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We study the long-range hopping limit of a one-dimensional array of N equal-distanced quantum emitters in
free space, where the hopping amplitude of emitter excitation is proportional to the inverse of the distance and
equals the lattice dimension. For two species of emitters in an alternating arrangement, the single excitation sector
exhibits non-Hermitian spectral singularities known as exceptional points. We unveil an unconventional phase
transition, dubbed exceptional-point phase transition, from the collective to individual spontaneous emission
behaviors. At the transition point, the N × N Hamiltonian fragments into N/2 − 1 many two-dimensional
nondiagonalizable blocks. The remaining diagonalizable block contains a dissipation-induced edge state with
algebraically localized profiles, and we provide numerical evidence for its existence in the infinite-array limit.
We demonstrate that the edge state can be eliminated via a continuous deformation, consistent with the
ill-definedness of bulk topological invariant. We also propose a spatially resolved character to quantify the
incoherent flow and loss in the nonunitary quantum walks of single atomic excitations.
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I. INTRODUCTION

Structured arrays of quantum emitters, typically mod-
eled as two-level atoms, have attracted much attention in
the contexts of quantum technologies, photon storage, and
nonlinear optics, owning the advantages of having control-
lable light-matter interfaces [1–6]. A main issue in improving
the quantum protocols’ efficiency is the phenomenon of
spontaneous emission. In general cases, light couples to
matter both coherently and dissipatively, causing photon
leakage or reabsorbing into undesired optical modes. Re-
cently, subradiant states of N atoms with O(N−α ) decay
rates were found in finite subwavelength atomic arrays in
three-dimensional (3D) free space, known as the subradi-
ance scaling [7–11]. Here, subwavelength means that the
emitter spacing is smaller than the light wavelength cor-
responding to the atomic transition frequency. Under such
conditions, the light-mediated interactions between emitters
can be described by an effective non-Hermitian long-range
Hamiltonian, known as the resonant dipole-dipole interaction
(RDDI) [10].

Meanwhile, over the past years, the theoretical interests
originated novel non-Hermitian phenomena such as the ex-
ceptional points (EPs) [12–14], skin effects [15,16], and
non-Hermitian topology [17–19] in various open classical
and quantum systems that have synchronized with con-
trollable experimental setups in the platforms of atomic,
molecular, and optical physics [20–24]. These phenom-
ena arise from the unique complex spectral structures
and nonorthogonality (or even incompleteness) of eigen-
states without Hermitian counterparts. However, previous
works mostly focus on short-range systems with finite

hopping ranges. The interplay between non-Hermiticity and
long-range interactions, which are the two fundamental
features of subwavelength atomic arrays, remains largely
unexplored.

In this work, we study the single excitation sector of sub-
wavelength alternating atomic chains in 3D free space through
the lens of non-Hermitian physics. In particular, we consider
the hopping decay power equal to the lattice dimension, which
is 1. This is a marginal value from the angle of thermodynamic
stability [25,26]. When tuning the strength of alternation,
we demonstrate this realistic model shows a non-Hermitian
behavior which we call exceptional-point phase transition.
At the transition point, the N × N Hamiltonian in the single
excitation sector can be decomposed into N/2 − 1 many non-
diagonalizable (Jordan) and one diagonalizable 2 × 2 blocks.
Away from the transition point, the new dispersion relation
modifies the RDDI subradiance scaling.

In addition, we numerically show the existence of an
edge state with a power-law decaying tail under the dis-
sipative long-range hopping, despite the fact that a bulk
topological invariant is ill-defined. Lastly, we consider the
real-time dynamics by investigating a spatially resolved es-
cape distribution and wave-function density. We generalize
the conventional character to account for not only on-site
loss but also incoherent hopping. We find an initial quantum
walker with parity symmetry shows an imbalance of escape
rates and densities at the boundaries at late time. Our work
provides a paradigm for exploring novel phases and dynamics
in long-range non-Hermitian systems, for which naïve ap-
proximations such as dropping of non-Hermitian terms and
truncation of long-range hopping may lead to qualitatively
incorrect results.
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FIG. 1. Illustration of a 1D array of alternating quantum emitters
in 3D free space; the two species have transition energies ω0 ± h. The
standard RDDI is recovered by setting identical transition energies,
namely h = 0.

