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Cavity QED photons for generating a double-cavity-induced transparency
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A method is presented for creating single- and double-cavity-induced transparency based on a cavity QED
framework. Using this method we develop a fully quantized model of a cavity-induced transparency (CIT)
scheme previously proposed [P. R. Rice and R. J. Brecha, Opt. Commun. 126, 230 (1996)] adopting the
quantum-jump approach. This allows us to analyze the interaction of N cavity fields with an (N + 1)-level
quantum system where N = 2, 3 for the cases of single- and double-cavity-induced transparency, respectively. In
the steady-state limit, a general analytic expression for the linear susceptibility of a weak cavity field is obtained
and N − 1 transparency windows are observed. In the model we consider, no external fields are required to
induce the transparency and the CIT effect is fully generated by cavity QED photons. We also compare the
numerical integration of density-matrix equations with the analytical solutions provided by the quantum-jump
approach and show that both results are in excellent agreement.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) is a phe-
nomenon that leads to absorption-free propagation of the
probe field in the medium. This phenomenon is interpreted
as a quantum destructive interference between two different
excitation pathways to the upper level in three-level atomic
systems [1,2]. As an extension of EIT, it has also been shown
that the probe absorption spectrum in a four-level atomic
system can exhibit two EIT windows, separated by a sharp
absorption peak [3–5], and such a phenomenon is known
as double EIT. It is demonstrated, both theoretically and
experimentally, that the use of EIT can boost more control
capabilities for the optical response of the material, resulting
in numerous applications in nonlinear optics and quantum
information processing [6–18].

Optical cavities provide an enhanced matter-light inter-
action and can be a more ideal and feasible platform to
manipulate and control the matter-light interaction (see, e.g.,
Refs. [19–22]). Merging EIT with optical cavities (cavity EIT)
consequently results in an effective increase in the enhance-
ment of the main features of EIT [23,24]. Prediction and
observation of EIT phenomena in a single atom inside an
optical cavity can be traced back to Rice and Brecha [25], who
termed this effect as cavity-induced transparency (CIT). They
found that the absorption spectrum of the atom may exhibit a
dip at the line center for a weak probe when the atom-cavity
coupling strength is large compared to the cavity linewidth but
smaller than the atom’s free-space linewidth.

In this paper, we investigate the fully quantized description
of Ref. [25] adopting the quantum-jump approach [26–28].
We also extend the CIT system to a four-level atomic system
and observe two CIT windows (we refer to this effect as
double CIT). In this method, it is the cavity field modes that
couple the atomic transitions and no external fields whatso-
ever are required.

In this paper, we consider a four-level tripod-type struc-
ture for the atomic energy levels. This atomic structure has

been extensively studied during the past decades. In par-
ticular, it has been extensively used to study the closely
related phenomena, namely coherent population trapping
(CPT) and electromagnetically induced transparency (EIT).
As an application of CPT, it has been shown that four-
level tripod-linked systems can have two degenerate adiabatic
dark states, and thus these systems can be used to extend
the ordinary three-level stimulated Raman adiabatic passage
(STIRAP) technique for generating a quantum superposition
of metastable states out of a single initial state [29]. Since
dark states in these systems have no component of the excited
intermediate state, they are immune to the atomic spontaneous
decay. Under certain conditions these systems can be used
for efficient nonlinear frequency generation when a medium
is initially prepared in a coherent superposition [3]. It is also
demonstrated that four-level tripod configurations can exhibit
two EIT windows. Various EIT-related effects in these sys-
tems have been extensively studied, both theoretically and
experimentally [3,4,17,30,31]. For applications in quantum
information processing (QIP), a tripod system provides a
means to entangle a pair of very weak optical fields in an
atomic sample [32] and therefore can be used in schemes for
QIP implementations. In Ref. [33], for example, an enhanced
cross-Kerr nonlinearity occurring in a four-atomic-tripod con-
figuration has been employed to realize a universal two-qubit
quantum gate.

