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Quantum batteries are energy storage devices that satisfy quantum-mechanical principles. How to obtain
analytical solutions for quantum battery systems and achieve a full charging is a crucial element of the quantum
battery. Here, we investigate the Rosen-Zener quantum battery with N two-level systems, which includes
atomic interactions and external driving field. The analytical solutions of the stored energy, changing power,
energy quantum fluctuations, and von Neumann entropy (diagonal entropy) are derived by employing the gauge
transformation. We demonstrate that a full charging process can be achieved when the external driving field
strength and scanning period conforms to a quantitative relationship. The local maximum value of the final
stored energy corresponds to the local minimum values of the final energy fluctuations and diagonal entropy.
Moreover, we find that the atomic interaction induces the quantum phase transition and the maximum stored
energy of the quantum battery reaches the maximum value near the quantum phase transition point. Our result
provides an insightful theoretical scheme to realize the efficient quantum battery.
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I. INTRODUCTION

With the decline of fossil fuels and the aggravation of
global energy crisis, there is a constant search for alternative
energy sources [1]. In this context the growth of renewable
energies makes the issue of energy storage extremely urgent.
Likewise, with the boost of quantum thermodynamics [2–7]
and the growing demand for device miniaturization [8], the
size of energy storage devices has approached molecular or
even atomic scale. It is necessary to consider the role of
quantum effects on energy storage [1,9–11]. Scientists have
tried to exploit quantum system to create a new class of
batteries with ultra-high energy density, ultra-compact size,
ultra-fast charging, and ultra-long lifetime [10]. With these
requirements, Alicki and Fannes first proposed the concept of
a quantum battery (QB), i.e., a quantum system that stores
or supplies energy [12,13]. Previous researches have shown
the importance of quantum features in improving the perfor-
mances of QB, ranging from energy storage [14–20], work
extraction [21–32], and charging power [16,17,31,33–46] to
energy quantum fluctuations [25,47–49].

A key challenge is how to obtain analytical solutions
of the QB system and ensure the stability of the charg-
ing or energy transfer process. There are many efforts
to derive analytical solutions of single- [20,22,50–52] or
many-body QB [19,41,53–55] by using various approxi-
mation methods. In addition, stable charging requires a
control protocol to bring the battery’s charge to a stationary
value and removes the need for precisely timed switch-
ing of the battery-charger coupling [23,56,57]. To this end,
various schemes have been devised, including the quan-
tum feedback control method [23], transitionless quantum
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driving [56,57], the shortcut to adiabaticity [58], and optimal
control [32].

Two-level systems (TLSs) are a favorite model in many
areas of physics, and are successful in describing a large vari-
ety of physical phenomena [59–62]. The original theoretical
proposal of QB is based on TLSs [34]. Later there were a
number of works that discussed two-level QB [18–26,34–
37,39–41,50,51,53–56,63–71]. The Rosen-Zener (RZ) model
is a typical model among the TLSs which was first proposed
to study the spin-flip of two-level atoms interacting with a ro-
tating magnetic field to account for the double Stern-Gerlach
experiments [72]. This model has extensive applications in
quantum coherence control [73], ultracold atom molecular
transformation [74,75], quantum interference [76–79], super-
conductivity [80], quantum information [81], and quantum
tunneling [82], where the energy bias between two lev-
els is fixed and the coupling is time dependent. Recently,
QB has been proposed using a time-dependent driving field
as a charger [19,20,53], such as harmonic [19,20], general
harmonic [53], and rectangular pulses [20]. Besides, the sim-
ulation of a time-dependent driven two-level QB on IBM
quantum chips has been realized [83]. However, most of
the associated theoretical discussions about two-level QB are
limited to noninteracting atoms. In fact, the actual physics
system always involves interatomic interactions. In addition,
the collective behavior from N two-level systems has been
studied for a quantum heat engine [5]. It is a quite natural
question to study the effects of both many-body and atomic
interaction on charging performance [19]. Although the ex-
ternal driving as a charger has been studied numerically and
analytically [19,20,53], it is still difficult to give the analytical
expression and to achieve a stable charging of the many-body
QB considering the interaction between atoms.