II. ONE-DIMENSIONAL ARRAY OF QUANTUM
EMITTERS

We consider a one-dimensional (1D) array of N equal-
distanced quantum emitters in 3D free space. Each emitter
is a two-level atom with an internal structure of the ground
|g〉 and excited state |e〉, separated by an atomic transition
energy gap ω0 (see in Fig. 1). For a subwavelength interatomic
distance d , the collective spontaneous emission of atomic en-
semble involves light-matter interactions between atoms and
all the electromagnetic modes in free space. Welsch et al.
have developed a generalized input-output formalism based
on the classical 3D free-space electromagnetic Green’s tensor
G(ri, r j, ω) to capture such collective effect, where ri denotes
the position of the ith atom [27–30]. The transition frequency
ω0 is typically much larger than other relevant energy scales,
implying that optical responses have a narrow window around
ω0. Under the Born-Markov approximation G(ri, r j, ω) �
G(ri, r j, ω0), one can solve for the atomic degrees of freedom
and obtain an effective light-field mediated long-range non-
Hermitian Hamiltonian, i.e., the RDDI Hamiltonian

HRDDI = −μ0ω
2
0

N∑
i, j=1

P∗ · G(ri, r j, ω0) · P σ
†
i σ j, (1)

where μ0 is the magnetic constant, σ
†
i = |ei〉〈gi| excites

the ith atom, P is the transition dipole, and G(ri, r j, ω0) =
G(ri − r j, ω0) with

G(r, ω0) = eik0r

4πk2
0r3

[(
k2

0r2 + ik0r − 1
)
1

+(− k2
0r2 − 3ik0r + 3

)r ⊗ r
r2

]
, (2)

k0 = ω0/c is the wave number corresponding to the atomic
transition energy, r = |r| (c: speed of light). Hereafter, we set
the atomic spontaneous emission rate γ0 = μ0ω

3
0|P|2/(3π h̄c)

to be the unit.
In the N → ∞ infinite-array limit and under the assump-

tion that the coordinate origin coincides with an atom, the
single excitation sector of HRDDI is diagonalized by the Bloch
states

HRDDI(σ
†
k |g〉) = ωeff(σ

†
k |g〉), (3)

where |g〉 = |g〉⊗N , σ
†
k =∑N

j=1 eik·rjσ
†
j /

√
N , and

ωeff = −3π

k0
P̂∗ ·

⎡
⎣ N∑

j=1

e−ik·rj G(r j, ω0)

⎤
⎦ · P̂

is the dispersion relation (here, P̂ = P/|P|), which is deter-
mined from the Fourier-transformed Green’s tensor [10]. The
long-range hopping of the excitation forms a band that has
the energy 
(ωeff ) and decay rate −2�(ωeff ). Recalling that
all the atoms are located on a line, which is chosen to be the x
axis, we know that the perpendicular component of k does not
alter the state or energy. Hence, it suffices to focus on k = kx̂
with k ∈ (−π/d, π/d]. The Bloch states of |k| > k0 are off-
resonant and hence perfectly subradiant, namely, �(ωeff ) = 0.

Realistic experimental realizations of such a 1D array con-
sist of only a finite number of atoms with an open boundary
condition (OBC), which modifies the infinite chain results.
The major effect is that all the off-resonant states gain a
nonzero decay rate; starting from the lowest decay rate, the
first ξ [ξ  N is of O(1)] subradiant states show a N−α

scaling and recover a zero decay rate in the infinite-array limit.

A. Long-range hopping limit

In 1D atomic arrays, the hopping terms

G(r) = μ0ω
2
0P∗ · G(rx̂, ω0) · P (4)

of HRDDI are in the following power-law forms [31]:


[G(r)] ∝ (1 − cos2 θ )
cos(k0r)

k0r

− (1 − 3 cos2 θ )

[
sin(k0r)

(k0r)2
+ cos(k0r)

(k0r)3

]
,

�[G(r)] ∝ (1 − cos2 θ )
sin(k0r)

k0r

− (1 − 3 cos2 θ )

[
cos(k0r)

(k0r)2
− sin(k0r)

(k0r)3

]
,

where the highest-power exponent can be r−1 or higher
depending on the angle from dipole to the 1D array θ =
arccos(P̂ · x̂). In this work, we focus on the long-range hop-
ping limit of HRDDI by setting θ = arccos(1/

√
3) = 0.955,

where the power-law decay hopping exponent equals the spa-
tial dimension and the resulting terms are simply proportional
to the zeroth spherical Bessel functions.

In this work, the interatomic distance is fixed to be k0d =
π/2 for reasons to be explained in the next section, as consid-
ered in Fig. 2 (upper panels, red), which shows the dispersion
relation in the infinity chain limit, obtained by the discrete
Fourier transform (FT) of the Green’s function (4). The decay
rate is given by the rectangle function, which is just the FT
of sin(r)/r. Thus, the collective decay rate is a constant for
all |k| < π/(2d ) within the light line, discontinuous at the
light line |k| = π/(2d ), and zero for |k| > π/(2d ), implying
perfect subradiance. The real part of HRDDI is proportional to
cos(k0r)/(k0r), and its FT is ill-defined due to the singularity
at r = 0.