The structure of the paper is as follows. We introduce
the system in Sec. II, describe the quantum-jump approach,
give the time evolutions of the probability amplitudes in the
system, and then derive the susceptibility of the atom-cavity
systems. Note that we first investigate the double-CIT effect
and then describe the single-CIT effect as a special case of the
double-CIT effect. In Sec. III we study the CIT effects with
susceptibilities of the weak cavity field in three- and four-level
atomic systems, and then compare the numerical results of
absorption with analytical solutions. Finally, we conclude the
paper in Sec. IV with a summary.
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FIG. 1. Scheme of a double-cavity-induced transparency
(double-CIT). (a) Three-mode optical cavity with resonant
frequencies ω1, ω2, and ω3. There is only one cavity photon in mode
of frequency ω1 to raise the atomic state from |a〉. (b) Tripod-type
four-level configuration with levels |a〉, |c〉, and |d〉 are lower-energy
states, each coupled to a common high-energy state |b〉. The field of
frequency ω1 interacting with the atom on the |a〉 ↔ |b〉 transition is
weak compared to the fields of frequencies ω2 and ω3 acting on the
transitions |c〉 ↔ |b〉 and |d〉 ↔ |b〉, respectively.

II. THEORETICAL BACKGROUND

A. The four-level tripod-type atomic system

In Fig. 1, we consider a four-level tripod-type atom con-
sisting of the atomic levels |a〉, |c〉, and |d〉 each coupled
simultaneously to a common excited state |b〉 via a dipole-
allowed transition but not to each other. The atom interacts
with three electromagnetic (EM) modes inside a high Q cavity
with only one photon in its mode. These three modes have the
resonant frequencies ω1, ω2, and ω3 and the atomic levels are
such that ωba = ω1 + δ1, ωbc = ω2 + δ2, and ωbd = ω3 + δ3.
For an atom with such a configuration in the state |a〉 inter-
acting with potentially three cavity modes and one photon,
the initial state is chosen to be |a, 11, 02, 03〉, where there is
only one cavity photon available in the first mode to raise the
atomic state from |a〉. Here, we use the notation |α〉 ⊗ |β1〉 ⊗
|β2〉 ⊗ |β3〉 ≡ |α, β1, β2, β3〉 where |α〉 (α = a, b, c, d) repre-
sents the atomic state, while |βi〉 (for i = 1, 2, 3) denotes that
the cavity fields have a β photon in mode i with (β ∈ 0, 1).

Under the dipole and rotating-wave approximations and
in the Schrödinger picture, the Hamiltonian describing the
system in Fig. 1 is

H = h̄
∑

i=a,b,c,d

ωiσ̂ii + h̄
3∑

j=1

ω j â
†
j â j

+ h̄[g1â1σ̂ba + g2σ̂cbâ†
2 + g3â3σ̂bd + H.c.], (1)

where the coupling constants are gj ( j = 1, 2, 3), the atomic
operators σ̂ba ≡ |b〉〈a|, σ̂cb ≡ |c〉〈b|, and σ̂bd ≡ |b〉〈d|, and â j

is the photon annihilation operator for the cavity mode. In the
interaction picture, the tripod Hamiltonian Hint is expressed,
with |a, 11, 02, 03〉 to be the zero-point energy and in matrix
form, by (h̄ = 1)

Hint =

⎡
⎢⎢⎣

0 g1 0 0
g1 δ1 g2 g3

0 g2 δ1 − δ2 0
0 g3 0 δ1 − δ3

⎤
⎥⎥⎦, (2)

in the four-state basis {|a, 11, 02, 03〉, |b, 01, 02, 03〉, |c, 01, 12,

03〉, |d, 01, 02, 13〉}.

As discussed in later sections and for the purpose of this
paper, we set the field of frequency ω1 interacting with the
atom on the |a〉 ↔ |b〉 transition to be weak compared to the
fields of frequencies ω2 and ω3 acting on the transitions |c〉 ↔
|b〉 and |d〉 ↔ |b〉, respectively (see Fig. 1).