In this paper we investigate the many-body RZ quantum
battery with both atomic interactions and external driving

2469-9926/2024/109(3)/032201(9) 032201-1 ©2024 American Physical Society

https://orcid.org/0000-0001-5233-932X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.032201&domain=pdf&date_stamp=2024-03-04
https://doi.org/10.1103/PhysRevA.109.032201


WEI-XI GUO, FANG-MEI YANG, AND FU-QUAN DOU PHYSICAL REVIEW A 109, 032201 (2024)
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FIG. 1. A sketch of the RZ quantum battery. (a) An external driv-
ing field f (t ). (b) A set of N identical TLSs with atomic interactions.
During the charging time 0 < t < τ (τ = T ), the QB is coupled with
the driving field and atomic interactions.

field. The analytic results of the stored energy, charg-
ing power, energy quantum fluctuations, and von Neumann
entropy (diagonal entropy) are derived using the gauge trans-
formation [84–86]. These results are then compared with
numerical calculations. In addition, we also determine the
conditions to achieve full charging and obtain the qualitative
relationship among the final stored energy, the final energy
fluctuations, and the final diagonal entropy. The effects of the
atomic interaction on the charging performance of the QB
have been further considered. Finally, we also simulate the
dependence of the QB’s stored energy, charging power, energy
fluctuations, and diagonal entropy on the number of TLSs.

The remainder of this paper is organized as follows. In
Sec. II we show the charging protocols of the RZ quantum
battery, while in Sec. III the analytical solutions of the QB
are derived. The relationship among the stored energy, energy
quantum fluctuations, and diagonal entropy is obtained in
Sec. IV. In Sec. V we analyze the role of the atomic inter-
actions and the number of atoms. Finally, the conclusions are
given in Sec. VI.

II. THE QUANTUM BATTERY MODEL

We consider a QB model as an ensemble of N TLSs, which
are charged by an external driving field and atomic interaction,
as sketched in Fig. 1. The Hamiltonian of the QB system is

H (t ) = H0 + �(t )[H1(t ) + Ha−a], (1)

where the time-dependent parameter �(t ) describes the charg-
ing time interval, which is given by a step function equal to
1 for t ∈ [0, τ ] and zero elsewhere. H0 describes the time-
independent TLSs of the QB. H1 represents the external
driving field, and Ha−a the interactions between atoms, with
the following forms:

H0 = �

2

N∑
i=1

σ̂ z
i = �Ĵz, (2)

H1(t ) = f (t )

2

N∑
i=1

σ̂ x
i = f (t )Ĵx, (3)

Ha−a = η

2N

N∑
i �= j

σ̂ z
i σ̂ z

j = 2η

N
Ĵ2

z . (4)

Here � = h̄ω0 denotes the energy-level gap between the
ground state |g〉 and the excited state |e〉, respectively.

The coupling f (t ) is time-dependent external driving field
which can take various forms, such as Gaussian [87],
exponential [88], and hyperbolic secant [89]. In this work we
choose [82]

f (t ) =
⎧⎨
⎩

0, t < 0, t > T,

v0 sin2

(
πt

T

)
, t ∈ [0, T ],

(5)

where v0 and T represent the strength and the scanning pe-
riod of the external driving field, respectively. σ̂α (α = x, y, z)
are the usual Pauli matrices, η is the atom-atom interac-
tion strength, including the repulsive (η > 0) and attractive
(η < 0) interactions, and we define the scaled interac-
tion strength λ = η/�. The collective atom operators Ĵα =∑N

i=1
1
2 σ̂ α

i . The Hamiltonian of the QB system can be de-
scribed by the Dicke states |s, m〉 (m = −s,−s + 1, . . . , s).
In all calculations we take ω0 as the dimensionless parameter
and set ω0 = 1.

It should be noted that if a two-level atom is viewed
as a 1/2 spin, the model can be regarded as the driven
transverse-field Ising model, or as the Ising model with lon-
gitudinal and transverse fields [5,6,90]. As an uncharged
state, the QB is prepared in the ground state of N TLSs. Thus
the initial state of the QB system is |ψ (0)〉 = |N/2,−N/2〉.
The wave function is evaluated according to the Schrödinger
equation ih̄∂|ψ (t )〉/∂t = H (t )|ψ (t )〉.