The singular term at r = 0 has a divergent real part, known
as the single-atom energy shift, which we set to zero without
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FIG. 2. (Upper (a) and (b)) The discrete Fourier transformed Green’s function (5) in 1D at k0d = π/2 (red) and k0d = π (blue) for the
long-range hopping θ = arccos(1/

√
3). The imaginary part of the red curve is discontinuous at the light line, as shown in (b). (Lower (c) and

(d))The infinite-array limit predictions of hEP at θ = arccos(1/
√

3). hEP equals 0.5 for states of all quasimomentum except the light line.

the loss of generality (in principle, it is absorbed into a renor-
malized transition energy ω0). The imaginary part gives the
vacuum atomic emission rate, and this constant term is added
to all calculations throughout the text. For argument’s sake,
such diverging on-site potential is not explicitly written out
here, and the discrete FT

G̃d (k) =
∑

n∈Z\{0}
e−ikdnG(dn) (5)

has no closed form.
A useful quantity to consider is the discrete Fourier

transformed Green’s function G̃2d (k) at another interatomic
distance k0d = π , which is the minimal interatomic distance
for the absence of subradiance in 1D finite array, and the
dispersion is shown in Fig. 2 (blue). We find the numerical
values of the real dispersion are the same as 
[G̃d (k)] up to
negligible finite-size errors. The imaginary part of the disper-
sion is 1 for all k, reflecting that all emitters search the atomic
limit with the decay rate equal to the spontaneous emission
without a light line, i.e., collective emission is absent.

B. Alternating quantum emitters

Having introduced the properties of long-range hop-
ping subwavelength atomic arrays, we consider a two-band
model—a 1D array of two different alternating arranged
species of quantum emitters with transition energies ω0 ± h

in free space, as illustrated in Fig. 1 [31]. We expect the Born-
Markov approximation G(ri, r j, ω) � G(ri, r j, ω0) remains
to behold, as the relative difference between G(ri, r j, ω0 ± h)
and G(ri, r j, ω0) is of order h/ω0, which is negligible pro-
vided that h  ω0 [32]. Note that similar approximations are
used in, e.g., Ref. [33], where a magnetic field is applied to
induce a Zeeman splitting. The corresponding Hamiltonian

HTB = HRDDI + h
N∑

j=1

(−1) j+1σ
†
j σ j (6)

is block-diagonalizable in the quasimomentum space in the
infinite-array limit. To see this, we write the long-range hop-
ping terms explicitly,

HTB = −
∞∑

i=−∞

∑
n∈Z\{0}

G(nd )σ †
i+nσi + h

∞∑
j=−∞

(−1) j+1σ
†
j σ j,

and introduce the Fourier transformed spin operators
o†

k = √
2/N

∑N/2
j=1 eikr2 j−1σ

†
2 j−1, e†

k = √
2/N

∑N/2
j=1 eikr2 j σ

†
2 j ,

and dk ∈ (−π/2, π/2] for the odd and even sites. The n = 0
term is added in all calculations using the procedure above
Eq. (5). Rewriting Eq. (6) in the quasimomentum space leads
to

HTB =
∑

k

(
o†

k e†
k

)
H̃TB(k)

(
ok

ek

)
, (7)

where

H̃TB(k) =
⎛
⎝ h −∑n∈Z\{0} e−ik2dnG(2dn) −e−ikd

∑∞
n=−∞ e−i(2n−1)kd G[(2n − 1)d]

−eikd
∑∞

n=−∞ e−i(2n−1)kd G[(2n − 1)d] −h −∑n∈Z\{0} e−ik2dnG(2dn)

⎞
⎠.
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Noting that the sum in the off-diagonal component is
∞∑

n=−∞
e−i(2n−1)kd G[(2n − 1)d] =

∑
n∈Z\{0}

[
e−ikdnG(dn) − e−ik2dnG(2dn)

] = G̃d (k) − G̃2d (k),

we obtain the following simple form for the two-band Bloch Hamiltonian:

H̃TB(k) =
(

h − G̃2d (k) −e−ikd [G̃d (k) − G̃2d (k)]

−eikd [G̃d (k) − G̃2d (k)] −h − G̃2d (k)

)
. (8)

III. EXCEPTIONAL-POINT PHASE TRANSITION

The spatially alternating transition energies divides N
atoms into two sublattices and leads to the formation of two
bands with a dispersion relation

ω±
eff(k) = −G̃2d (k) ±

√[
G̃d (k) − G̃2d (k)

]2 + h2 (9)

in the infinite-array limit. Here, the two eigenvectors coalesce
at fine-tuned parameters known as the exceptional points,
where the Hamiltonian becomes nondiagonalizable. A neces-
sary condition for the emergence of EPs is

−h2 = [G̃d (k) − G̃2d (k)]2, (10)

which relates the differences in transition energies to the dis-
persions in the identical array limit h = 0. Recall that the
collective decay rate is a constant in the long-range hop-
ping limit (cf. Fig. 2) and the light line coincides with the
new first Brillouin zone edge k = π/(2d ). The real parts
of the dispersion G̃(k) in the identical array limit at both
interatomic distances d and 2d experience a cusp at k =
π/(2d ) and match exactly for other k. Therefore, the two-
band Hamiltonian satisfies the necessary condition Eq. (10)
for nondiagonalizability for every k �= π/(2d ) at hEP = 0.5.
This is because the imaginary parts of G̃d (k) − G̃2d (k) have
an absolute value 1/2 for |k| �= π/(2d ), which can be readf
from Fig. 2(b). Moreover, one can indeed confirm the nondi-
agonalizability from the Jordan form of Eq. (8) at h = hEP:

