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Tunable photon-photon correlations in waveguide QED systems with giant atoms
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We investigate the scattering processes of two photons in a one-dimensional waveguide coupled to two
giant atoms. By adjusting the accumulated phase shifts between the coupling points, we are able to effectively
manipulate the characteristics of these scattering photons. Utilizing the Lippmann-Schwinger formalism, we
derive analytical expressions for the wave functions describing two-photon interaction in separate, braided, and
nested configurations. Based on these wave functions, we also obtain analytical expressions for the incoherent
power spectra and second-order correlation functions. In contrast to small atoms, the incoherent spectrum, which
is defined by the correlation of the bound state, can exhibit more tunability due to the phase shifts. Additionally,
the second-order correlation functions in the transmission and reflection fields could be tuned to exhibit either
bunching or antibunching upon resonant driving. These unique features offered by the giant atoms in waveguide
QED could benefit the generation of nonclassical itinerant photons in quantum networks.
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I. INTRODUCTION

Waveguide quantum electrodynamics (QED) have gar-
nered significant interest due to the emergence of unique
physical phenomena when atom-photon coupling to a con-
tinuum of modes limited to a single dimension [1,2], as
well as for their applications in quantum networks [3–6].
With advancements in technology, high coupling efficiency
between atomic degrees of freedom (including natural and
artificial atoms), and propagating photonic modes has been re-
alized within different state-of-the-art platforms [7–9]. Then,
energy dissipation from the atom into the waveguide domi-
nates over that into modes other than the waveguide [9]. By
entering the high coupling efficiency regime, atoms can func-
tion as high-quality quantum emitters, enabling demonstration
of primitives of quantum networks [10,11]. Furthermore,
there has been a shift towards investigating multiatom phe-
nomena in waveguide QED, such as correlated dissipation,
waveguide-mediated interactions between multiple atoms,
and many-body phenomena [12–15]. Another interesting ef-
fect in waveguide QED is related to photonic modes. The
optical nonlinearity becomes apparent on the scale of a few
photons, allowing for observation of quantum nonlinear phe-
nomena through optical correlation functions [16–21]. One
manifestation of the nonlinearity is the presence of two- and
higher-order photon bound states [9,22]. In these bound states,
photons exhibit strong correlations, meaning that once one
photon is detected, the arrival of another photon is much more
likely compared to a random time. It is important to note
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that photon bound states are distinct from bunched photon
states. Photon bound states are quasiparticles with their own
dispersion and are eigenstates of the underlying Hamiltonian
that describes the nonlinear medium [23].

In recent years, a new paradigm in quantum optics has
emerged, beyond the dipole approximation in the light-atom
interaction. This paradigm challenges the assumption that the
size of atoms is significantly smaller than the wavelength
of the interaction light, giving rise to the concept of giant
atoms. Giant atoms can couple to light or other bosonic fields
at multiple points, which may be spaced wavelengths apart.
Such systems can be implemented both with superconducting
qubits coupled either to microwave transmission lines [24] or
surface acoustic waves [25]. The study of giant atom can be
divided into two categories: Markovian and non-Markovian
regimes. In the Markovian case, the propagation time for
radiation across the atom is much shorter than the interac-
tion time with the atom. Multiple coupling points in giant
atoms give rise to interference effects, allowing for a coherent
exchange interaction between atoms mediated by a waveg-
uide. This can result in effects such as frequency-dependent
couplings, Lamb shifts, and relaxation rates [26,27]. On the
other hand, giant atoms in the non-Markovian regime interact
with the radiation field at a timescale comparable to that for
radiation to propagate across the atom, resulting in effects
such as nonexponential decay [28–31] and oscillating bound
states [32]. Extending the concept of multiple small atoms to
multiple giant atoms enables the exploration of a diverse and
rich range of phenomena. These include waveguide-mediated
decoherence-free subspaces [33,34] and the enhanced spon-
taneous sudden birth of entanglement [35]. The simplest
configuration for studying these phenomena involves two gi-
ant atoms interacting to a waveguide with two coupling points.
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FIG. 1. Schematic illustration of two two-level giant atoms with
a one-dimensional (1D) waveguide in three distinct configurations:
(a) separate, (b) braided, (c) nested. The coupling between the atomic
transitions and the waveguide modes occurs at four specific points
denoted as lk , where k = 1, 2, 3, 4. The strength of the coupling is
represented by V . Additionally, the phase shifts acquired between
neighboring points are represented by φ1 and φ2.

These layouts can be categorized into three distinct config-
urations based on the arrangement of the coupling points:
separate, braided, and nested [33]. While most studies have
focused on the atomic degrees of freedom [33–37], there
have been some investigations into the photonic degrees of
freedom. However, these studies primarily explore the single-
excitation subspace [38–40]. To the best of our knowledge,
the optical nonlinearity involving two or multiple photons in
giant atoms is less investigated.

The phenomenon of a single two-level atom not being able
to emit two photons simultaneously is widely known. This
limitation arises due to the fact that the atom can absorb only
one photon at a time, resulting in g(2)(0) = 0 in the reflection
channel [41,42]. By introducing multiple atoms, the constraint
can be overcome, and it becomes possible to manipulate the
correlation between photons [43]. This occurs because when
one photon becomes trapped within the first atom, there is
a probability that the second photon will propagate to and
reflect off the subsequent atom. This process leads to the
simulated emission of the first photon, effectively allowing the
simultaneous emission of two photons. Therefore, the proba-
bility of two photons being emitted together is not completely
prohibited. A similar scenario unfolds with two giant atoms,
exhibiting even more pronounced effects. In this work, we

employ the Lippmann-Schwinger (LS) formalism [44–46] to
analyze the two-photon scattering processes involving two
giant atoms coupled to a one-dimensional (1D) waveguide,
which contains separate, braided, and nested configurations.
By utilizing this approach, we are able to obtain the analytical
two-photon interacting scattering wave functions for three
configurations. Additionally, the incoherent power spectrum
is derived from the correlation of the bound state, with its total
flux serving as an indicator of photon-photon correlation. The
second-order correlation function provides a direct measure
of photon-photon correlation. Through our analysis, we find
that the accumulated phase shifts can be utilized to manipulate
the photon-photon correlation and the evolution of the second-
order correlation for photons scattered by the giant atoms.

The paper is organized as follows. In Sec. II, we present
the physical model that describes the waveguide QED sys-
tem with two giant atoms. Sections III and IV derive the
single-photon scattering eigenstates and two-photon interact-
ing eigenstates in the three configurations. Sections V and VI
analyze the incoherent power spectra and the second-order
correlation functions. The conclusions drawn from our study
are given in Sec. VII.

II. PHYSICAL MODEL

We consider a waveguide QED system composed of two
two-level giant atoms coupled to an open 1D waveguide. Each
giant atom only interacts with the waveguide at two coupling
points, allowing for three distinct configurations: separate,
braided, and nested, as illustrated in Fig. 1. The Hamiltonian
describing the system in real space is given by (h̄ = 1 here-
after):

Ĥc =
(
ω0 − i

γe

2

) 2∑
j=1

σ̂+
j σ̂−

j

− ivg

∫
dx[â†

R(x)∂xâR(x) − â†
L(x)∂xâL(x)]

+
∑

α=R,L

2∑
j=1

V
∫

dxQc
j (x)[â†

α (x)σ̂−
j + âα (x)σ̂+

j ], (1)

where c = s, b, n denotes the separate, braided, and nested
configurations, respectively. Here, the two giant atoms are
assumed to be identical with the same transition frequency ω0

and dissipation rate γe. The excited and ground states of the
jth giant atom are represented by |e〉 j and |g〉 j , respectively.
The atomic raising and lowering operators are denoted as
σ̂+

j = |e〉 j j〈g| and σ̂−
j = |g〉 j j〈e|, respectively. Additionally,

âR(x) and âL(x) correspond to the annihilation operators of
right-moving and left-moving photons in the waveguide, and
νg is the group velocity. For simplicity, we set νg = 1 in the
following. The coupling between the giant atoms and the
waveguide occurs at connection points identified by Qc

j (x),
with a common coupling strength V . In the case of sep-
arate configuration, Qs

1(x) = δ(x − l1) + δ(x − l2) refers to
the coupling points l1 and l2 of the first giant atom, while
Qs

2(x) = δ(x − l3) + δ(x − l4) refers to the coupling points l3
and l4 of the second giant atom. Similarly, for the braided con-
figuration, Qb

1(x) = δ(x − l1) + δ(x − l3), and Qb
2(x) = δ(x −
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l2) + δ(x − l4). In the nested configuration, Qn
1(x) = δ(x −

l1) + δ(x − l4) and Qn
2(x) = δ(x − l2) + δ(x − l3). To exploit

the benefits of parity symmetry, the positions of the atoms
can be deliberately selected to exhibit symmetry with respect
to the origin, i.e., l1 = −l4 and l2 = −l3. The phase shifts
acquired between neighboring coupling points are given by
φ1 = k(l2 − l1) = k(l4 − l3) and φ2 = k(l3 − l2).

