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Seeding Gaussian boson samplers with single photons for enhanced state generation
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Non-Gaussian quantum states are crucial to fault-tolerant quantum computation with continuous-variable
systems. Usually, generation of such states involves trade-offs between success probability and quality of the
resultant state. For example, injecting squeezed light into a multimode interferometer and postselecting on
certain patterns of photon-number outputs in all but one mode, a fundamentally probabilistic task, can herald
the creation of cat states, Gottesman-Kitaev-Preskill (GKP) states, and more. We consider the addition of a
non-Gaussian resource state, particularly single photons, to this configuration and show how it improves the
qualities and generation probabilities of desired states. With only two modes, adding a single-photon source
improves GKP-state fidelity from 0.68 to 0.95 and adding a second then increases the success probability
eightfold; for cat states with a fixed target fidelity, the probability of success can be improved by factors
of up to four by adding single-photon sources. These demonstrate the usefulness of additional commonplace
non-Gaussian resources for generating desirable states of light.
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I. INTRODUCTION

The magic of quantum states is a mixed blessing: one rarely
finds useful quantum states in nature. This makes clever state
generation protocols essential to proposed quantum advan-
tages from sensing to computation. In the particular context
of light-based quantum systems, most of the known methods
for generating non-Gaussian states, a prerequisite for photonic
fault-tolerant quantum computation, have limited or trade-offs
in success probabilities and state fidelities [1–16]. We here
explore how the combination of single-photon sources and
Gaussian-boson-sampling (GBS) devices can improve creat-
ing these building blocks for photonic quantum information
processing.

Light is a superior medium for encoding quantum infor-
mation because of its speed and resistance to decoherence at
room temperature, but the information is naturally encoded in
the continuous variable (CV) degrees of freedom of harmonic-
oscillator modes as opposed to the discrete variable (DV)
systems made from qubits, where most quantum computing
algorithms and error-correcting codes have been developed
for the latter paradigm. At the start of the century, Gottesman,
Kitaev, and Preskill introduced a method for robustly en-
coding a qubit in a harmonic-oscillator mode [17] (requiring
only one physical mode for one logical qubit [12]) and their
eponymous “GKP states” are now highly sought [18,19] for
fast, decoherence-free, fault-tolerant quantum computation.

Another desirable set of CV states are “cat states” that are
superpositions of two states that each on their own have highly
classical properties [20]. Cat states are useful for quantum in-
formation processing in their own right [21–25], for breeding
GKP states [6,18,26], for quantum sensing protocols [27–29],
and for exemplifying the differences between quantum and
classical theory [30–33]. We focus our attention on creating

GKP and cat states, while our method can be broadly applied
to generate any desired CV state.

Two checkpoints along the road to fault-tolerant quan-
tum computation are boson sampling and its Gaussian (GBS)
counterpart. Both inject nonclassical light into a linear optical
network followed by photon counting, with output distribu-
tions that are challenging to recreate or sample from on a
classical computer. The light injected for GBS is squeezed
vacuum, a Gaussian state that is nonclassical in its ability
to generate entanglement through a linear optical network
[34], and this setup has been proposed for heralded generation
of useful non-Gaussian states by choosing particular photon-
number distributions among a subset of the output modes
[15,16]. A boson sampler, in contrast, directly injects what
are arguably the most basic non-Gaussian resources, single-
photon states. The classical hardness of predicting outcomes
of quantum experiments was recently shown to depend on the
amount of squeezing and number of single photons added to
a network [35]. Since the abilities to generate both squeezed
vacuum and single photons are always improving, especially
with promise of them both being feasible on similar physical
platforms, we ask and answer the logical question: do single
photons help GBS-like devices for generating interesting and
useful states of light?