H̃TB(k) = V (k)

(−G̃2d (k) 1
0 −G̃2d (k)

)
V (k)−1,

V (k) =
(

e−ikd 0
i 1

ihEP

)
, (11)

where |k| < π/(2d ) . Due to this peculiar feature that the
whole system (except the band edges) undergoes an EP tran-
sition, we call the phenomenon EP phase transition. In total,
there are N/2 − 1 many two-level EPs at this point. Physically
speaking, as h increases, the spontaneous emission mecha-
nism changes from collective to individual in a square-root
fashion [see Fig. 3(d)]. Here, the choice of an interatomic dis-
tance to be k0d = π/2 is crucial for maximizing the number
of EPs at a fixed h. For small deviations from this special
interatomic distance, H̃TB(k) is diagonalizable in general for
h = hEP; instead, the EP phase transition becomes a shape
crossover from collective to atomic decay, see Appendix A.

The EP phase transition (collective-atomic emission tran-
sition) is analogous to the metal-insulator transition in
the Aubry-André-Harper (AAH) model [34,35], where the

localization transition occurs simultaneously at the full en-
ergy spectrum. In the usual short-range PT -symmetric
1D models [36,37], the EP is analogous to the mobil-
ity edge in a generalized AAH model [38–40], and the
(de)localized regions correspond to PT -broken(symmetric)
regions.

Figure 3 shows the finite chain spectrum for N = 100
to confirm the infinite chain prediction; there are N/2 − 1
EPs near h = hEP = 0.5. Furthermore, it is useful to con-
sider the smallest angle between all pairs of normalized right
eigenvectors

αm = min
i �= j

arccos
(∣∣〈ψR

i

∣∣ψR
j

〉∣∣), (12)

FIG. 3. Finite chain OBC calculation of (a) the smallest angle
between all pairs of right eigenvectors for N = 40, k0d = π/2, and
all possible θ, h. The red dotted line indicates the long-range hopping
θ considered in the main text. EPs are commonly found in the
parameter space [41]. (b) The smallest angle between all pairs of
right eigenvectors (12) for N = 100. It signals the predicted EP phase
transition at h = 0.5 and finite size induced hE

EP of the edge state
Jordan block. (c and d) The real and imaginary parts of the spectrum
σ for N = 100. The imaginary part is multiplied by −2 to make
the atomic emission rate equal to 1. For h < 0.5, the spectrum is
imaginary line gapped. In the infinite-array limit, the system contains
N/2 − 1 two-level EPs at the EP transition point h = 0.5. The finite
chain exact diagonalization spectrum gives a good agreement for
states away from the light line.
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FIG. 4. Exact diagonalization results for (a) the finite size scaling
of hE

EP. The system shows a localized edge state for arbitrary small
h greater than N−0.65. (b) The subradiance scaling for h = 20/N .
The ED result is shown in black and the blue dashed line shows
the predicted N−2 scaling for large N . The ED result is captured
by the infinite chain dispersion given in Eq. (9). This implies that
small imperfection in transition energies would change the RDDI
N−3 subradiance scaling.

which goes to zero toward EPs and remains π/2 for diagonal-
izable spectrum degeneracies [42].

The angle metric also detects an EP at hE
EP ≈ 0.05 due to

the finite size effect. This 2 × 2 block has the lowest real
eigenvalues that match the k = π/(2d ) states in Fig. 2, and
the corresponding eigenvectors are the span. Note that the
infinite-array limit of H̃TB[k = π/(2d )] is always diagonal,
because G̃d (k) is discontinuous and coincides with G̃2d (k) at
the light line. The open chain correction consists of a Fourier
sum error of sin(r)/r that is bounded by 1/N known as the
Gibbs phenomenon [43], and systematic finite size error when
approximating the true finite array eigenstates by the Bloch
states. The finite-size Ansatz error scaling of subradiance is
discussed in Refs. [10,11,44], but such behavior is absent for
states in the middle of the decay spectrum, which stops us
from gaining an analytic finite size scaling. We numerically
find that hE

EP goes to zero in the infinite chain limit with a
N−0.65 power-law scaling as shown in Fig. 4(a).

In addition, we find the position of EP around h ≈ 0.55
remains for larger N , which is not captured by Eq. (10). The
quasimomenta of this pair of states are identified by tracking
their eigenvalues in the h = 0 limit; they are the states that
have the closest k from the light line. Unlike the localized
light line state, the pair of states here are delocalized in the
real space. Due to the singular behavior of Green’s tensor, the
above infinite chain results are expected to hold only for states
with quasimomentum away from the light line.