The total excitation number of the system is conserved in
the interaction, and thus in the single-excitation subspace, the
eigenstate can be written in the form

|
c
1(k)〉α =

{∫
dx
[
φα

R (k, x)â†
R(x) + φα

L (k, x)âL(x)
]

+
2∑

j=1

ec
jα (k)σ̂ †

j

}
|0〉, (2)

where α refers to the direction of incoming photons, and
φα

R/L(k, x) denote the probability amplitudes of creating the
right-moving and left-moving photons in real space for the
α-direction incident photon with wave vector k, respectively.
Furthermore, ec

jα (k) is the excitation amplitude of the jth
atom in the c configuration, and |0〉 represents the vacuum
state of the system. The probability amplitudes are determined
by the Schrödinger equation Ĥc|
c

1(k)〉α = k|
c
1(k)〉α , which

fulfill

(
ω0 − i

γe

2
− k

)
ec

1α (k) + V
∑
α′

∫
dxQc

1(x)φα
α′ (k, x) = 0,

(
ω0 − i

γe

2
− k

)
ec

2α (k) + V
∑
α′

∫
dxQc

2(x)φα
α′ (k, x) = 0,

(−i∂x − k)φα
R (k, x) + V

2∑
j=1

Qc
j (x)ec

jα (k) = 0,

(i∂x − k)φα
L (k, x) + V

2∑
j=1

Qc
j (x)ec

jα (k) = 0.

(3)

The solutions of three different configurations will be pre-
sented explicitly in the following.

III. SINGLE-PHOTON SCATTERING EIGENSTATES

In this section, we present the eigenstates of single-photon
scattering for each of the three coupling configurations. These
eigenstates contain the amplitudes of atomic excitation, as
well as the amplitudes for single-photon transmission and
reflection.

A. Separate-coupling case

In the separate configuration depicted in Fig. 1(a), when
a photon is injected in the right-moving direction (i.e., α =
R) with wave vector k, the amplitudes can be concretely

expressed in the form

φR
R (k, x) = eikx

√
2π

[
θ (l1 − x) +

3∑
i=1

t s
i (k)θ (x − li )θ (li+1 − x)

+ t s
4(k)θ (x − l4)

]
,

φR
L (k, x) = e−ikx

√
2π

[
rs

1(k)θ (l1 − x)

+
4∑

i=2

rs
i (k)θ (x − li−1)θ (li − x)

]
. (4)

Within the symmetric topology, by substituting these co-
efficients into Eqs. (3), we can derive the solutions for
transmission and reflection amplitudes as well as atomic exci-
tation amplitudes as follows:

t s
4(k) = (k − ω0 − 
 sin φ1)2/Ds,

rs
1(k) = −4i
 cos2 φ1

2
{(k − ω0) cos(φ1 + φ2)

+ 
[sin φ2 + sin(φ1 + φ2)]}/Ds,

es
1R(k) = e−iφ2/2

2

√



π
(1 + e−iφ1 )

{
k − ω0 + i
(1 + eiφ1 )

− i

̃s

2
ei(φ1+φ2 )

}
/Ds,

es
2R(k) = eiφ2/2

2

√



π
(1 + eiφ1 )(k − ω0 − 
 sin φ1)/Ds,

Ds = [ω0 − k − i
(1 + eiφ1 )]2 + 
̃2
s

4
. (5)

Here 
 = 2V 2 represents the decay rate of atomic dissipation
to the waveguide continuum, and 
̃s = 
eiφ2 (1 + eiφ1 )2. In
the high coupling efficiency regime [47], the spontaneous
decay rate to the waveguide dominates over the decay to other
modes, i.e., 
 � γe. Consequently, γe can been ignored in the
following discussions.

According to the parity symmetry, for a photon injected
in the left-moving direction (i.e., α = L), the transmission
and reflection amplitudes are equivalent to those of the right-
moving case. In addition, the atomic excitation amplitudes
also follow this symmetry, which fulfill

es
2L(k) = es

1R(k), es
1L(k) = es

2R(k). (6)

B. Braided-coupling case

Next, let us consider the braided-coupling case, as shown
in Fig. 1(b). In this configuration, the coupling points are
denoted by Qb

j (x). Following the same procedure employed
in the separate-coupling case, one can determine the corre-
sponding transmission and reflection amplitudes, as well as
the atomic excitation amplitudes, which are

t b
4 (k) = [(k − ω0)2 − 2
(k − ω0) sin(φ1 + φ2)

+ 
2 sin φ1(sin φ1 − 2 sin φ2)]/Db,
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rb
1 (k) = −4i
 cos2 φ1 + φ2

2
[(k − ω0) cos φ1

+ 
 sin φ1]/Db,

eb
1R(k) = eiφ2/2

2

√



π
[1 + e−i(φ1+φ2 )][k − ω0

− i



2
(−1 + ei2φ1 )(2 + ei(φ1+φ2 ) )]/Db,

eb
2R(k) = eiφ2/2

2

√



π
[1 + e−i(φ1+φ2 )][eiφ1 (k − ω0)

+ i



2
eiφ2 (−1 + ei2φ1 )]/Db,

Db = [ω0 − k − i
(1 + ei(φ1+φ2 ) )]2 + 
̃2
b

4
. (7)

where 
̃b = 
[2eiφ1 + eiφ2 + ei(2φ1+φ2 )]. Also owing to the
presence of parity symmetry, for the case of left-moving
photon injection, the transmission and reflection amplitudes
remain equivalent to those in the right-moving scenario. The
atomic excitation amplitudes manifest as eb

2L(k) = eb
1R(k) and

eb
1L(k) = eb

2R(k).

C. Nested-coupling case

Finally, we turn to the nested-coupling case, as shown in
Fig. 1(c). In this configuration, the corresponding coupling
points are denoted by Qn

j (x). Employing the same procedure,
we can derive the transmission and reflection amplitudes, as
well as atomic excitation amplitudes as

t n
4 (k) = {(k − ω0 − 
 sin φ2)[k − ω0 − 
 sin(2φ1 + φ2)]

− 
2[sin φ1 + sin(φ1 + φ2)]2}/Dn,

rn
1 (k) = −2i
{(k − ω0)[1 + cos φ1 cos(φ1 + φ2)]

+ 
 sin φ1[cos φ1 + cos(φ1 + φ2)]}/Dn,

en
1R(k) =

√



π

[
(k − ω0) cos

(
φ1 + φ2

2

)

+ 2
 sin φ1 cos
φ2

2

]/
Dn,

en
2R(k) =

√



π
(k − ω0) cos

φ2

2

/
Dn,

Dn =
[
ω0 − k − i




2

(
2 + eiφ2 + ei(2φ1+φ2 )

)]2

+ 
̃2
n

4
.

(8)

where 
̃n = 

√

ei2φ2 (1 + ei2φ1 )2 + 4ei2φ1 (1 + 2eiφ2 ). In the
presence of parity symmetry, for the left-moving injection of a
photon, i.e., α = L, the transmission and reflection amplitudes
are the equivalent to those of right-moving case. Addition-
ally, the atomic excitation amplitudes satisfy en

1L(k) = en
1R(k)

and en
2L(k) = en

2R(k), which differ from those obtained in the
separate-coupling and braided-coupling cases. This is because
in the nested configuration, the atoms remain unchanged for
the left-moving incident photon, whereas they are exchanged
in the separate and braided configurations. Concretely, by

defining a parity operator P̂, P̂σ̂ j P̂† = σ̂3− j for the separate
and braided cases, while P̂σ̂ j P̂† = σ̂ j for the nested case
[48].