II. BACKGROUND

A. Non-Gaussian quantum states

For a state defined on N modes with bosonic anni-
hilation operators âi, we define position and momentum
operators as q̂i = (âi + â†

i )/
√

2h̄ and p̂i = −i(âi − â†
i )/

√
2h̄

and combine them into a single vector of operators x̂ =
(q̂1, p̂1, . . . , q̂N , p̂N ). Gaussian states are uniquely character-
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ized by the 2N first-order moments encoding the “displace-
ments” of the state ξ = 〈x̂〉 and the 2N × 2N second-order
moments encoded in the symmetric “covariance matrix”
V with elements Vi j = 〈 x̂i x̂ j+x̂ j x̂i

2 〉 − 〈x̂i〉〈x̂ j〉; whereas, non-
Gaussian states need higher-order moments of x̂ to be
uniquely specified. Indeed, a convenient description of a
state is through its Wigner function, which is responsible for
the name “Gaussian state” because the latter have Gaussian
Wigner functions [36]:

WG(x) = exp
[

1
2 (x − ξ)�V −1(x − ξ)

]
(2π )N√

det (V )
. (1)

Due to the symmetrization in the covariance matrix, V
does not have to be necessarily positive; instead, the standard
uncertainty relations [q̂i, p̂ j] = ih̄δi j dictate that [37]

V + i� � 0, (2)

where �i j = δi, j−1 − δi, j+1 are the elements of the N-mode
symplectic form �. We henceforth set h̄ = 1.

Despite the fact that a wide range of tasks in quantum in-
formation can be accomplished using Gaussian states [38–40],
non-Gaussianity has been recognized as an essential resource
for quantum computation [41–45]. Non-Gaussian states can
be particularly advantageous in achieving fault-tolerant uni-
versal quantum computing [46]. Additionally, non-Gaussian
states exhibit greater entanglement, as measured by superad-
ditive measures, compared with Gaussian states with the same
correlation matrix [36].

The space of non-Gaussian states is indeed broad, with
Schrödinger cat states and Gottesman-Kitaev-Preskill states
being among the most well-known members of this group,
alongside Fock states. Cat and GKP states have indeed sev-
eral relevant applications [47,48] that motivate the research
conducted toward their more efficient generation [13,49–51].

1. GKP states

GKP states are an encoding of qubits as two logical basis
states |0̄〉 and |1̄〉 in a single harmonic-oscillator mode that are
simultaneous eigenstates of commuting displacements e2

√
π iq1

and e−2
√

π ip1 of momentum and position, respectively, where
the displacement operators are termed stabilizers [17]. These
states natively support error correction of amplitude- and
phase-quadrature shifts because measurements of the stabiliz-
ers can detect such shifts without changing the state, making
them ideal for fault-tolerant quantum information processing.

The encoded qubits can be set to be the following superpo-
sition of infinitely squeezed states

|0̄I〉 ≡
∞∑

n=−∞
|2n

√
π〉q; |1̄I〉 ≡ e−√

π ip1 |0̄I〉, (3)

where the I subscripts denote the ideal states and the q sub-
script denotes a position eigenstate. After verifying that these
states indeed have the correct eigenvalue properties, one can
observe the following two displacement operators to be the
encoded Pauli operators acting on the encoded qubit states:

Z̄ = exp(i
√

πq), X̄ = exp(−i
√

π p). (4)

FIG. 1. Distribution of the position q for the ideal GKP state |0̄I〉
and the normalized GKP state |0̄�,κ〉 with � = κ = 1/4.

These satisfy the commutation relation

X̄ Z̄ = −Z̄X̄, (5)

which allows them to detect shifts along p1 and q1 up to√
π/2. That the stabilizers are the squares of the logical oper-

ators X̄ and Z̄ accords with the squares of Pauli matrices being
identity.

The Wigner function of the state |0̄I〉 is

WGKP 0̄I
(q, p) =

∞∑
s,t=−∞

(−1)stδ

(
p − s

√
π

2

)
δ(q − t

√
π ).