During charging, the stored energy of QB is

E (t ) = 〈ψ (t )|H0|ψ (t )〉 − 〈ψ (0)|H0|ψ (0)〉, (6)

the average charging power is

P(t ) = E (t )

t
, (7)

and the instantaneous charging power is

PI (t ) = tr

[
H0

dρ(t )

dt

]
, (8)

where the density matrix ρ(t ) = |ψ (t )〉〈ψ (t )|.
The knowledge of the stored energy and charging power

as a function of time is not sufficient to fully characterize
the performance of the QB [20]. Indeed, together with this,
it is important to have information about the energy quan-
tum fluctuations [20,25,47] and von Neumann entropy [29].
Therefore, we also define the energy quantum fluctuations and
von Neumann entropy (the diagonal entropy) [91] as follows:

�(t ) =
√〈

H2
0 (t )

〉 − (〈H0(t )〉)2, (9)

S(t ) = −tr[ρdiag(t ) log2 ρdiag(t )] = −
∑

i

ρii(t ) log2 ρii(t ),

(10)

where ρdiag denotes the state obtained from ρ(t ) by taking di-
agonal elements (i.e., deleting all off-diagonal elements) [91]
and ρ(t ) is the density matrix of the whole system. The von
Neumann entropy (10) as defined above is also called the
diagonal entropy [92]. Notice that no entanglement exists in
the system. So the diagonal entropy is precisely the coher-
ence. (The relative entropy of coherence is defined as C =
S(t ) − SvN (t ), where SvN = −tr[ρ(t ) log2 ρ(t )] [91]. Without
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loss of generality, we usually choose the maximum stored en-
ergy Emax, maximum average charging power Pmax, maximum
energy fluctuations �max, maximum diagonal entropy Smax,
final stored energy E (τ ), final energy fluctuations �(τ ), and
final diagonal entropy S(τ ) to measure QB’s performances.

III. ANALYTICAL SOLUTIONS OF THE QB

In this section we use the gauge transformation to obtain
the analytical results and analyze the charging performance
of the QB. The Lie algebraic structure of the Hamilto-
nian in our time-dependent driven quantum systems suggests
that gauge transformation can be a potent method to solve
the Schrödinger equation [84,85]. The gauge transformation
method has been widely used in various models, including
the Landau-Zener model [93], Allen-Eberly model [94], and
Russell-Saunders coupled model [95]. The analytical solu-
tions of the many-body RZ quantum battery with the atomic
interaction can be obtained by the following steps:

First, we apply two unitary transformations to the many-
body RZ model in succession, where the unitary matrices are

U1(t ) = eiμ(t )Ĵx , U2(t ) = eiν(t )Ĵy . (11)

Here μ(t ) and ν(t ) are time-dependent undetermined func-
tions. Then the transformed Hamiltonian becomes as follows:

H ′(t ) = U1(t )H (t )U †
1 (t ) − iU1(t )

d

dt
U †

1 (t )

=
(

v0 sin2

(
πt

T

)
+ μ̇(t )

)
Ĵx + sin μ(t )Ĵy + cos μ(t )Ĵz

+ 2λ

N

[
1

2
sin 2μ(t )(ĴzĴy + ĴyĴz ) + sin2 μ(t )Ĵ2

y

]

+ 2λ

N

[
cos2 μ(t )Ĵ2

z

]
, (12)

H ′′(t ) = U2(t )H ′(t )U †
2 (t ) − iU2(t )

d

dt
U †

2 (t )

= A1(t )Ĵx + A2(t )Ĵy + · · · + A12(t )Ĵ2
z . (13)

The above Hamiltonian H ′′(t ) is comprised of twelve terms,
where the operators are represented by Ĵα and Ĵα Ĵβ with
α, β = x, y, z. The coefficients associated with each op-
erator are denoted as An(t ) where n = 1, 2, . . . , 12 (see
Appendix A). The aim of the transformation described above
is to obtain a suitable set of values for μ and ν. By setting
ν(t ) = π and A1 = 0, we can derive the analytical expressions
for μ(t ) with the initial condition μ(0) = π :

μ(t ) = π − v0t

2
+ v0T

4π
sin

(
2πt

T

)
. (14)

Thus the evolution operator of the system is

U3(t ) = T e−i
∫ t

0 H ′′(t )dt

≈ e−i
∫ t

0 (A2(t )Ĵy+A3(t )Ĵz+A8(t )Ĵy Ĵz+A9(t )Ĵz Ĵy+A11(t )Ĵ2
y +A12(t )Ĵ2

z )dt ,

(15)

where T is a time-ordering operator. The symbol ≈ is used
because H ′′ is time dependent (the equal sign is only valid if
the Hamiltonian H ′′ commutes with different times). To obtain

a high charging power, the time in our calculation is taken very
short. The Hamiltonian basically satisfies the commutation
relation, i.e., H ′′(t ) commutes with H ′′(t ′). The agreement
between the analytical results and the exact numerical calcula-
tions will further show that this approximation is reasonable.