IV. TWO-PHOTON INTERACTING SCATTERING
EIGENSTATES

By utilizing the obtained eigenstates for the single-photon
excitation, we can proceed to construct the two-photon inter-
acting eigenstates via employing LS techniques [44–46,49].
The construction is given by∣∣�c

2 (k1, k2)
〉
α1α2

= ∣∣
c
2(k1, k2)

〉
α1α2

+ ĜR(E )V̂on

∣∣
c
2(k1, k2)α1α2 . (9)

Here, ĜR(E ) represents the retarded Green’s function, and
E = k1 + k2 corresponds to the total energy of two incident
photons. Moreover, V̂on denotes the on-site interaction in the
bosonic representation of the atoms. In real space, this con-
struction can be expressed as

α′
1α

′
2

〈
x1x2

∣∣�c
2 (k1, k2)

〉
α1α2

= α′
1α

′
1

〈
x1x2

∣∣
c
2(k1, k2)

〉
α1α2

−
2∑

i, j=1

G
α′

1α
′
2

i,c (x1, x2)
(
G−1

c

)
i j

× 〈d jd j |
c
2(k1, k2)α1α2 , (10)

where |
c
2(k1, k2)〉α1α2 = 1√

2
|
c

1(k1)〉α1 ⊗ |
c
1(k2)〉α2 is the

two-photon noninteracting eigenstate. In order to obtain the
interacting eigenstates, it is crucial to derive the elements of
the Green’s function, which are provided as follows:

Gα1α2
i,c (x1, x2) =

∑
α′

1α
′
2

∫
dk1dk2

× α1α2

〈
x1x2

∣∣
c
2(k1, k2)

〉
α′

1α
′
2

〈

c

2(k1, k2)
∣∣didi

〉
E − k1 − k2 + i0+ ,

Gc
i j =

∑
α1α2

∫
dk1dk2

×
〈
didi

∣∣
c
2(k1, k2)

〉
α1,α2

〈

c

2(k1, k2)
∣∣d jd j

〉
E − k1 − k2 + i0+ ,

G−1
c =

(
Gc

11 Gc
12

Gc
21 Gc

22

)−1

. (11)

It should be noted that x1 and x2 refer to the positions of the
photons. Upon examining the structure of these Green’s func-
tions, one can find the presence of two distinct components,
which are

α′
1α

′
2

〈
x1x2

∣∣
c
2(k1, k2)

〉
α1α2

= 1
2

[
φ

α1
α′

1
(k1, x1)φα2

α′
2
(k2, x2)

+ φ
α2
α′

1
(k2, x1)φα1

α′
2
(k1, x2)

]
,〈

didi

∣∣
c
2(k1, k2)

〉
α1α2

= ec
iα1

(k1)ec
iα2

(k2). (12)

In principle, the accumulated phase shifts between the cou-
pling points are dependent on the wave vector, which
introduces significant complexity into the photon scattering
processes [44,48–50]. However, for the purposes of this study,
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we focus on the Markovian approximation τ
 � 1 [50],
where τ is the propagation time across the giant atoms. Conse-
quently, we explicitly substitute the frequency with the atomic
transition frequency ω0, resulting in phase factors denoted
as φ1 = k0(l2 − l1) = k0(l4 − l3) and φ2 = k0(l3 − l2) where
k0 = ω0/νg. Finally, under the assumption of x1 > l4 and x2 =
x1 + x (with x > 0), the two-photon interacting eigenstate of
the injection in right-moving direction can be expressed as

∣∣�c
2 (k1, k2)

〉
RR =

∫
dx1dx2

[
f c
RR(x1, x2)√

2
â†

R(x1)â†
R(x2)

+ f c
RL(x1, x2)â†

R(x1)â†
L(x2)

+ f c
LL(x1, x2)√

2
â†

L(x1)â†
L(x2)

]
|0〉. (13)

The coefficients f c
α1α2

(x1, x2) can be written in a common
form, which consists of a two-particle plane wave with re-
arranged momenta of the photons and a bound state. The
emergence of the plane wave is attributed to coherent scatter-
ing, while the bound state arises from incoherent scattering.
It is worth noting that the bound state exhibits exponential
decay as the distance between the two photons increases. This
phenomenon is closely related to the two-particle irreducible
T -matrix in scattering theory [51]. Therefore, the two-photon
transmission and reflection amplitudes can be written in the
form

f c
RR(x1, x2) = eiExc

√
2π

[
t c
4 (k1)t c

4 (k2) cos �1x + BRR,c
k1k2

(x)
]
,

f c
LL(x1, x2) = e−iExc

√
2π

[
rc

1(k1)rc
1(k2) cos �1x + BLL,c

k1k2
(x)
]
,

(14)

where xc = (x1 + x2)/2 is the center position of the two
photons, and �1 = (k1 − k2)/2 represents half of the energy
difference between the two incident photons. The explicit
expressions of the bound-state terms in three configurations
are given in Appendix A.

V. INCOHERENT POWER SPECTRUM

The two-photon interacting eigenstate comprises two com-
ponents, namely the plane wave resulting from coherent
scattering and the bound state arising from photon-photon
interactions. In order to examine the effect of the bound state
on scattering processes, our initial focus is directed towards
the power spectrum or resonance fluorescence, which can be
obtained by performing a Fourier transform of the first-order
correlation function,

Sα,c(ω) =
∫

dte−iωt
〈
�c

2

∣∣â†
α (x0)âα (x0 + t )

∣∣�c
2

〉
, (15)

where x0 represents the position of a distant detector located
outside the scattering region. Sα,c(ω) accounts for the spectral
decomposition of the photons in the interacting two-photon
wave function |�c

2〉. In general, the power spectrum consists
of the coherent and incoherent parts, i.e., Sα,c(ω) = Sα,c

coh(ω) +
Sα,c

incoh(ω). The contribution from coherent scattering manifests
as a δ function, while the correlation of the bound state within

the wave function accounts for the incoherent scattering,

Sα,c
incoh(ω) = 1

π2

∫
dtdxei(E/2−ω)t Bαα,c∗

k1k2
(x)Bαα,c

k1k2
(x − t ).

(16)

Via substituting the expressions of the bound state, the
incoherent power spectra in the transmission and reflection
can be written in the form

SR,c
incoh(ω) = 1

π2

∣∣Mc
R(ω)

∣∣2, SL,c
incoh(ω) = 1

π2

∣∣Mc
L(ω)

∣∣2, (17)

where

Mc
R(ω) = Zc

1Ac
1(E/2 − ω) + Zc

2Ac
2(E/2 − ω),

Mc
L(ω) = Zc

3Ac
1(E/2 − ω) + Zc

4Ac
2(E/2 − ω), (18)

and

Ac
1(y) = 1

iy − iηc/2 + 
̃c/2
+ (y ↔ −y),

Ac
2(y) = 1

iy − iηc/2 − 
̃c/2
+ (y ↔ −y). (19)

To explore physical implications of the incoherent power
spectra, we perform a Fourier transform of the transmitted
and reflected states from their real-space representation
to frequency space. In frequency space, these states
can be expressed as t c

4 (ω1)t c
4 (ω2)âR(ω1)âR(ω2)|0〉 +

1
2π

∫
dωMc

R(ω)âR(E − ω)âR(ω)|0〉 in transmission and
rc

1(ω1)rc
1(ω2)âL(ω1)âL(ω2)|0〉 + 1

2π

∫
dωMc

L(ω)âL(E −
ω)âL(ω)|0〉 in reflection. Within each of these expressions,
the first term describes the independent propagation of the
two photons, while the second term represents the formation
of the bound state between the two photons after undergoing
inelastic scattering. According to the principle of energy
conservation, the scattered photons are always generated in
pairs with frequencies of opposite signs. The coefficients
Mc

R(ω) and Mc
L(ω) serve to quantify the production of these

photon pairs in the transmission and reflection processes [52].
Therefore, the incoherent power spectrum can provide a direct
measure of the generation of photon pairs at the frequency ω.

Under the assumption of a narrow bandwidth of incident
photons, where the spectral width of the wave packet is signif-
icantly smaller than 
, the wave packet can be approximated
as a δ function. This implies that the incident photons have an
equal frequency k1 = k2 = k = E/2. In this case, the incoher-
ent power spectra, including transmission SR,c

incoh(ω), reflection
SL,c

incoh(ω), and total spectrum Sc
incoh(ω) = ∑

α Sα,c
incoh(ω) (trans-

mission + reflection), are plotted in Fig. 2 as a function
of ω. In these figures, the phase shifts between coupling
points can be engineered through device design, particularly
by adjusting the relative lengths of the waveguide segment.
The selected values of φ1 = 0.5π and φ2 = 0.25π are based
on the experimental setup described in Ref. [24]. To cover
different scenarios, we also consider an alternative case with
φ1 = 0.25π and φ2 = 0.85π . These choice of phase shifts
allow us to explore various scenarios and investigate their
impact on the incoherent power spectra.