Recently, the power law exponent α for the subradiant
states was unraveled being the power-law scaling behavior of
group velocity ∂ωeff/∂k near the band edge k = π/d , more
precisely α = s + 1 and ωk − ωπ/d ∝ (k − π/d )s [44], and
closely related to the overlap error between a set of finite chain
Ansätze and the Bloch states [10]. However, such scaling
and Ansätze break down near the light line k = ±k0 [11,44].
Having two species of quantum emitters arranged alterna-
tively at the discussed parameters, the macroscopic number
of EPs can influence the subradiance scaling. The new disper-
sion relation Eq. (9) implies a change in subradiance scaling

FIG. 5. Real-space distribution |ψ (x)| of edge state at four differ-
ent h = N−α for N = 500. For h < hE

EP < hEP = 0.5, the localization
length of the edge state is extensive in system size. Once h overcomes
the finite size threshold hE

EP, the edge state becomes localized and
shows a clear power-law decaying tail owing to the long-range nature
of the model.

for small differences in transition energies. For h = 0, such
scaling of Eq. (1) is N−3 due to the quadratic dispersion
at the band edge, as the smallest nonvanishing expansion
order in k of 
[G̃d (k)] near k = π/d is 2 [44]. Similarly,
the dispersion of the two-band model is given by Eq. (9),
and expansion in small h yields a new overall subradiance
scaling, O(N−3) + O(h2). Thus, we take h = N−α to observe
a valid scaling, and collective emission is suppressed for any
h > hEP = 0.5. Evidently, the RDDI scaling is recovered if
α � 3/2. Otherwise, the scaling is dominated by h if α <

3/2. Figure 4 shows the scaling transition for h = 20/N .
The most subradiant decay rate is in the same order as the
spontaneous emission rate γ0 for N < NEP = 40, i.e., h � 0.5
when N � 40. Further system size increases show the pre-
dicted N−2 scaling. Note that previous studies found that
small disorder in atomic arrays suppresses the usual RDDI
subradiant (N−3) scaling [45]. Here, in contrast, we find a
small alternative on-site potential makes the system more
radiative.

IV. EDGE STATE

Having discussed the coalescence of the two k = π/(2d )
states from both bands at hE

EP, we consider their real-space
localization properties, as shown in Fig. 5 for a range of
h = N−α . In a finite chain of N = 500 emitters, the spatial
distribution |ψ (x)| is localized at one end, and this localized
state has an imaginary part of eigenvalue equal to the atomic
spontaneous emission rate.

We identify this mode as a dissipation-induced edge state,
in the sense that such localization is not observed when
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discarding the dissipative part of the Hamiltonian. For h < hE
EP

(Fig. 5 lower), we find the localization length of this wave
function to be extensive in system size, such that its amplitude
decreases to zero roughly at the opposite end of the chain. For
h > hE

EP, the real-space amplitude is truly localized and shows
an algebraic decay tail, which has been numerically observed
in other long-range models [46,47].

It is tempting to attribute the edge state to the nontrivial
bulk properties of the model. Indeed, the number of edge
states of a Hermitian short-range Hamiltonian is related to
its bulk topological number, known as the bulk-edge cor-
respondence, which has been generalized to non-Hermitian
systems [12,15,48–50]. For example, the notion of band
gap in real energy for Hermitian systems cannot cap-
ture the complex spectrum for non-Hermitian cases. One
can generalize the notion of gap to lines that separate
spectrum clusters in the complex plane, known as line
gapped [18].

However, the topological properties of H̃TB(k) is ill-defined
due to the discontinuity of G̃d (k) in k [26]. In the following,
we explain the ill-definedness in further detail and show that
the edge state is not topologically protected, as it can be
removed via a symmetry-preserving continuous deformation.

We consider the two-band model in the Su–Schrieffer–
Heeger-like (SSH-like) form by rewriting Eq. (8) in terms
of the spin- 1

2 Pauli matrices σ0,x,y,z with G̃d (k) − G̃2d (k) =
ig(k), where

g(k) =

⎧⎪⎨
⎪⎩

hEP |k| < π
2d

0 k = ± π
2d

−hEP |k| > π
2d

is real. Note that g(k) is a discontinuous function and changes
its sign upon crossing the light line. This sign change en-
sures the periodicity H̃TB(k + π/d ) = H̃TB(k). Within kd ∈
(−π/2, π/2], H̃TB(k) reads

H̃TB(k) = −G̃2d (k)σ0 + hσz − ig(k) cos(kd )σx

− ig(k) sin(kd )σy. (13)

Strictly speaking, the spectrum is separable for a nonvan-
ishing h, i.e., the two bands have no energy crossing for all
quasimomentum [51]. Without the discontinuity, the spectrum
is imaginary line gapped at �ω = �G̃d [k = π/(2d )] for h <

hEP, and separable for h > hEP.
Without loss of generality, the σ0 term can be dropped

since H̃TB(k) can be continuously connected to a Hamiltonian
H̃ ′

TB(k) without σ0 [52]:

H̃ ′
TB(k) = hσz − ig(k) cos(kd )σx − ig(k) sin(kd )σy. (14)

This model appears to be similar to a short-range PT -
symmetric SSH model [36]. Despite the similarity, the latter
has a pair of edge states at two ends of the chain, and they
are topologically protected. As shown in Appendix B, Hermi-
tization of the short-range SSH model leads to a well-defined
winding number Z. In the former case, the range of quasimo-
mentum is only defined as half of the Brillouin zone of the
latter, over which we can simplify Eq. (14) into

H̃ ′
TB = hσz − ihEP cos(kd )σx − ihEP sin(kd )σy. (15)

FIG. 6. Edge state of the deformed Hamiltonian (16). The real-
space amplitude |ψ (x)| is shown at four different λ for N = 500
and h = N−0.25 ≈ 0.21. Increasing λ delocalizes the power-law tailed
edge state, which indicates that it is not symmetry protected.