B. Density-matrix equation of motion

Our main goal in this paper is to investigate theoretically
the generation of a double-CIT effect in cavity QED. To
this end, one can follow the standard density-matrix method,
including atomic and photonic decays, to derive the optical
Bloch equations for the four-level tripod system in Fig. 1.
Considering this approach and taking into account the dissipa-
tive mechanisms in the system (2), the time evolution is given,
in the density-matrix framework, as

∂

∂t
ρ = −i[Hint, ρ] + Lρ. (3)

The first term in Eq. (3) describes the atom-field coupling for
the system Hint in Eq. (2) and the second term Lρ is known as
Liouville’s operator and contains the effects of dissipations.
At zero temperature, the Liouvillian Lρ has the so-called
Lindblad form

Lρ =
∑

i

ηi DiρD†
i − 1

2

∑
i

ηi(D†
i Diρ + ρD†

i Di ), (4)

where η represents the loss of population. In our case η may
refer to the spontaneous emission γ or to the cavity field
rate κ . The operators D and D† are the corresponding system
operators. To study the susceptibility χ of the atom, one finds
the steady-state solutions when certain conditions of adia-
baticity and moderate intensities of the cavity fields are valid
(such conditions will be determined later). The susceptibility
is related to the coherency ρba and the weak cavity field E1 by
the relation [34]

χ = (N |μba|/ε0E1)ρab, (5)

with N is the number of density of atoms and μba is the dipole
moment of the underlying weak (probelike) transition. How-
ever, this procedure is quite cumbersome and impractical, and
we will use this procedure for numerical solutions. Instead,
we will discuss in the following section a much simpler way
to describe the system via the quantum-jump method.

C. Quantum-jump approach

Applying the general master equation in Eq. (3) on
our system shows that the system is not closed and both
the atomic and photonic decays in the system result in an
irreversible loss of population. For example, the decay
of the cavity field from the state |a, 11, 02, 03〉 takes
the system to state |a, 01, 02, 03〉 and the decay of state
|b, 01, 02, 03〉 due to the atomic relaxation can take the
system to one of the states |c, 01, 02, 03〉 or |d, 01, 02, 03〉.
As the Hamiltonian in Eq. (2) acts in the Hilbert space H =
{|a, 11, 02, 03〉, |b, 01, 02, 03〉, |c, 01, 12, 03〉, |d, 01, 02, 13〉},
the states |a, 01, 02, 03〉, |c, 01, 02, 03〉, and |d, 01, 02, 03〉
are not in space H, which means we have a system that is
not closed and both decay channels result in an irreversible
loss of population. This being the case, we can apply the
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quantum-jump approach as a description of the system
instead of the master-equation method. This approach has
been used in earlier work for applications in quantum
information processing [35–37].

For convenience, we rewrite the previous Liouville’s equa-
tion as (see Appendix A)

∂

∂t
ρ = −i(H ′ρ − ρH ′†) + Jρ, (6)

where H ′ = Hint − i
2

∑
i ηi D†

i Di and Jρ = ∑
i ηi DiρD†

i .
Equation (6) shows that the time evolution of the density
operator in Eq. (3) has two contributions. The first one is
due to the effective Hamiltonian H ′, while the second one
is due to the so-called jump superoperator Jρ. As decays
in our system result in an irreversible loss of population,
we can propagate the wave function |ψ (t )〉 (instead of the
density matrix ρ) with the Schrödinger equation using the
non-Hermitian Hamiltonian H ′, i.e., i ∂

∂t |ψ (t )〉 = H ′|ψ (t )〉.
The Hamiltonian H ′ describing the system when decays to be
considered is