It can be verified that the location and the width of the peak
are determined by the real and imaginary parts of the roots of
the denominators in Ac

1(E/2 − ω) and Ac
2(E/2 − ω). For the
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FIG. 2. Incoherent power spectra in the three different configu-
rations as a function of frequency ω with different values of φ1 and
φ2. The first row corresponds to the separate case, the second row
corresponds to the braided case, and the third row corresponds to
the nested case. In addition, the black solid lines denote the total
incoherent power spectra, the red dashed lines denote the incoherent
power spectra in transmission, and the blue dotted lines denote the
incoherent power spectra in reflection. The other parameters are
k = ω0 = 100
.

two giant atoms, these properties can be adjusted through the
accumulated phase shifts [33]. Consequently, the structure of
the incoherent power spectra finds its explanation in the roots
of the denominators in Ac

1(E/2 − ω) and Ac
2(E/2 − ω), which

are given by

ωc
1 = E/2 − ηc/2 − i
̃c/2 (20)

for Ac
1(ω), and

ωc
2 = E/2 − ηc/2 + i
̃c/2 (21)

for Ac
2(ω). The respective values corresponding to the given

parameters in Fig. 2 are listed in the Table I. The incoher-
ent power spectra differ in the transmission and reflection
for the separate and braided configuration. This results from
the exchange of atomic excitations in the atoms for incident
photons moving in opposite directions, owing to the parity
symmetry P̂σ̂ j P̂† = σ̂3− j . This behavior is also consistent
with the small atoms system [12,13,43]. Conversely, in the
nested configuration, their incoherent power spectra remain

TABLE I. The numerical values of ωc
1(ω) and ωc

2(ω) (in units of

) for the three configurations.

φ1 = 0.5π , φ2 = 0.25π φ1 = 0.25π , φ2 = 0.85π

Separate ωs
1 = 101.7 − 0.3i ωs

1 = 100.2 − 0.08i
ωs

2 = 100.3 − 1.7i ωs
2 = 101.2 − 3.3i

Braided ωb
1 = 101.7 − 0.3i ωb

1 = 100.2 − 0.08i
ωb

2 = 99.7 − 0.3i ωb
2 = 99.2 − 0.014i

Nested ωn
1 = 98.4 − 1.4i ωn

1 = 99 − 0.64i
ωn

2 = 101.6 − 0.56i ωn
2 = 100.6 − 0.013i

FIG. 3. The total inelastic flux in the three different configura-
tions as a function of k with different values of φ1 and φ2. The first
row corresponds to the separate case, the second row corresponds to
the braided case, and the third row corresponds to the nested case.
The other parameter is ω0 = 100
.

the same because of the unchanged atomic excitations for
incident photons moving in both directions, where the parity
symmetry is represented as P̂σ̂ j P̂† = σ̂ j .

Furthermore, the total inelastic flux is defined as

F c(k) =
∫

dωSc
incoh(ω)

= 2

π

∫
dx
[∣∣BRR,c

k1k2
(x)
∣∣2 + ∣∣BLL,c

k1k2
(x)
∣∣2]. (22)

This provides a measure of the overall strength of correlations
and a direct measurement of the bound-state term. When k1 =
k2 = k, after integration, the expression for the total inelastic
flux can be obtained as

F c(k) = 8

π

[ ∣∣Zc
1

∣∣2 + ∣∣Zc
3

∣∣2
iη∗

c − iηc + 
̃∗
c + 
̃c

+
∣∣Zc

2

∣∣2 + ∣∣Zc
4

∣∣2
iη∗

c − iηc − 
̃∗
c − 
̃c

+ Zc∗
1 Zc

2 + Zc∗
3 Zc

4

iη∗
c − iηc + 
̃c∗

c − 
̃c
+ Zc

1Zc∗
2 + Zc

3Zc∗
4

iη∗
c − iηc − 
̃∗

c + 
̃c

]
.

(23)

The total inelastic flux for the three configurations F c(k)
as a function of the incident frequency k is shown in Fig. 3. A
large value of F c(k) indicates strong correlation effects, since
the incoherent scattering arises from the correlation of the
bound state. Therefore, the peak value indicates the strongest
correlation, and the corresponding kpeak represents the optimal
incident frequency to obtain photon-photon correlation. The
shape of F c(k) varies with the accumulated phase shifts φ1

and φ2. The position and width of the peaks can be explained
by the poles of the system, which correspond to the roots of
Dc. Denoting the poles as z = ω̃ − i
̃, ω̃ represents the eigen-
frequency, and 
̃ denotes the collective decay rate [31,48].
The position of the peak aligns with the eigenfrequency ω̃,
while its width is determined by 
̃.

To validate our analytical results for the incoherent power
spectra and total inelastic flux, we employ the master equa-
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tion approach, which involves tracing out the 1D bosonic
modes in the waveguide [12,33]. Moreover, we consider a
weak probe field that contains multiphoton components, ex-
tending beyond the single-photon limit [53]. However, it is
important to note that the dominant processes primarily in-
volve two photons. A detailed derivation of these calculations
is presented in Appendix B. The presence of waveguide
modes induces various effects on the giant atoms, including
frequency shifts, exchange interactions, individual decay, and
collective decay. All these parameters depend on the accu-
mulated phase shift. The output field within the waveguide
consists of both a coherent term and an incoherent term,
similar to the decomposition observed in two-photon wave
function described by Eq. (14). Consequently, the incoherent
power spectra correspond to the collective resonance fluo-
rescence emitted from the giant atoms. In their eigenstate
representation, the spectrum manifests as the sum of the reso-
nance fluorescence from the eigenstates. Thus, the positions
and widths of the peaks listed in Table I align with the
eigenfrequency and its effective dissipation rate, as shown in
Fig. 6. Furthermore, the plots depicting the incoherent power
spectra and total inelastic flux in Fig. 7, obtained through
numerical simulation of the master equation, are consistent
with the results derived from the analytical expression of the
two-photon wave function.

VI. SECOND-ORDER CORRELATION FUNCTION

Next, we utilize the second-order correlation function to
demonstrate the spatial interaction between photons [54].
The second-order correlation functions of the transmitted and
reflected fields (x1 > d/2, x2 > d/2 and x = x2 − x1) are de-
fined as follows:

Gc
α

(2)(x) = 〈
�c

2

∣∣â†
α (x1)â†

α (x2)âα (x2)âα (x1)
∣∣�c

2

〉
= 2

∣∣ f c
αα (x1, x2)

∣∣2. (24)

This correlation function represents the probability of detect-
ing a photon at x2 after detecting the first one at x1. The
expression is directly proportional to the rate at which two
photons are transmitted or reflected, and is determined by the
interference between the plane-wave term and the bound-state
term. In order to briefly illustrate the effect of the bound state,
we examine the second-order differential correlation func-
tion [55–58], which is the difference between the probability
of two-photon detection and the independent single-photon
detection when x = 0. Concretely, under the condition that
k1 = k2 = k the differential correlation function are

χ c
R = 2π2

∣∣ f c
RR(0)

∣∣2 − ∣∣t c
4 (k)

∣∣4 (25)

for the transmitted field and

χ c
L = 2π2

∣∣ f c
LL(0)

∣∣2 − ∣∣rc
1(k)

∣∣4 (26)

for the reflected field. If χR > 0, it indicates that the bound
state enhances the transmission of two photons, resulting in
a phenomenon known as photon-induced tunneling, which
serves as a signature of photon bunching. Conversely, if χR <

0, it implies that the bound state can suppress the transmis-
sion of two photons, leading to photon blockade [59,60]. The

FIG. 4. Second-order differential correlation functions in the
three different configurations as functions of φ1 and φ2. The first
row corresponds to the separate configuration, the second row cor-
responds to the braided configuration, and the third row corresponds
to the nested configuration. Moreover, the first column represents the
transmission, and the second column represents the reflection. The
white lines indicate that the differential correlation functions equal
to zero. The other parameters are k = ω0 = 100
.

second-order differential correlation functions for the three
configurations are numerically plotted in Fig. 4.