While the above expression appears to be continuous, it is
discontinuous at k = π/(2d ) since the Brillouin zone is dk ∈
(−π/2, π/2]. Under the open boundary condition, we numer-
ically find that only one of the states connected to k = π/(2d )
Bloch waves under the periodic boundary condition is an edge
state while another is delocalized.

Since the edge state does not correspond to a well-defined
bulk property, we consider a continuous deformation of
Eq. (14) to a topologically trivial Hamiltonian

H (λ) = (1 − λ)H̃ ′
TB(k) + λH ′′ λ ∈ [0, 1], (16)

where H ′′ = iσx such that both the pseudo-Hermiticity and
imaginary line gap are preserved along the path. Figure 6
shows the real-space amplitude of the edge state at four differ-
ent λ, where increasing λ gradually delocalizes the edge state.

V. QUANTUM WALKS

In the last section, we consider the real-time evolution of
an initial state |ψ0〉 under HTB, known as the continuous-time
quantum walk [53]. Under such nonunitary time evolu-
tion, the spontaneous emission occurs during [t, t + dt] with
a probability −2 〈ψ (t )| �(HTB) |ψ (t )〉 dt , where |ψ (t )〉 =
e−iHTBt |ψ0〉. We are interested in how the spontaneous emis-
sion can be resolved spatially.

Owning the experimental developments of spatially local
quantum controls [54], previous works have mostly focused
on non-Hermitian Hamiltonians with on-site loss [55]. The
anti-Hermitian part of such a Hamiltonian is diagonal in the
real space. Hence, the emission (escape) probability from a
site x is proportional to

∫∞
0 |〈x|ψ (t )〉|2dt , where |x〉 = σ †

x |g〉.
On the other hand, photon-mediated interactions consist of
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FIG. 7. Quantum walk results at four different h = N−α for N = 200. The RDDI is recovered for h = 0. The initial state (
∑N

i=1 σ †
i |g〉)/

√
N

is parity symmetric. (Upper) Due to the fast escape rate of radiant states, the short-time limit is excluded. The late-time (t = 5) escape
distribution Eq. (17) shows an asymmetric escape tendency. The emission occurs predominantly at the boundaries of the chain without the
edge state. Only top left figure h = 0.07 supports the edge state, showing that the existence of the edge state dramatically enhances emission
from the bulk. (Lower) A late-time interval wave-function density, |〈x|ψ (t )〉|2 shows a similar imbalance, where the wave function has the
greatest overlap with the edge state.

long-range dissipative hopping, as is the case here, �HTB =
i(H†

TB − HTB)/2 is no longer diagonal. Therefore, we consider
a generalized spatially resolved escape distribution

F (x, t ) = −
∫ ∞

t
dt ′〈ψ (t ′)|{|x〉〈x|, ImHTB}|ψ (t ′)〉, (17)

where {A, B} = AB + BA and clearly reproduces the conven-
tional definition for on-site loss. The normalization property∑

x F (x, 0) = 1 is shown in Appendix C.
In general, F (x, 0) is real but not necessarily positive, so it

is a quasi-probability distribution, just like the Wigner func-
tion [56]. The physical intuition behind the negative escape
quasi-probability will be explained in the following.

This generalization is motivated from the following de-
composition of d|〈x|ψ (t )〉|2/dt :

d

dt
|〈x|ψ (t )〉|2 = −i〈ψ (t )|[|x〉〈x|, ReHTB]|ψ (t )〉

+ 〈ψ (t )|{|x〉〈x|, ImHTB}|ψ (t )〉. (18)

The first term on the right-hand side may be interpreted as a
coherent current, which persists in the Hermitian limit. The
second term is unique to non-Hermitian systems and may be
interpreted as incoherent current, including both on-site loss
and dissipative hopping from/to other sites. Therefore, due
to the non-Hermiticity of the long-range hopping terms, there
are incoherent flows between different sites that can lead to
net gain at certain sites.

Returning to the time domain, we know that the short-
and late-time dynamics generated by HTB are dominated by
radiant and subradiant states. The presence of radiant states
promotes a rapid exponential fast escape rate in the short-
time limit and dilutes the intensity of late-time emission [31].
Despite this experimental challenge, we are ideally interested
in the spatially resolved late-time dynamics from t = 5.

