general-
ized to multiple state discrimination scenarios. Although we
left this as an open question out of the scope of this work,
intuitively, it can be done in a twofold manner, depending
on the goal in the discrimination task. If one is interested in
discriminating all states equally, the problem can be reduced
to pairwise state discrimination subtasks. Hence reducing an
N state to an individual two-state discrimination scenario as
presented in this work. Otherwise, if one aims to distinguish
one state from the ensemble, the problem can again be reduced
to the discrimination between the state of interest and the
mixture of the rest of the ensemble. This is equivalent to our
scenario, but only one of the states is affected by depolarizing
noise. Thus, at the end of the day, one can think of more
general cases and find our results still applicable.
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