In the single giant atom, the photon correlation can be
enhanced by adjusting the phase shift, but it is unable to switch
between bunching and antibunching [49]. This limitation
arises because a single two-level atom can absorb only one
photon at a time and cannot emit two photons simultaneously.
Hence, in the case of reflection from a single giant atom, the
second-order correlation function g(2)(0) = 0. However, this
constraint can be overcome by incorporating additional two-
level atoms. The presence of multiple two-level atoms enables
the possibility of one photon being absorbed by the first atom
while the other photon propagates to the subsequent atom and
gets reflected, thereby triggering the stimulated emission of
the first photon. As a result, the probability of two photons
being emitted together is not completely suppressed. This
phenomenon becomes even more pronounced when two giant
atoms are present. In the case of transmission for the two giant
atoms, we find that the transmitted photons exhibit bunching
behavior when the atoms are in the separate configuration,
similar to small atoms. However, the transmitted photons can
display either bunching or antibunching behavior by adjusting
the phase shifts φ1 and φ2 in the braided and nested cases.
As for the reflection, the reflected photons can exhibit either
bunching or antibunching behavior by adjusting the phase
shifts φ1 and φ2 in all three cases.

Alternatively, the statistics of two photons can be inter-
preted by considering the interplay between a coherent state
and a squeezed state [61–63]. The wave function presented in
Eq. (14), comprises a coherent state arising from the coherent
scattering and a squeezedlike state originated from the bound
state (under the condition of k1 = k2 = k). The combination
of these states gives rise to bunching and antibunching phe-
nomena, which are closely related to the phases associated
with the coherent and squeezing components. Remarkably, the
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FIG. 5. Normalized second-order correlation functions in the
three different configurations as a function of x with different values
of φ1 and φ2. The first row corresponds to the transmission, and
the second row corresponds to the reflection. Additionally, the first
column represents the separate case, the second column represents
the braided case, and the third column represents the nested case.
The other parameters are k = ω0 = 100
.

relative phase can be adjusted through the accumulated phase
shifts between the giant atoms. This perspective can also be
numerically validated using the master equation approach in
Appendix B. In the eigenstate representation shown by Fig. 6,
the system exhibits behavior reminiscent of two indepen-
dent coherently driven two-level atoms in the Heitler regime.
While each effective two-level atom provides antibunched
resonance fluorescence, the total output field, expressed as
a phase-dependent sum of output field from each effective
two-level atom, and the phase itself plays a key role in tuning
the photon correlations. These characteristics can be referred
to as unconventional statistic features [61]. The numerical
simulations of the two-photon differential correlation function
in Fig. 8 exhibit a strong resemblance to those derived from
our analytical results. This validation provides further support
for our analytical results and reinforces the underlying mech-
anism responsible for the photon statistics.

FIG. 6. Energy diagram illustrating the inelastic power spectra in
the three configurations. (a) Independent transitions in the symmetric
and antisymmetric basis for the separate and braided configura-
tions. (b) Correlated transitions in the eigenbasis for the nested
configuration.

The differential correlation function provides a clear
measure of the probability of generating two photons si-
multaneously. However, it is less sensitive to single-photon
transmission and reflection. To address this, it is helpful to
introduce the normalized second-order correlation function
[45,64–66]

gc
α

(2)(x) = Gc
α

(2)(x)∣∣
α〈x1|
c

1(k1)〉R

∣∣2∣∣
α〈x2|
c

1(k2)〉R

∣∣2 . (27)

This function is normalized by the single-photon transmission
and reflection probabilities. After performing calculations, the
normalized second-order correlation functions in transmission
and reflection can be expressed in the form

gc
R

(2)(x) =
∣∣∣∣∣1 + Zc

1

t c
4 (k1)t c

4 (k2)
e(iηc−
̃c )|x|/2

+ Zc
2

t c
4 (k1)t c

4 (k2)
e(iηc+
̃c )|x|/2

∣∣∣∣∣
2

,

gc
L

(2)(x) =
∣∣∣∣∣1 + Zc

3

rc
1(k1)rc

1(k2)
e(iηc−
̃c )|x|/2

+ Zc
4

rc
1(k1)rc

1(k2)
e(iηc+
̃c )|x|/2

∣∣∣∣∣
2

. (28)

These correlation functions are shown in Fig. 5. Here we
choose the frequency of the input field to be resonant with the
atomic transition frequency, i.e., k1 = k2 = k = ω0. It should
be noted that, consistent with Fig. 4, in Fig. 5(a), the transmis-
sion correlations both exhibit bunching behavior [gs

R
(2)(0) >

0] in the separate configuration. However, in the braided and
nested configurations shown in Figs. 5(b) and 5(c), the initial

bunching gb/n
R

(2)
(0) > 0 and antibunching gb/n

R

(2)
(0) < 0 can

be manipulated by adjusting the phase shifts φ1 and φ2. As
for reflection, the correlation can either display bunching or
antibunching behavior in all three configurations by adjusting
the phase shifts.

Besides, it is important to note that the initial value gc
α

(2)(x)
cannot predict the overall photon-photon correlation due to
the complex nature of the function. This complexity arises
from the beating between the incident frequency and the two
eigenfrequencies (ηc ± i
̃c)/2, which correspond to the com-
plete set of collective decay rates [31,48]. The long-distance
behavior is determined by the most subradiant pole [43]. For
example, in the separate configuration shown in Fig. 5(a), the
imaginary of the most subradiant pole is 0.7 for φ1 = 0.5π

and φ2 = 0.9π (black solid line), while it is 0.05 for φ1 =
0.5π and φ2 = 0.4π (red-dashed line), which exhibits the
long-distance oscillation. A similar analysis can be applied
to the other subfigures as well. In the limit of large x, the
contribution of the bound state becomes negligible, and the
second-order correlation function approaches to 1.

VII. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have instigated the two-photon scatter-
ing processes involving two giant atoms coupled to a 1D
waveguide. We study three different configurations: separate,
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braided, and nested, using the LS formalism. The approach
enables us to obtain analytical expressions for the two-photon
interacting scattering wave functions under the Markovian
approximation. Based on our analytical results, we derived
the incoherent power spectrum, which arises from the corre-
lation of the bound state and characterizes the generation of
correlated photon pairs. Importantly, we demonstrated that the
incoherent power spectrum can be effectively tuned by adjust-
ing the accumulated phase shifts. Furthermore, we analyzed
the total flux as a measure of photon-photon correlation, show-
ing that it can be modified by the phase shifts and explained by
the poles of the system. The second-order correlation function
provides a direct measure of photon-photon correlation, and
our analysis revealed that the accumulated phase shifts can
be effectively utilized to qualitatively tune the photon-photon
correlation. This includes manipulating either initial bunch-
ing or initial antibunching behavior in the transmission and
reflection. Lastly, we found that the long-distance evolution
of the second-order correlation is possible from the most
subradiant poles. This work offers possibilities for generating
tunable nonclassical photon source, which may have potential
applications in the construction of quantum networks based
on the giant-atom waveguide-QED systems.

The effect of waveguide loss has been completely ne-
glected in the present study. Let us now consider the potential
impact of such losses. In waveguide systems, the losses asso-
ciated with light propagation are typically very low, especially
when considering high-quality materials and careful design
techniques [67,68]. The primary source of losses usually
comes from external components, such as circulators used
in the unidirectional waveguides [69]. In our case, since we
consider a bidirectional waveguide, there is no need for lossy
circulators. To account for waveguide loss theoretically, they
can be modeled by introducing a beam-splitter mixing term,
where B̂(m)

out = √
ηb̂(m)

out + √
1 − ηb̂v . Here, η represents the

transmission efficiency, denoting the fraction of the input light
transmitted through the waveguide, and b̂v is the uncorrelated
noise. If the noise is assumed to be the vacuum noise, then
the incoherent power spectrum would become ηSincoh(ω), the
differential correlation function would become η2χ (m), and
the normalized second-order correlation would remain the
same.
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APPENDIX A: DERIVATION OF BOUND-STATE TERMS
IN THREE CONFIGURATIONS

In this Appendix, we present the analytical results of the
bound-state terms in the separate, braided, and nested config-
urations.