H ′ =

⎡
⎢⎢⎢⎣

−i κ1
2 g1 0 0

g1 δ1 − i γba

2 g2 g3

0 g2 (δ1 − δ2) − i κ2
2 0

0 g3 0 (δ1 − δ3) − i κ3
2

⎤
⎥⎥⎥⎦,

(7)

where κ1, κ2, and κ3 are the decays of the cavity fields and
γba is the atomic relaxation from state |b〉 to state |a〉. Under
the CIT conditions (which are discussed later in the following
sections), atom relaxations from state |b〉 to state |c〉 and from
state |b〉 to state |d〉 have been neglected as they are suffi-
ciently small compared to γba. The time evolution of the prob-
ability amplitudes in the system |ψ (t )〉 = Ca|a, 11, 02, 03〉 +
Cb|b, 01, 02, 03〉 + Cc|c, 01, 12, 03〉 + Cd |d, 01, 02, 13〉 (where

we choose |a, 11, 02, 03〉 as an initial state) is given by

iĊa = −i
κ1

2
Ca + g1Cb, (8a)

iĊb =
[
δ1 − i

γba

2

]
Cb + g1Ca + g2Cc + g3Cd , (8b)

iĊc =
[
(δ1 − δ2) − i

κ2

2

]
Cc + g2Cb, (8c)

iĊd =
[
(δ1 − δ3) − i

κ3

2

]
Cd + g3Cb. (8d)

In calculating the optical susceptibility of the tripod atom
in Fig. 1, the quantity of interest is the off-diagonal steady-
state density-matrix element ρab. From the set of coupled
differential Eqs. (8), equations of motion for the density-
matrix elements are easily derived from ρ̇i j = ciċ∗

j + ċic∗
j .

One, therefore, can obtain the following set of linear equa-
tions (details can be found in Appendix B),

iρ̇ab = −
[
δ1 + i

2
(γba + κ1)

]
ρab + g1(ρbb − ρaa)

− g2ρac − g3ρad , (9a)

iρ̇ac = −
[

(δ1 − δ2) + i

2
(κ1 + κ2)

]
ρac + g1ρbc − g2ρab,

(9b)

iρ̇ad = −
[

(δ1 − δ3) + i

2
(κ1 + κ3)

]
ρad + g1ρbd − g3ρab.

(9c)

In the stationary regime [ρ̇(t )i j = 0], from Eqs. (9b) and (9c)
we have ρac = {−g2/[(δ1 − δ2) + i

2 (κ1 + κ2)]}ρab and ρad =
{−g3/[(δ1 − δ3) + i

2 (κ1 + κ3)]}ρab, where the terms contain-
ing g1ρbc and g1ρbd have been neglected due to the smallness
of g1, ρbc, and ρbd . Substituting ρac and ρad into (9a) and
taking ρbb − ρaa 
 −1 as the field of frequency ω1 is assumed
too weak [7], we obtain

ρab = − g1[
δ1 + i

2 (γba + κ1)
] − g2

2

[
(δ1 − δ2) + i

2 (κ1 + κ2)
]−1 − g2

3

[
(δ1 − δ3) + i

2 (κ1 + κ3)
]−1 . (10)

As the specific details of the physical system are not of our
concern here, we replace the susceptibility χ in Eq. (5) with a
reduced susceptibility. Then, for CIT it reads χ̃ = ρab. Thus, it
is the imaginary part of ρab that gives the main characteristics
of the absorption spectrum and therefore the essential features
of CIT.

III. CAVITY-INDUCED TRANSPARENCY

We now introduce the main characteristics of CIT by
means of the absorption spectrum. Considering the reduced
susceptibility of the atom-cavity system described in the pre-
vious section, the imaginary part of χ̃ is depicted in Fig. 2.
We first consider a case of vanishing coupling g3/γba = 0,
reducing thus the four-level tripod-configuration system in
Fig. 1 to a three-level �-type atom coupled to two cavity
modes. In this case, the atomic transition |a〉 ↔ |b〉 is weakly
coupled by the cavity mode of frequency ω1 and the atomic

transition |b〉 ↔ |c〉 is strongly coupled by the cavity field
of frequency ω2. For perfect resonance ω2 = ωbc and under
the condition γba > g2 � κ1,2, a single-cavity-induced trans-
parency (single-CIT) is observed, as illustrated in Fig. 2(a).
This effect was first studied by Rice and Brecha [25], and
they showed that a system consisting of a single two-level
atom inside an optical cavity can exhibit a dip in absorption at
the line center. In their single-CIT model, a weak classical
field is required to be coupled directly to the atom. In the
system we consider, however, we show that the single-CIT
effect can also be generated by a three-level �-type atom
interacting with two modes inside a cavity. In this model, it
is g1 that plays the role of the weak-coupling field; hence no
classical field is required. Similarly, it is important to satisfy
the condition γba > g2 � κ1,2 for the single-CIT effect to
occur. In Fig. 2(a), with δ2 = 0 the absorption spectrum is
plotted for the cases of g2 = 0.5γba (black) and g2 = 0.75γba