The direct integration of the composite trigonometric func-
tion in Eq. (15) is complicated, and thus we replace it with a
Bessel function for the integration operation. To obtain the
high average charging power of the QB, we consider a short
scanning period T , i.e., a high driving field frequency. This re-
sults in a negligible contribution to the integral from the n � 2
part of the Bessel functions Jn. Therefore, the time-dependent
state of the H (t ) system can be expressed as

|ψ (t )〉 = U †
1 (t )U †

2 (t )U3(t )|ψ (0)〉
= e−iμ(t )Ĵx e−iν(t )Ĵy ei[B2 Ĵy+B3 Ĵz+B8 Ĵy Ĵz+B9 Ĵz Ĵy+B11 Ĵ2

y +B12 Ĵ2
z ]

×
∣∣∣∣N

2
,−N

2

〉
, (16)

where the expressions of Bn (n = 1, 2, . . . , 12) are shown in
Appendix B.

After substituting the wave function |ψ (t )〉 into Eqs. (6)–
(8), the stored energy, average charging power, and instanta-
neous charging power of the QB are given by

E (t ) = N�

2
[1 + cos μ(t )] + N2(B8 + B9)

4

× B2 cos μ(t ) + B3 sin μ(t )

B2
2 + B2

3

(
cos

√
B2

2 + B2
3 − 1

)
,

(17)

P(t ) = N�

2t
[1 + cos μ(t )] + N2(B8 + B9)

4t

× B2 cos μ(t ) + B3 sin μ(t )

B2
2 + B2

3

(
cos

√
B2

2 + B2
3 − 1

)
,

(18)

PI (t ) = N�v0

2
sin2

(
πt

T

)
sin μ(t )

− v0sin2

(
πt

T

)
[B3 cos μ(t ) − B2 sin μ(t )]

4
(
B2

2 + B2
3

)
× N2(B8 + B9)

(
cos

√
B2

2 + B2
3 − 1

)
. (19)

The energy quantum fluctuations of the battery can be
written as

�(t ) =
√

N�

4
−

[
E (t ) − N�

2

]2

N
, (20)

and the detailed calculation is shown in Appendix C. The
expression of the diagonal entropy is obtained by substituting
ρ(t ) into Eq. (10),

S(t ) = |sin μ(t )|log2

[√
(N − 1)e

π
2 [1 − B8B9(B2 cos μ(t )

− B3 sin μ(t ))]
]
. (21)

We compare the analytical and numerical results for the
stored energy, average charging power, quantum fluctuations,
and diagonal entropy as functions of ω0t . The results of
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FIG. 2. Behaviors of (a) stored energy E (t ) (in units of h̄ω0),
(b) average charging power P(t ) (in units of h̄ω2

0), (c) quantum
fluctuations �(t ) (in units of h̄ω0), and (d) diagonal entropy S(t )
as a function of ω0t for different driving field strengths. Symbols
represent numerical results, while lines depict analytical results. The
external driving field strengths are v0/� = 10 (black solid lines
and squares), v0/� = 20 (red dashed lines and circles), v0/� = 40
(green dash-dotted lines and up-triangles), and v0/� = 60 (orange
double dash-dotted lines and down-triangles). Other parameters:
λ = 2, N = 10, and ω0T = 0.1π .

the comparison are shown in Fig. 2 for different driving
field strengths. All numerical results are obtained by a nu-
merically exact solution of the Schrödinger equation with
Hamiltonian (1), without approximations. It is evident that the
analytical results are in good agreement with the numerical
results. Within the interval t ∈ [0, T ], higher driving field
strength results in better charging performance of the QB,
i.e., faster charging. This means the peak in stored energy
is earlier for higher driving field strength. The instantaneous
charging power is also displayed in Eq. (19) and represents
the slope of stored energy. The sign of the instantaneous
charging power provides information about the energy trans-
fer direction. Specifically, positive values represent energy
transfer from the charger to the battery, whereas negative val-
ues suggest energy flow back from the battery to the charger.
The quantum fluctuations and diagonal entropy represent the
uncertainty of stored energy and the coherence, respectively.
Remarkably, the evolution of the uncertainty and the coher-
ence are almost synchronized. An enhancement in coherence
accompanies an increase in energy for lower driving field
strength. In contrast, under higher drive field strength, the
extent of coherence increases while the speed of energy trans-
fer also accelerates, which indicates that the coherence, as
an important resource, promotes the energy transfer between
them.