1. Separate-coupling case

The elements of Green’s functions can be obtained by
performing a double integral using standard contour integral
techniques. In the separate configuration, we have explicitly

derived the elements as follows:

Gs
11 = 2η2

s + 
̃2
s

2ηs
(
η2

s + 
̃2
s

) , Gs
12 = −
̃2

s

2ηs
(
η2

s + 
̃2
s

) ,
GRR

1,s(x1, x2) = −Cs
(
ϒ s

1e−
̃x/2 + ϒ s
2e
̃x/2

)
,

GRR
2,s(x1, x2) = −Cs

(
ϒ s

3e−
̃x/2 + ϒ s
4e
̃x/2

)
,

GRL
1,s(x1,−x2) = −Cs

(
ϒ s

3e−
̃x/2 − ϒ s
4e
̃x/2),

GRL
2,s(x1,−x2) = −Cs

(
ϒ s

1e−
̃x/2 − ϒ s
2e
̃x/2

)
, (A1)

where

ηs = E − 2ω0 + 2i
(1 + eiφ1 ),

Cs = 
 cos2 φ1

2
ei(ηsx/2+Exc ),

ϒ s
1 = 2ηs + i
̃s − 2i
(1 + cos φ1)

2ηs(ηs + i
̃s)
[ei(φ1+φ2 ) + 1],

ϒ s
2 = 2ηs − i
̃s − 2i
(1 + cos φ1)

2ηs(ηs − i
̃s)
[ei(φ1+φ2 ) − 1],

ϒ s
3 = 2ηs + i
̃s[1 − ei(φ1+φ2 )]

2ηs(ηs + i
̃s)
[e−i(φ1+φ2 ) + 1],

ϒ s
4 = 2ηs − i
̃s(1 + ei(φ1+φ2 ) )

2ηs(ηs − i
̃s)
[e−i(φ1+φ2 ) − 1]. (A2)

According to the parity symmetry P̂σ̂ j P̂† = σ̂3− j ,
the following equalities hold: Gs

21 = Gs
12, Gs

22 = Gs
11,

GLL
1,s(−x1,−x2) = GRR

2,s(x1, x2), and GLL
2,s(−x1,−x2) =

GRR
1,s(x1, x2). Additionally, it can be proven that

GRL
2,s(x1,−x2) = GLR

1,s(−x1, x2), and GLR
2,s(−x1, x2) =

GRL
1,s(x1,−x2). Then, following the Eq. (10), the bound-state

terms in transmission and reflection amplitudes can be
expressed in the form

BRR,s
k1k2

(x) = Zs
1e(iηs−
̃s )|x|/2 + Zs

2e(iηs+
̃s )|x|/2,
(A3)

BLL,s
k1k2

(x) = Zs
3e(iηs−
̃s )|x|/2 + Zs

4e(iηs+
̃s )|x|/2,

where the coefficients are

Zs
1 =

√
2π
 cos2 φ1

2

Gs
11

2 − Gs
12

2

[
es

1R(k1)es
1R(k2)

(
ϒ s

1Gs
11 − ϒ s

3Gs
12

)
+ es

2R(k1)es
2R(k2)

(
ϒ s

3Gs
11 − ϒ s

1Gs
12

)]
,

Zs
2 =

√
2π
 cos2 φ1

2

Gs
11

2 − Gs
12

2

[
es

1R(k1)es
1R(k2)

(
ϒ s

2Gs
11 − ϒ s

4Gs
12

)
+ es

2R(k1)es
2R(k2)

(
ϒ s

4Gs
11 − ϒ s

2Gs
12

)]
,

Zs
3 =

√
2π
 cos2 φ1

2

Gs
11

2 − Gs
12

2

[
es

1R(k1)es
1R(k2)

(
ϒ s

3Gs
11 − ϒ s

1Gs
12

)
+ es

2R(k1)es
2R(k2)

(
ϒ s

1Gs
11 − ϒ s

3Gs
12

)]
,

Zs
4 =

√
2π
 cos2 φ1

2

Gs
11

2 − Gs
12

2

[
es

1R(k1)es
1R(k2)

(
ϒ s

4Gs
11 − ϒ s

2Gs
12

)
+ es

2R(k1)es
2R(k2)

(
ϒ s

2Gs
11 − ϒ s

4Gs
12

)]
. (A4)
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2. Braided-coupling case

Following the same procedure, in the braided-coupling
configuration, we can also express the bound-state terms as

BRR,b
k1k2

(x) = Zb
1 e(iηb−
̃b)|x|/2 + Zb

2 e(iηb+
̃b)|x|/2,

BLL,b
k1k2

(x) = Zb
3 e(iηb−
̃b)|x|/2 + Zb

4 e(iηb+
̃b)|x|/2. (A5)

Here, the coefficients are

Zb
1 =

√
2π
 cos2

(
φ1+φ2

2

)
Gb

11
2 − Gb

12
2

[
eb

1R(k1)eb
1R(k2)

(
ϒb

1 Gb
11

− ϒb
3 Gb

12

)+ eb
2R(k1)eb

2R(k2)
(
ϒb

3 Gb
11 − ϒb

1 Gb
12

)]
,

Zb
2 =

√
2π
 cos2

(
φ1+φ2

2

)
Gb

11
2 − Gb

12
2

[
eb

1R(k1)eb
1R(k2)

(
ϒb

2 Gb
11

− ϒb
4 Gb

12

)+ eb
2R(k1)eb

2R(k2)
(
ϒb

4 Gb
11 − ϒb

2 Gb
12

)]
,

Zb
3 =

√
2π
 cos2

(
φ1+φ2

2

)
Gb

11
2 − Gb

12
2

[
eb

1R(k1)eb
1R(k2)

(
ϒb

3 Gb
11

− ϒb
1 Gb

12

)+ eb
2R(k1)eb

2R(k2)
(
ϒb

1 Gb
11 − ϒb

3 Gb
12

)]
,

Zb
4 =

√
2π
 cos2

(
φ1+φ2

2

)
Gb

11
2 − Gb

12
2

[
eb

1R(k1)eb
1R(k2)

(
ϒb

4 Gb
11

− ϒb
2 Gb

12

)+ eb
2R(k1)eb

2R(k2)
(
ϒb

2 Gb
11 − ϒb

4 Gb
12

)]
, (A6)

where the parameters involved in these expressions are

ηb = E − 2ω0 + 2i
[1 + ei(φ1+φ2 )],

Gb
11 = 2η2

b + 
̃2
b

2ηb
(
η2

b + 
̃2
b

) , Gb
12 = −
̃2

b

2ηb
(
η2

b + 
̃2
b

) ,
ϒb

1 = 2ηb + i
̃b − 2i
(1 + eiφ2 cos φ1)

2ηb(ηb + i
̃b)
(eiφ1 + 1),

ϒb
2 = 2ηb − i
̃b − 2i
(1 + eiφ2 cos φ1)

2ηb(ηb − i
̃b)
(eiφ1 − 1),

ϒb
3 = 2ηb + i
̃b(1 − eiφ1 )

2ηb(ηb + i
̃b)
(e−iφ1 + 1),

ϒb
4 = 2ηb − i
̃b(1 + eiφ1 )

2ηb(ηb − i
̃b)
(e−iφ1 − 1). (A7)

3. Nested-coupling case

Following the same procedure, the bound-state terms in the
nested-coupling configuration can be expressed as

BRR,n
k1k2

(x) = Zn
1 e(iηn−
̃n )|x|/2 + Zn

2 e(iηn+
̃n )|x|/2,

BLL,n
k1k2

(x) = Zn
3 e(iηn−
̃n )|x|/2 + Zn

4 e(iηn+
̃n )|x|/2, (A8)

where the coefficients are

Zn
1 = −i2

√
2π


Gn
11Gn

22 − Gn
12

2

[
en

1R(k1)en
1R(k2)

(
ϒn

1 Gn
22 − ϒn

3 Gn
12

)
+ en

2R(k1)en
2R(k2)

(
ϒn

3 Gn
11 − ϒn

1 Gn
12

)]
,

Zn
2 = i2

√
2π


Gn
11Gn

22 − Gn
12

2

[
en

1R(k1)en
1R(k2)

(
ϒn

2 Gn
22 − ϒn

4 Gn
12

)
+ en

2R(k1)en
2R(k2)

(
ϒn

4 Gn
11 − ϒn

2 Gn
12

)]
. (A9)

Here, Zn
3 = Zn

1 and Zn
4 = Zn

2 due to the fact that the atoms
remain unchanged for the right-moving and left-moving in-
cident photons, i.e., P̂σ̂ j P̂† = σ̂ j . The parameters involved in
these expressions are given as