(gray). As seen, the spectrum is split into two peaks separated
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FIG. 2. Plots of absorption spectrum as a function of normalized
weak (probelike) detuning. Cavity decays κ1, κ2, and κ3 are all set to
κ and κ/γba = 10−5. (a) Single-CIT effect with g2/γba = 0.5 (black)
and g2/γba = 0.75 (gray). Only two cavity modes ω1 and ω2 are
considered in the atom-cavity system (see Fig. 1), and the cavity field
ω2 is tuned to the atomic transition |b〉 ↔ |c〉, ω2 = ωbc. (b) Double-
CIT effect with the couplings g2 and g3 are set to g and g/γba = 0.5
(black) and g/γba = 0.75 (gray). The detunings δ2 and δ3 are set to
δ and δ/γba = 0.25. (c) Damped double-CIT peaks for the case of
g/γba = 0.5. The cavity decays are in the limit of g1 � κ � g2,3. In
all plots g1 � g2,3 and γba > g2,3 � κ .

by 2g2, which is known as the Autler-Towns splitting. At the
line center, the atom becomes transparent to the resonant field.

The case of double-cavity-induced transparency (double-
CIT) is shown in Fig. 2(b). In this case, we set the detunings δ2

and δ3 to δ with δ2 = −δ3 and the coupling constants g2 and g3

are all set to g. Under the condition γba > g � κ1,2,3 we plot
the absorption profile as a function of the normalized weak
(probelike) detuning, and a double-CIT effect is observed.
As seen in Fig. 2(b), the absorption spectrum has minima at
δ1 = ±δ (CIT windows) and maxima at the line center (δ1 =
0) and at Autler-Towns peaks (δ1 = ±

√
2g2 + δ2). Setting

δ/γba = 0.25 and increasing the coupling g from g = 0.5γba

(black) to g = 0.75γba (gray) result in a larger splitting be-
tween the left and right side peaks with the same linewidths, a
narrow central peak, and a broader two CIT dips. The two
transparency dips display that the weak (probelike) cavity
field could be simultaneously transparent at two symmetric
frequencies, while the absorption peak at the line center im-
plies that the weak field is fully absorbed by the system. In
all cases presented above, the cavity decays κ1, κ2, and κ3 are
all set to κ and the condition g1,2,3 � κ is satisfied. In the
limit g1 � κ � g2,3, it is immediately clear that the losses
have a dramatic effect on the central peak (at δ1 = 0) and
its amplitude is heavily suppressed for even small values of
κ . The Autler-Towns peaks, by contrast, are modified only
slightly [see Fig. 2(c)]. We can understand this by consider-
ing the double-CIT conditions (where γba > g � κ1,2,3 and
g2,3 � g1) and the decay channels in the tripod-configuration
model schematically shown in Fig. 1. The double-CIT

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

FIG. 3. Numerical results for absorption spectrum as a function
of normalized detuning δ1/γba for γbc/γba = γbd/γba = 10−3. The
light-gray curve corresponds to the case of g2,3 = 0 (two-level atom).
For the case of g/γba = 0.5, the gray and black curves represent the
numerical results for the single- and double-CIT, respectively, with
the same parameters as in Figs. 2(a) and 2(b) (black curves).

features presented here mimic the double-EIT features pre-
sented by the tripod systems driven by a weak and tunable
probe field in the presence of two strong pump lasers. In this
model, however, no external fields whatsoever are required to
induce the transparency and double-CIT effect is fully gener-
ated by cavity QED photons.