During the charging process, not all parameters enable the
QB to achieve full charging. For instance, in the case v0/� =
10, the QB can store only half as much energy as in fully
charging. Therefore, it is crucial to determine the conditions
that enable full charging of the QB. Neglecting the second

FIG. 3. Contour plots of QBs: (a) maximum stored energy Emax

(in units of h̄ω0) and (b) final stored energy E (τ ) (in units of h̄ω0)
as functions of v0/� and ω0T . The purple dashed lines represent the
curve v0T = (4n + 2)π for (a) n = 0 and (b) n is a natural number.
Other parameters are λ = 2 and N = 10.

term in Eq. (17) due to it being relatively smaller compared to
the first term, the stored energy can be expressed as

E (t ) = N�

2
[1 + cos μ(t )]. (22)

The maximum stored energy is given by

Emax =
{

N�
2

[
1 − cos

(
v0T

2

)]
, 0 < v0T < 2π,

N�, v0T � 2π,
(23)

then the parameter range is divided into regions of full charg-
ing and partial charging by the critical curve v0T = 2π , as
depicted in Fig. 3(a). Furthermore, we define the time corre-
sponding to the attainment of the maximum stored energy as
tmax. For the case of 0 < v0T < 2π , tmax = T . When v0T �
2π , tmax satisfies the following equation:

v0tmax

2
− v0T

4π
sin

(
2πtmax

T

)
= (2n + 1)π, (24)

where n is a natural number.
In our previous analysis, only the conditions for obtaining

maximum stored energy are considered. However, the final
stored energy is also an important factor for assessing battery
performance. To do so, the stored energy at the end of charg-
ing is

E (τ ) = N�

2

[
1 − cos

(
v0T

2

)]
, (25)

which verifies the periodic evolution behaviors in Fig. 3(b).
Here the purple dashed lines are v0T = (4n + 2)π , and the
final stored energy reaches a maximum when the external field
parameters meet this condition.

IV. RELATIONSHIP AMONG THE STORED ENERGY,
ENERGY QUANTUM FLUCTUATIONS,

AND DIAGONAL ENTROPY

In this section we further discuss the relationship among
the stored energy, energy quantum fluctuations, and diagonal
entropy. The final stored energy is shown in Eq. (25). Substi-
tuting Eq. (22) into Eq. (20), the final quantum fluctuations
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FIG. 4. The final stored energy E (τ ) (in units of h̄ω0), final
energy fluctuations �(τ ) (in units of h̄ω0), and final von Neumann
entropy S(τ ) as functions of (a) ω0T = 0.1π , (b) ω0T = 0.2π ,
(c) v0/� = 10, and (d) v0/� = 20, respectively. Black solid line:
The final stored energy; red dashed line: The final energy fluctua-
tions; and green dash-dotted line: The final diagonal entropy. Other
parameters are the same as in Fig. 3.

are

�(τ ) =
√

N�

4

∣∣∣∣sin

(
v0T

2

)∣∣∣∣. (26)

For the diagonal entropy, since B2B8B9 cos μ(t ) −
B3B8B9 sin μ(t ) � 1 in Eq. (21), the final diagonal entropy
can be simplified to

S(τ ) = log2

(√
(N − 1)e

π
2

)∣∣∣∣sin

(
v0T

2

)∣∣∣∣. (27)

The local maximum value of the final stored energy cor-
responds to the local minimum value of the final energy
fluctuations and diagonal entropy, as depicted in Fig. 4, which
is consistent with earlier results [92]. Additionally, a par-
tially synchronous relationship exists between the final energy
quantum fluctuations and diagonal entropy. To further explore
this relationship, Fig. 5 presents the dependence of the final
quantum fluctuations and diagonal entropy on v0/� and ω0T .
The yellow dashed lines represent the curve v0T = (4n +
2)π, n = 0, 1, 2, . . . . It is clearly seen that the their behavior
remains consistent. This further verified the conclusion that
final energy quantum fluctuations and diagonal entropy ex-
hibit their minimum values when the maximum stored energy
exhibits its maximum value.