ηn = E − 2ω0 + 2i
[1 + cos φ1ei(φ1+φ2 )],

Gn
11 = η2

n + i
ηneiφ2 (1 − ei2φ1 ) + 2
2ei2φ1 (1 + eiφ2 )2

ηn(η2
n + 
̃2

n )
,

Gn
22 = η2

n − i
ηneiφ2 (1 − ei2φ1 ) + 2
2ei2φ1 (1 + eiφ2 )2

ηn(η2
n + 
̃2

n )
,

Gn
12 = −2
2ei2φ1 (1 + eiφ2 )2

ηn(η2
n + 
̃2

n )
, (A10)

and

ϒn
1 =

{

2 cos2

(
φ2

2

)
(ei2φ1 − 1)(eiφ2 + 1) − ηn
 sin φ1[cos φ1 + cos(φ1 + φ2)]

+ ηn(ω0 − λn
2) cos2

(
φ1 + φ2

2

)}/
[ηn
̃n(ηn + i
̃n)],

ϒn
2 =

{

2 cos2

(
φ2

2

)
(ei2φ1 − 1)(eiφ2 + 1) − ηn
 sin φ1[cos φ1 + cos(φ1 + φ2)]

+ ηn(ω0 − λn
1) cos2

(
φ1 + φ2

2

)}/
[ηn
̃n(ηn − i
̃n)],

ϒn
3 = cos2

(
φ2

2

)
ηn(ω0 − λn

2) − 
2(ei2φ1 − 1)(eiφ2 + 1)

ηn
̃n(ηn + i
̃n)
,

ϒn
4 = cos2

(
φ2

2

)
ηn(ω0 − λn

1) − 
2(ei2φ1 − 1)(eiφ2 + 1)

ηn
̃n(ηn − i
̃n)
. (A11)

Here, λn
1,2 are the roots of Dn and given by

λn
1,2 = ω0 − i




2
[2 + eiφ2 + ei(2φ1+φ2 )] ± i


̃n

2
. (A12)
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APPENDIX B: ANALYSIS OF INCOHERENT POWER
SPECTRUM AND TWO-PHOTON DIFFERENTIAL

CORRELATION FUNCTIONS USING THE MASTER
EQUATION APPROACH

In this Appendix, we validate the photon scattering
processes discussed in Sec. V using the master equation ap-
proach. Our treatment considers the weak coherent field as
a probe field, which contains multiphoton components. This
allows for scattering beyond the single-photon limit, with
two-photon processes being predominant.

To derive the master equation for the density operator ρ̂ of
the double giant atoms, we trace out the continuum of bosonic
modes in the waveguide and work in a frame rotating with the
driving frequency. The resulting master equation is given by
[33,38]

d

dt
ρ̂ = −i[Ĥdr, ρ̂] +

∑
j


 jD[σ̂−
j ]ρ̂

+ 
12

∑
j �= j′

(
σ̂−

j ρ̂σ̂+
j′ − 1

2
{σ̂+

j σ̂−
j′ , ρ̂}

)
, (B1)

where

Ĥdr =
∑

j

�L j σ̂
+
j σ̂−

j + g12(σ̂+
1 σ̂−

2 + σ̂+
2 σ̂−

1 )

− i

2

∑
j

(� j σ̂
+
j − H.c.). (B2)

Here, D[Ô]ρ̂ = Ôρ̂Ô† − {Ô†Ô, ρ̂}/2 is the Lindblad opera-
tor, and � j is the Rabi frequency of the jth atom. For the
separate giant atoms, we have

�L1 = �L2 = 
 sin φ1, 
1 = 
2 = 2
(1 + cos φ1),

g12 = 


2
[sin φ2 + 2 sin(φ1 + φ2) + sin(2φ1 + φ2)],


12 = 
[cos φ2 + 2 cos(φ1 + φ2) + cos(2φ1 + φ2)],

�1 =
√

2
α(1 + eiφ1 ),

�2 =
√

2
α[ei(φ1+φ2 ) + ei(2φ1+φ2 )], (B3)

where α is the strength of the weak coherent drive. Using the
input-output relation, the reflection and transmission fields are
defined as

b̂(r)
out =

√



2
(1 + eiφ1 )[σ̂−

1 + ei(φ1+φ2 )σ̂−
2 ],

b̂(t )
out = αei(2φ1+φ2 ) +

√



2
(1 + eiφ1 )[ei(φ1+φ2 )σ̂−

1 + σ̂−
2 ]. (B4)

For the braided giant atoms,

�L1 = �L2 = 
 sin(φ1 + φ2),


1 = 
2 = 2
[1 + cos(φ1 + φ2)],

g12 = 


2
[sin φ2 + 2 sin φ1 + sin(2φ1 + φ2)],


12 = 
[cos φ2 + 2 cos φ1 + cos(2φ1 + φ2)],

�1 =
√

2
α[1 + ei(φ1+φ2 )],

�2 =
√

2
α[eiφ1 + ei(2φ1+φ2 )],

b̂(r)
out =

√



2
[1 + ei(φ1+φ2 )](σ̂−

1 + eiφ1 σ̂−
2 ),

b̂(t )
out = αei(2φ1+φ2 ) +

√



2
[1 + ei(φ1+φ2 )](eiφ1 σ̂−

1 + σ̂−
2 ). (B5)

For the nested giant atoms

�L1 = 
 sin(2φ1 + φ2), �L2 = 
 sin φ2,


1 = 2
[1 + cos(2φ1 + φ2)], 
2 = 2
(1 + cos φ2),

g12 = 
[sin φ1 + sin(φ1 + φ2)],


12 = 2
[cos φ1 + cos(φ1 + φ2)],

�1 =
√

2
α[1 + ei(2φ1+φ2 )],

�2 =
√

2
α[eiφ1 + ei(φ1+φ2 )],

b̂(r)
out =

√



2
{[1 + ei(2φ1+φ2 )]σ̂−

1 + eiφ1 [1 + eiφ2 ]σ̂−
2 },

b̂(t )
out = αei(2φ1+φ2 ) + b̂(r)

out. (B6)

1. Incoherent power spectrum

We investigate the properties of inelastic scattering using
the solution to master equation of the coherently driven sys-
tem in the weak driving regime. The operator of output field
can be decomposed into a sum of a coherent term β (m) and an
incoherent term ζ̂ (m) as:

b̂(m)
out = β (m) + ζ̂ (m), (B7)

where β (m) = 〈b̂(m)
out 〉 (m = t, r). The incoherent power spec-

trum is

Sincoh(ω) =
∑

m=t,r

∫ ∞

−∞
dte−iωt 〈ζ̂ (m)†(t )ζ̂ (m)(0)〉ss, (B8)

where 〈· · · 〉ss denotes the expectation value in the steady state.
The total inelastic photon flux is

F (ω) =
∫ ∞

−∞
dωSincoh(ω). (B9)

For the separate and nested giant atoms, it is useful to in-
troduce the symmetric and antisymmetric operators σ̂−

S,A =
(σ̂−

1 ± σ̂−
2 )/

√
2 due to parity symmetry. The master equa-

tion then takes the form

d

dt
ρ̂ = −i[Ĥdr, ρ̂] +

∑
u=S,A


uD[σ̂−
u ]ρ̂, (B10)

where

Ĥdr =
∑

u

�Lu σ̂
+
u σ̂−

u − i

2

∑
u

[�uσ̂
+
u − H.c.]. (B11)

Here, �LS,A = �L1 ± g12 are the eigenfrequencies of the sym-
metry and antisymmetry operators, 
S,A = 
1 ± 
12 are the
decay rates, and �S,A = (�1 ± �2)/

√
2 are the effective co-

herent driving strengths. The energy diagram is depicted in
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Fig. 6(a). Then, we can derive the following equation:

d

dt

⎡
⎢⎣

〈σ̂+
u 〉

〈σ̂−
u 〉

〈σ̂ ee
u 〉

⎤
⎥⎦ = Mu

⎡
⎢⎣

〈σ̂+
u 〉

〈σ̂−
u 〉

〈σ̂ ee
u 〉

⎤
⎥⎦− 1

2

⎡
⎢⎣

�∗
u

�u

0

⎤
⎥⎦,

Mu =

⎡
⎢⎣i�Lu − 
u/2 0 �∗

u

0 −i�Lu − 
u/2 �u

−�u/2 −�∗
u/2 −
u

⎤
⎥⎦,

(B12)

where σ̂ ee
u = |eu〉〈eu|. The steady-state solutions for the

atomic operators are

〈σ̂−
u 〉 = �u

2

i�Lu − 
u/2

�2
Lu

+ 
2
u/4 + |�u|2/2

,

〈
σ̂ ee

u

〉 = |�u|2/4

�2
Lu

+ 
2
u/4 + |�u|2/2

. (B13)