In analogy with systems exhibiting the double-EIT effect,
the double-CIT effect is a quantum interference process lead-
ing to the cancellation of the absorption of a weak cavity field
by applying strong cavity fields in the same medium. This
quantum interference effect arises from different transition
pathways of cavity fields to the upper level. As a result of
the destructive interference between these different transition
pathways, the atom inside the cavity exhibits three absorption
peaks. Alternatively this can be viewed by the dressed-state
picture. In this picture the strong fields create dressed states,
and the contributions from these dressed states are equal but
with opposite signs, leading to two dips in the absorption
spectrum.

We have tested previous theoretical results by numerically
integrating the full set of Bloch equations for the atomic
density-matrix elements taking into account all possible decay
channels predicted by the Liouville equation in the compound
system. It is illustrated in Fig. 3 that the absorption spectrum
by the analytical formula in Eq. (10) is practically indistin-
guishable from the exact numerical calculations.

IV. CONCLUSION

In summary, a fully quantized atom-cavity model is
proposed for generating single- and double-cavity-induced
transparency by cavity QED photons. To bypass the analytical
solution of the equations of motion of the atomic density-
matrix elements, we introduce the quantum-jump approach.
As the master-equation method shows that there is a large
number of quantum levels involved, we have seen that the
quantum-jump approach greatly simplifies the calculations
by dealing with the system wave function and looking for
the evolution of the four variables in Eqs. (8). Comparing
the numerical integration of the density-matrix equations with
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the analytical solutions provided by the quantum-jump
method, we have shown that both methods are in excellent
agreement.

For generating the double-CIT effect, we show that this
effect can be produced by a system of tripod-type four-level
atoms interacting with three cavity modes. Only one of these
cavity modes has an excitation so that it raises the system
from |a〉 to |b〉, and is chosen to be the weak (probelike) field.
As the two remaining empty modes couple to the same upper
level |b〉, they can have similar frequencies if the lower levels
|c〉 and |d〉 are closely spaced in energy, which is the case
for most of the alkali atoms. We thus assume (for simplicity)
equal values for couplings g2 and g3 and detunings δ2 and
δ3 in Figs. 2 and 3. We also show that the single-CIT effect
can be realized. To form this effect we actually cancel one
transition from the double-CIT system (we choose to cancel
the atomic transition |b〉 ↔ |d〉), so that a �-type three-level
atom interacts with a bimodal cavity. In this case, we use
the double-CIT weak field containing an excitation to excite
the atom from the state |a〉 to the state |b〉, and select the
empty mode ω2 to couple the atomic transition |b〉 → |c〉. In
all cases, the CIT condition γba > g � κ and the weak limit
g1 � g must be satisfied.

Finally, in this work we consider a simultaneous interaction
between a multimode field and a multilevel atom inside one
cavity. This kind of cavity-atom interaction can be achiev-
able with recent rapid and remarkable developments in the
resonator systems. For example, advanced developments in
micro- and nanofabrication technologies allow direct and
precise integration of nanostructures into whispering-gallery-
mode (WGMs) microcavities, resulting in strong coupling
between different types of modes, also named supermodes, in
WGM microcavities, and plasmonic nanostructures [38]. In
fact, with remarkable progress in the fabrication strategies of
optical microcavities and plasmonic nanostructures [23,38], it
is promising that the multiphoton cavity resonances can be in
the range of practicality.
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APPENDIX A: THE NON-HERMITIAN
EFFECTIVE HAMILTONIAN

In general, the time evolution of the system (2) is governed
by the master equation

∂

∂t
ρ = −i[Hint, ρ] + Lρ, (A1)

where Hint is the Hermitian Hamiltonian of the system, while
Lρ is the Liouville’s operator containing the effects of dis-
sipations. At zero temperature, the Liouvillian Lρ has the
so-called Lindblad form

Lρ =
∑

i

ηi DiρD†
i − 1

2

∑
i

ηi(D†
i Diρ + ρD†

i Di ), (A2)

where η represents the loss of population. In our case η may
refer to the spontaneous emission γ or to the cavity field
rate κ . The operators D and D† are the corresponding system
operators.