Figure 7 (upper) shows the late-time escape distribu-
tion F (x, t = 5) by propagating the initial state |ψ0〉 =
(
∑N

i=1 σ
†
i |g〉)/

√
N , the so-called W state [57]. The lower

panel shows the space-time resolved wave-function density
|〈x|ψ (t )〉|2 from the same initial state under such nonunitary
dynamics as a complementary observable.

For the RDDI model HRDDI (i.e., HTB with h = 0), the
excitation is mostly likely to escape from both edges of the
atomic chain, which is consistent with the numerical finding
of the electric field intensity of the subradiant eigenstates in
Ref. [10].

For a small h, the winding number of HTB is not well
defined due to the long-range nature of this model. Hence,
novel non-Hermitian dynamical phenomena related to bulk
topological properties, such as the quantization of walker
displacement [58] and edge burst under on-site losses [55],
are not observed. However, the existence of an edge state
influences the late-time dynamics. For h < hE

EP, none of the
eigenstates are localized, and the excitation is most likely to
escape from the boundaries. For h > hE

EP, we find the disap-
pearance of the boundary concentration and the rise of bulk
emission.
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In addition, the escape distribution is asymmetric un-
der parity, while the initial state is symmetric. This is
reasonable since the alternating potential explicitly breaks the
parity symmetry. This effect is more visible in the time evo-
lution of density—Fig. 7 (lower panels) shows an imbalance
across the chain and density accumulation toward the edge
state, which reflects that the late-time wave function is mostly
supported on the edge state.

VI. CONCLUSION

We have studied the long-range hopping limit of the RDDI
Hamiltonian, where the hopping power equals the lattice
dimension—a realistic model for an atomic array in 3D free
space. Arranging two species of quantum emitters alterna-
tively, we find the new dispersion relation has a simple form
in the infinite chain limit and encodes a novel non-Hermitian
behavior, dubbed exceptional-point phase transition. At the
transition point, each pair of eigenvectors coalesce, except
for the two states from each band with the quasi-momentum
k = π/(2d ).

For a finite chain, the differences in transition energies
modify the N−3 subradiance scaling law and accelerate the
most subradiant decay rate. The spectrum of finite calculation
shows a good agreement with EP phase transition.

We numerically show that one of the k = π/(2d ) states
is adiabatically connected to a boundary localized state in
real space under the open boundary condition, while another
remains delocalized. The localized state has a power-law tail
for any h greater than the finite size threshold scaling as
N−0.65. The presence of the light line generates disconti-
nuities in the dispersion, which makes the winding number
ill-defined.

Finally, we have generalized the spatial escape distribution
for on-site dissipative models to nonlocal dissipation. For a
quantum walker starting from a parity symmetric initial state,
both the late-time escape distribution and wave-function den-
sity show spatial imbalances.

Our work has only focused on 1D arrays in 3D free
space. It is natural to consider higher-dimensional arrays [33],
as well as more general (artificial) photonic environments
such as waveguides and photonic crystals that may be
engineered to be intrinsically topological or/and dissipa-
tive [22]. It would be interesting to construct more models
that exhibit the EP phase transition, to study the topo-
logical properties and bulk-edge correspondence, and to
explore the rich dynamics of incoherent and collective atomic
decay.

ACKNOWLEDGMENTS

J.L. thanks R. Schäfer, D. J. Luitz, F. Piazza, Z. Wang, and
L. Piroli for interesting discussions, also Y. E. Zhang for pro-
viding technical support for the illustration figure. Z.G. thanks
D. Wild for lecturing on the basics of subwavelength atomic
arrays. J.L. acknowledges support from Deutsche Forschungs-
gemeinschaft through the project DQUANT (Project No.
499347025) and the Erwin Schrödinger International Institute
for Mathematics and Physics for its hospitality during the The-
matic programme Tensor Networks: Mathematical Structures

and Novel Algorithms. Z.G. was supported by The University
of Tokyo Excellent Young Researcher Program.

APPENDIX A: OTHER CHOICES OF INTERATOMIC
DISTANCES

For the fine-tuned interatomic distances k0d = π/2, the
alternating array defined by Eq. (8) is shown to have an EP
phase transition at hEP both analytically and numerically; the
Hamiltonian is typically diagonalizable and a macroscopic
number of EPs requires parameter fine tuning. Here, we
consider the effect of small deviations in the interatomic dis-
tances. Figure 8 shows the eigenvalues of Eq. (8) at two other
interatomic distances, k0d = 0.495π and k0d = 0.49π . The
spectrum displays a similar shape to Fig. 3, but the system has
a finite gap at hEP and no longer shows a genuine EP transition.
Instead, there is a sharp crossover from collective to atomic
decay.

APPENDIX B: TOPOLOGICAL INVARIANT FOR
SHORT-RANGE CHIRAL-SYMMETRIC SYSTEMS

In the main text, we have established that the long-range
hopping two-band model H̃ ′

TB(k) has the SSH-like form (14),
with a quasimomentum kd ∈ (−π/2, π/2] and a discontinu-
ous off-diagonal matrix element g(k). Here, we consider the
topological invariant of its short-range analogy HSR, where
the quasimomentum is defined as kd ∈ (−π, π ] and the off-
diagonal element g(k) = g is a real constant.