V. ROLE OF THE ATOMIC INTERACTIONS
AND NUMBER OF ATOMS

Finally, we investigate the role of atomic interactions and
number of TLSs on the charging performances of the QB. Fig-
ure 6(a) displays the energy levels ε/(N/2) of N = 100 TLSs
in the ground state and the first excited state, which are almost
degenerate for λ > 1, whereas for λ < 1, the energy levels
are nondegenerate. The inset in Fig. 6(a) shows the behavior

FIG. 5. Contour plots of QBs: (a) final energy fluctuations and
(b) final diagonal entropy as functions of v0/� and ω0T . The yellow
dashed lines represent the curve v0T = (4n + 2)π, n = 0, 1, 2, . . . .
Other parameters are the same as in Fig. 3.

of the order parameter 〈Sz〉/(N/2) for N = 100, exhibiting
a quantum phase transition at λ = 1. Furthermore, Fig. 6(b)
presents the calculation result of the maximum stored energy
Emax/(Nh̄ω0) as a function of the atomic interaction strength.
Near the critical point of the quantum phase transition, the
maximum stored energy of the RZ quantum battery reaches
its highest values.

In Fig. 7 we show the QB’s maximum stored energy, charg-
ing power, energy quantum fluctuations, and diagonal entropy
as a function of the number N of the TLSs for different atomic
interactions. The maximum stored energy and charging power
increase with the number of TLSs [see Figs. 7(a) and 7(b)].
Figure 7(c) illustrates that a stronger interatomic interaction
results in a higher energy uncertainty. Furthermore, the maxi-
mum diagonal entropy exhibits a logarithmic growth trend as
the number of atoms increases. Increasing the number of TLSs
enhances the quantum coherence effect, which can further
promote the transfer of energy between the battery and the
charger.

FIG. 6. (a) The energy levels ε/(N/2) for the ground state |g〉
(red solid line) and the first-excited-state energy |e〉 (green dashed
line) vs λ. The inset shows 〈Sz〉/(N/2) as a function of λ for N = 100
TLSs. (b) The maximum stored energy Emax (in units of Nh̄ω0) vs λ

for N = 100 TLSs. v0/� = 20, and other parameters are the same as
in Fig. 2.
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FIG. 7. (a) Maximum stored energy Emax (in units h̄ω0),
(b) maximum charging power Pmax (in units h̄ω2

0), (c) maximum
quantum energy fluctuations �max (in units h̄ω0), and (d) max-
imum diagonal entropy Smax with the number N (N ∈ [1, 100])
for different atomic interactions. Orange square, red circle, yellow
up-triangle, green down-triangle, and blue diamond represent λ =
−30, −15, 1, 15, and 30, respectively. Other parameters are the same
as in Fig. 6.

VI. CONCLUSIONS

In conclusion, we have constructed the RZ quantum battery
constituted of N TLSs and charged by both the driving field
and atomic interactions. By employing a gauge transforma-
tion, we have obtained an analytical solution for the QB,
which demonstrated good agreement with numerical results
for cases with a small external field scanning period. The
condition for the full charging of the QB has been deter-
mined to be v0T � 2π , and the maximum final stored energy
is achieved when v0T = (4n + 2)π . Furthermore, the local
maximum value of the final stored energy corresponds to the
local minimum value of the final uncertainty and entangle-
ment. We have also analyzed the effect of atomic interactions
and the number of TLSs on the QB’s stored energy, charging
power, energy quantum fluctuations, and diagonal entropy.
Our analysis revealed that the maximum stored energy reaches
its highest values in the proximity of the quantum phase
transition point λ = 1. Additionally, the maximum stored en-
ergy and charging power increase with the number of TLSs.
Increasing the number of TLSs and atomic interactions will
enhance the uncertainty of energy, but it also further promotes
the transfer of energy between the battery and the charger.

We can also further consider how to enhance the perfor-
mance of the QB through optimal control [7,32,96]. Recently,
many efforts have been devoted to actual implementations of
the QB, including the Dicke QB [69], the star-topology nu-
clear magnetic resonance spin system QB [97], the solid-state
qubit QB [83,98], the transmon qutrit QB [99], the transmon
qubit-resonator QB [100], the xmon qutrit QB [101], and the
XXZ Heisenberg QB [102]. In addition, experimental efforts
have been devoted to quantum simulations of an array of
TLSs, such as cold atoms [103], trapped ions [104–107], and
quantum dots in semiconductors [108], which could be con-
sidered as QB. When charging resources such as Raman laser

beams are used to such TLSs, charging of the QB could be
realistically implemented [19,40,53]. This study aims to pro-
viding a more efficient two-level QB theoretical background
for future experimental implementations.
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APPENDIX A: THE COEFFICIENTS An(t )