With these steady-state values, we can further calculate the
transmission and reflection amplitudes, which are defined
as t = β (t )/α and r = β (r)/α. Furthermore, with the use of
the quantum regression theory [70], it is able to obtain the
incoherent power spectra. For the separate giant atoms, the
incoherent power spectrum is given by

Sincoh(ω) = 4
(1 + cos φ1){[1 + cos(φ1 + φ2)]SS (ω)

+ [1 − cos(φ1 + φ2)]SA(ω)}. (B14)

Similarly, for the braided giant atoms, the incoherent power
spectrum is

Sincoh(ω) = 4
[1 + cos(φ1 + φ2)]{(1 + cos φ1)SS (ω)

+ (1 − cos φ1)SA(ω)}. (B15)

Here,

Su(ω) = Re

⎧⎨
⎩[1, 0, 0](iω − Mu)−1

⎡
⎣〈σ̂ ee

u 〉
0
0

⎤
⎦
⎫⎬
⎭. (B16)

It is obvious that the incoherent power spectra is the sum
of two fluorescent light emitted from two effective two-level
atoms, as shown in Fig. 6. The peaks in the spectra correspond
to the energy differences of the atoms, while the width is
proportional to 
u. The specific values provided in Table I rep-
resent the energy differences and linewidths of these effective
two-level atoms.

For the nested giant atoms, the eigenoperators can be ex-
pressed as

σ̂−
α = sin ξ σ̂−

1 + cos ξ σ̂−
2 , σ̂−

β = − cos ξ σ̂−
1 + sin ξ σ̂−

2 ,

(B17)

where ξ = arctan[ 2g12

�L2 −�L1 +
√

(�L1 −�L2 )2+4g2
12

]. The corre-

sponding eigenvalues are

�Lα/β
= 1

2

[
�L1 + �L2 ±

√
(�L1 − �L2 )2 + 4g2

12

]
. (B18)

FIG. 7. The numerical simulation of the incoherent power spec-
tra and total inelastic flux using the master equation approach. Here,
φ1 = 0.25π , φ2 = 0.85π , ω0 = 100
, and the coherent drive ampli-
tude fulfills α2 = 0.01
.

The master equation becomes

d

dt
ρ̂ = −i[Ĥdr, ρ̂] +

∑
v=α,β


vD[σ̂−
v ]ρ̂

+ 
αβ

∑
v �=v′

(
σ̂−

v ρ̂σ̂+
v′ − 1

2
{σ̂+

v σ̂−
v′ , ρ̂}

)
, (B19)

where

Ĥdr =
∑

v

�Lv
σ̂+

v σ̂−
v − i

2

∑
v

[�vσ̂
+
v − H.c.]. (B20)

The parameters are defined as

�α = �1 sin ξ + �2 cos ξ, �β = −�1 cos ξ + �2 sin ξ,


α = 
1 sin2 ξ + 
2 cos2 ξ + 
12 sin 2ξ,


β = 
1 cos2 ξ + 
2 sin2 ξ − 
12 sin 2ξ,


αβ = −(
1 − 
2) sin ξ cos ξ − 
12 cos 2ξ . (B21)

The transitions are illustrated in Fig. 6(b). Here, 
v represents
the individual relaxation rate, and 
αβ represents the col-
lective relaxation rate. However, when 
αβ � |�Lα

− �Lβ
|,

the effect of collective relaxation can be ignored. Under this
condition, the behavior of the nested giant atoms becomes
similar to that of the separate and braided giant atoms. In other
words, the peak positions in the incoherent power spectra are
determined by the energy differences between eigenvalues,
while the widths are proportional to 
v . We numerically plot
the incoherent power spectra and the total inelastic photon flux
in Fig. 7 for the parameters φ1 = 0.25π , φ2 = 0.85π . In these
plots, the relation of F/α2 = 1 − t − r is employed, which
has been confirmed in Ref. [38]. It can observed that the line
shape of these figures closely resembles the results shown in
Figs. 2 and 3, confirming the agreement between our analyti-
cal results and the numerical calculations. Furthermore, each
configuration of giant atoms exhibits distinct spectral features,
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including resonant peaks and spectral widths. Through ana-
lyzing the positions and widths of these spectra, it may be
possible to identify the underlying geometry of the giant atom
setup.

2. Two-photon differential correlation function

Furthermore, the mechanism that leads to bunching and
antibunching in the scattered field can be interpreted from
the perspective of a superposition of a coherent and fluores-
cence fields. We follow the numerical procedure similar to
the Heitler regime of resonance fluorescence using the mas-
ter equation approach [61–63]. Concretely, in Eq. (B7), the
output field consists of both a coherent and incoherent field.
To be consistent with the Eq. (26) we consider the zero-delay
two-photon differential correlation function, which can be
expressed as follows:

χ (m) = 〈
b̂(m)†2

out b̂(m)2
out

〉− 〈
b̂(m)†

out b̂(m)
out

〉2 = I (m)
0 + I (m)

1 + I (m)
2 ,

(B22)

where I (m)
0 , I (m)

1 , and I (m)
2 represent the powers of β:

I (m)
0 = 〈ζ̂ (m)†2ζ̂ (m)2〉 − 〈ζ̂ m†ζ̂ (m)〉2,

I (m)
1 = 4Re(β (m)∗〈ζ̂ (m)†ζ̂ (m)2),

I (m)
2 = 2|β (m)2|〈ζ̂ (m)†ζ̂ (m)〉 + 2Re(β (m)∗2〈ζ̂ (m)2〉). (B23)

We numerically plot the two-photon differential correlation
functions for the reflected fields in Fig. 8. The shapes of these
figures resemble those calculated from the analytical result in
Eq. (26). The subtle differences arise because the numerical
calculation using the master equation approach includes more
than two-photon scattering processes. The agreement between
the numerical and analytical results demonstrates the valid-
ity of our theoretical framework in capturing the essential
features of the system. These correlation functions provide

FIG. 8. Two-photon differential correlation function calculated
from the master equation approach. Here, ω0 = 100
 and the co-
herent drive amplitude fulfills α2 = 0.01
.

valuable insights into the quantum correlations and interfer-
ence present in the scattered field.
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F. Nori, and A. Miranowicz, Two-photon blockade and photon-
induced tunneling generated by squeezing, Phys. Rev. A 100,
053857 (2019).

[59] H. Zheng, D. J. Gauthier, and H. U. Baranger, Cavity-free
photon blockade induced by many-body bound states, Phys.
Rev. Lett. 107, 223601 (2011).

[60] H. Zheng, D. J. Gauthier, and H. U. Baranger, Strongly cor-
related photons generated by coupling a three- or four-level
system to a waveguide, Phys. Rev. A 85, 043832 (2012).

[61] E. Zubizarreta Casalengua, J. C. López Carreño, F. P. Laussy,
and E. d. Valle, Conventional and unconventional photon statis-
tics, Laser Photon. Rev. 14, 1900279 (2020).

[62] J. C. López Carreño, E. Z. Casalengua, F. P. Laussy, and E. del
Valle, Joint subnatural-linewidth and single-photon emission
from resonance fluorescence, Quantum Sci. Technol. 3, 045001
(2018).

[63] C. Matthiesen, A. N. Vamivakas, and M. Atatüre, Subnatural
linewidth single photons from a quantum dot, Phys. Rev. Lett.
108, 093602 (2012).

[64] A. Vinu and D. Roy, Single photons versus coherent-state input
in waveguide quantum electrodynamics: Light scattering, kerr,
and cross-kerr effect, Phys. Rev. A 107, 023704 (2023).

[65] A. Vinu and D. Roy, Amplification and cross-kerr nonlinear-
ity in waveguide quantum electrodynamics, Phys. Rev. A 101,
053812 (2020).

[66] Q.-Y. Liang, A. V. Venkatramani, S. H. Cantu, T. L. Nicholson,
M. J. Gullans, A. V. Gorshkov, J. D. Thompson, C. Chin, M. D.
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