Point-gapped non-Hermitian systems encounter novel fea-
tures without Hermitian counterparts, such as the skin
effect [17,59,60]. However, a line-gapped system can al-
ways be mapped onto a Hermitian system, as is the case

FIG. 8. The real (a) and (b) and imaginary (c) and (d) parts of
the spectrum σ for k0d = 0.495, k0d = 0.49π , and N = 100. The
inserted black arrow in (c) and (d) indicates a finite gap at hEP, which
means the EP transition is not observed.
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here [12,18,61]. To perform the Hermitization of the two-
band model, we first note that iσx, iσy, and σz forms a
SU (1, 1) algebra [62]. Consequently, HTB(k) exhibits the
pseudo-Hermiticity:

ηHSR(k)η = HSR(k)†, η = σz.

We multiply HSR(k) by i [63],

iHSR(k) = ihσz + gcos(kd )σx + g sin(kd )σy, (B1)

to turn the imaginary line gap into a real gap. The pseudo-
Hermiticity transforms into pseudo-anti-Hermiticity, which
may also be called chiral symmetry [18]:

ηHSR(k)η = −HSR(k)† η = σz.

The winding number of iHSR(k) can be defined by using
the following projection operators:

P1(k) = |R+(k)〉〈L+(k)|, P2(k) = |L−(k)〉〈R−(k)|,
where |R±(k)〉 (|L±(k)〉) are the right (left) eigenvectors of
HSR(k), to construct a Hermitian operator

Q(k) = 1 − (P1(k) + P2(k)) = 1√
g2 − h2

(
0 ge−ikd

geikd 0

)

=
(

0 q(k)
q∗(k) 0

)
,

(B2)

which is Hermitian and chiral symmetric:

Q(k) = −Q(k),  = σz.

Technically speaking, Q(k) belongs to class BDI of the
Altland-Zirnbauer classification [64] and is characterized by
the winding number

∫
B.Z.

dk
2π i q(k)−1∂kq(k) ∈ Z for a con-

tinuous q(k). Therefore, the topological invariant for the
short-range non-Hermitian SSH model can be defined.

In the case of our long-range Hamiltonian H ′
TB(k), we can

identify the corresponding q(k) following a similar procedure.
However, the discontinuity of q(k) at k = π/(2d ) prohibits us
from concluding a quantized winding number.

APPENDIX C: NORMALIZATION PROPERTY OF F(x, t )

We show the generalized spatially resolved escape distribu-
tion F (x, t ) is normalized for t = 0. For a normalized initial
state 〈ψ0|ψ0〉 = 1 and HTB with a complex spectrum {En}
that lies only on the lower half of the complex energy plane,
summing over space gives∑

x

F (x, 0) = −
∑

x

∫ ∞

0
dt ′〈ψ (t ′)|{|x〉〈x|, ImHTB}|ψ (t ′)〉

= −2
∫ ∞

0
dt ′〈ψ (t ′)|ImHTB|ψ (t ′)〉

= −
∫ ∞

0
dt ′ 〈ψ (t ′)| iH†

TB − iHTB |ψ (t ′)〉

= −
∫ ∞

0
dt ′ d

dt ′ 〈ψ (t ′)| |ψ (t ′)〉

= 〈ψ0|ψ0〉 − 〈ψ∞|ψ∞〉 = 1,

where |ψ∞〉 = limt→∞ e−iHTBt |ψ0〉 = 0 regardless of the di-
agonalizability of HTB. To see this, we consider following
spectral decomposition of HTB in the Jordan normal form [12]:

‖e−iHTBt‖ =
∥∥∥∥∥∥
∑

n

e−iEnt

⎛
⎝Pn +

mg
n∑

i=1

ni−1∑
j=1

t j

j!
N j

ni

⎞
⎠
∥∥∥∥∥∥

�
∑

n

e�(En )t

∥∥∥∥∥∥
⎛
⎝Pn +

mg
n∑

i=1

ni−1∑
j=1

t j

j!
N j

ni

⎞
⎠
∥∥∥∥∥∥,

where for each Jordan block with eigenvalue En, Pn is the set
of orthogonal and complete projectors, mg

n is the geometric
multiplicities, and Nni is a nilpotent off-diagonal block with
size ni. Because {�(E )} lies below the real axis, the expo-
nential term decreases faster than the polynomial growth, and
thus the above equation vanishes in the limit of t → ∞. We
mention that it is necessary to assume a finite system and
take this infinite time limit first. Otherwise, if the sizes of
some Jordan blocks grow with the system size, the polynomial
contribution may dramatically enlarge the relaxation time,
possibly to infinity in the thermodynamic limit. This occurs in
some systems exhibiting the non-Hermitian skin effect [65].
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