As the system we consider here is not closed and all de-
cay channels in the system result in an irreversible loss of
population (see Sec. II C), we can apply the wave-function
approach in Refs. [26,27] to study the evolution of the system
instead of the standard master-equation approach. Following
the procedure in the wave-function approach, we define a
non-Hermitian effective Hamiltonian of the system through

H ′ = Hint − i

2

∑
i

ηi D†
i Di, (A3)

and the so-called jump superoperator

Ljumpρ =
∑

i

ηi DiρD†
i , (A4)

in terms of which the master equation (A1) can be cast in the
form

∂

∂t
ρ = −i (H ′ρ − ρH ′†) + Ljumpρ. (A5)

According to the wave-function approach, we can propagate
the state vector of the system |ψ (t )〉 = Ca|a, 11, 02, 03〉 +
Cb|b, 01, 02, 03〉 + Cc|c, 01, 12, 03〉 + Cd |d, 01, 02, 13〉 with
the Schrödinger equation using the non-Hermitian effective
Hamiltonian (A3), which yields the differential Eqs. (8).
Here, we replace the usual master equation for the system by
a wave-function evolution. This treatment clearly simplifies
the calculations on the problem which would otherwise be
exceedingly complicated.

APPENDIX B: THE EXPRESSION OF THE STEADY-STATE
LINEAR SUSCEPTIBILITY

Applying the wave-function approach, we substitute the
non-Hermitian effective Hamiltonian (A3) and state vector
|ψ (t )〉 into the time-dependent Schrödinger equation and ob-
tain the amplitude equations

iĊa = −i
κ1

2
Ca + g1Cb, (B1a)

iĊb =
[
δ1 − i

γba

2

]
Cb + g1Ca + g2Cc + g3Cd , (B1b)

iĊc =
[
(δ1 − δ2) − i

κ2

2

]
Cc + g2Cb, (B1c)

iĊd =
[
(δ1 − δ3) − i

κ3

2

]
Cd + g3Cb. (B1d)

In the steady-state limit the reduced susceptibility is χ̃ = ρab,
where ρab ≡ Ca(∞)C∗

b (∞). We can find an expression for ρab

by using the amplitude equations (B1) to derive the equa-
tions of motion for the density-matrix elements from

ρ̇i j = Ci(Ċ
∗
j ) + (Ċi )C

∗
j . (B2)

From this equation ρ̇ab = Ca(Ċ∗
b ) + (Ċa)C∗

b . Thus, with sub-
stitution from Eqs. (B1a) and (B1b), it follows that

iρ̇ab = −
[
δ1 + i

2
(γba + κ1)

]
ρab + g1(ρbb − ρaa)

−g2ρac − g3ρad . (B3)
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Similarly, we use Eqs. (B1a) and (B1c) for obtaining ρ̇ac and
Eqs. (B1a) and (B1d) for finding ρ̇ad . One then finds that

iρ̇ac = −
[

(δ1 − δ2) + i

2
(κ1 + κ2)

]
ρac + g1ρbc − g2ρab,

(B4a)

iρ̇ad = −
[

(δ1 − δ3) + i

2
(κ1 + κ3)

]
ρad + g1ρbd − g3ρab.

(B4b)

Due to the smallness of g1, ρbc, and ρbd , the terms contain-
ing g1ρbc and g1ρbd in Eqs. (B4a) and (B4b) can be neglected.

In the stationary regime (ρ̇(t )i j = 0), we have

ρac =
{
−g2

/[
(δ1 − δ2) + i

2
(κ1 + κ2)

]}
ρab, (B5a)

ρad =
{
−g3

/[
(δ1 − δ3) + i

2
(κ1 + κ3)

]}
ρab. (B5b)

Substituting ρac and ρbd into (B3), dropping the time
derivative, and taking ρbb − ρaa 
 −1 as the field of fre-
quency ω1 is assumed too weak, one can easily obtain ρab in
Eq. (10).
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