The coefficients before the angular momentum operator
after the second unitary transformation are as follows:

A1(t ) = v0 cos ν(t ) sin2

(
πt

T

)
+ μ̇(t ) cos ν(t )

− � cos μ(t ) sin ν(t ),

A2(t ) = ν̇(t ) + � sin μ(t ),

A3(t ) = −v0 sin ν(t ) sin2

(
πt

T

)
− μ̇(t ) sin ν(t )

+ � cos μ(t ) cos ν(t ),

A4(t ) = A5(t ) = −2λ

N
sin μ(t ) cos μ(t ) sin ν(t ),

A6(t ) = A7(t ) = −2λ

N
sin ν(t ) cos ν(t ) cos2 μ(t ),

A8(t ) = A9(t ) = 2λ

N
sin μ(t ) cos μ(t ) cos ν(t ),

A10(t ) = 2λ

N
cos2 μ(t ) sin2 ν(t ),

A11(t ) = 2λ

N
sin2 μ(t ),

A12(t ) = 2λ

N
cos2 μ(t ) cos2 ν(t ). (A1)

APPENDIX B: THE COEFFICIENTS Bn

We replace the composite trigonometric function with
the following Bessel equation Jn in the integration process
of Eq. (15), and neglecting the term n � 2 in Jn as the
approximation,

cos (z sin φt ) = J0(z) +
∑∞

k=1
2J2k (z) cos (2kφt ),

sin (z sin φt ) =
∑∞

k=0
2J2k+1(z) sin [(2k + 1)φt ]. (B1)

The expression after the integration is

B1 = B4 = B5 = B6 = B7 = B10 = 0,

B2 = 4�

[
J0

(− v0T
4π

)
v0

+ 8πT J1
(− v0T

4π

)
16π2 − v0

2T 2

]
sin2

(
v0T

4

)
,
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B3 = −2�

[
J0

(− v0T
4π

)
v0

+ 8πT J1
(− v0T

4π

)
16π2 − v0

2T 2

]
sin

(
v0T

2

)
,

B8 = λ

N

[
J0

(− v0T
2π

)
v0

+ 4πT J1
(− v0T

2π

)
4π2 − v0

2T 2

]
[1 − cos (v0T )],

B9 = λ

N

[
J0

(− v0T
2π

)
v0

+ 4πT J1
(− v0T

2π

)
4π2 − v0

2T 2

]
[1 − cos (v0T )],

B11 = λ

N

[
T −

(
J0

(− v0T
2π

)
v0

− 4πT J1
(− v0T

2π

)
v0

2T 2 − 4π2

)
sin (v0T )

]
,

B12 = λ

N

[
T +

(
J0

(− v0T
2π

)
v0

− 4πT J1
(− v0T

2π

)
v0

2T 2 − 4π2

)
sin (v0T )

]
.

(B2)

APPENDIX C: PART OF THE CALCULATION DETAILS OF
THE ENERGY FLUCTUATIONS

In the process of solving the expression of energy fluctu-
ations, we apply U1(t ) and U2(t ) to J2

z . After the first two

unitary evolutions, we obtain the following results:

U1(t )
(
J2

z

)
U †

1 (t ) = 1
2 sin 2μ(t )(JzJy + JyJz )

+ 1
2 [1 + cos 2μ(t )]J2

z

+ 1
2 [1 − cos 2μ(t )]J2

y , (C1)

U2(t )U1(t )
(
J2

z

)
U †

1 (t )U †
2 (t ) = C1(t )JxJy + C2(t )JyJx

+ C3(t )JxJz + C4(t )JzJx

+ C5(t )JyJz + C6(t )JzJy

+ C7(t )J2
x + C8(t )J2

y + C9(t )J2
z ,

(C2)

where

C1(t ) = C2(t ) = − sin μ(t ) cos μ(t ) sin ν(t ),

C3(t ) = C4(t ) = − sin ν(t ) cos ν(t ) cos2 μ(t ),

C5(t ) = C6(t ) = sin μ(t ) cos μ(t ) cos ν(t ),

C7(t ) = cos2 μ(t ) sin2 ν(t ),

C8(t ) = sin2 μ(t ),

C9(t ) = cos2 μ(t ) cos2 ν(t ). (C3)
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