(6)
Since the ideal state defined here is non-normalizable

and made of infinitely squeezed states, we can work with
normalizable states that approximate the ideal ones. There
exist several possible approximations for GKP states, and the
canonical approximation [52] is one of the most common
ones. In the canonical approximation, the Dirac deltas in the
Wigner functions are approximated by Gaussian functions
with finite standard deviation �, and the overall Wigner func-
tion is enveloped in another Gaussian function with width κ−1,

|0̄I〉 → |0̄�,κ〉 ∝
∞∑

n=−∞
e

1
2 κ2(2n

√
π )2

X̄ 2|�〉q, (7)

where

〈q|�〉 =
(

1

π�2

) 1
4

e− q2

2�2 . (8)

The ideal GKP state is then restored when �, κ → 0. The
Wigner functions, integrated over p, of the ideal basis states
|0̄〉GKP and its approximation |0̃〉GKP ≡ |0̄�,κ〉 are shown in
Fig. 1. An extremely useful property of GKP states is that
Gaussian noise from effects such as finite squeezing can be
converted into errors on the encoded qubit, which can in turn
be corrected by error-correcting codes known for DV quantum
computation [53].

2. Cat states

Cat states are symmetric (even) or antisymmetric (odd)
pure superpositions of two coherent states with opposite am-
plitudes ±α:

|cate/o(α)〉 = 1

N±(α)
(|α〉 ± |−α〉), (9)
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where N±(α) = [2(1 ± e−2|α|2 )]1/2. The cat state is a non-
Gaussian state with Wigner function given by [54]

Wcate/o(β ) (α) = 2

π
(
1 ± e−2|β|2)

× (e−2|α−β|2 + e−2|α+β|2

± 2e−2|α|2 cos [4Im(αβ∗)]). (10)

By expanding the coherent states in terms of Fock states,
we observe that the even (odd) cat states can also be expressed
as a linear superposition of solely even (odd) photon-number
states:

|cate(α)〉 ∝ α0

√
0!

|0〉 + α2

√
2!

|2〉 + α4

√
4!

|4〉 + · · · , (11)

|cato(α)〉 ∝ α1

√
1!

|1〉 + α3

√
3!

|3〉 + α5

√
5!

|5〉 + · · · . (12)

Cat states are extremely versatile, with applications in
quantum communication and quantum metrology [55,56]. En-
coding qubits in cat states can help fault-tolerant quantum
computation [21,57,58]. They can be employed also as a
resource to prepare GKP grid states [6,18], or can be used
themselves to perform quantum error correction [59,60] and
have been generated using nonlinear media [61].

B. Non-Gaussian optical state preparation

Any N-mode Gaussian state can be generated by applying
Gaussian operators to a given initial Gaussian state, e.g., the
N-mode vacuum state |0〉⊗N . Gaussian operations are those
operations defined by unitary evolutions under Hamiltonians
that are at most quadratic in creation and annihilation opera-
tors â†, â. Under these evolutions, the displacement vector ξ

and covariance matrix V that univocally determine a Gaussian
state are transformed according to the so-called symplectic
transformations [62]

V → FV F� and ξ → Fξ + d, (13)

where d is the 2N real vector of displacements, and F satisfies

F�F� = �. (14)

In this way, the transformed ξ and V respectively remain a
2N-dimensional real vector and a 2N × 2N real symmetric
matrix that satisfies Eq. (2). These transformed parameters
unambiguously define a new Gaussian state.

From a practical perspective, in optical implementations,
all Gaussian transformations can be realized using squeezing
and displacement operators, as well as an N-mode interfer-
ometer composed of beam splitters and phase shifters. These
operations are commonly implemented in current experi-
mental setups, with the squeezing amplitude being the main
constraining parameter.

The actions of a squeezer S, and beam splitter B are respec-
tively defined in terms of creation â†

i and annihilation operator
âi on the ith mode as

S(r) = exp

[
r

2
(â2 − â†2)

]
, (15)

Bi j (θ, ϕ) = exp[θ (eiϕ âiâ
†
j − e−iϕ â†

i â j )]. (16)

FIG. 2. GBS schematic with four modes. The N (N − 1)/2 beam
splitters and phase shifters (BS) are arranged in the so-called rectan-
gular scheme [70]. BS label the beam splitters whose action in terms
of the creation (annihilation) operators a†

i (ai) of the ith mode depend
on the angles θ and ϕ as defined in Eq. (16).

Non-Gaussian unitary evolutions are generated by Hamil-
tonians containing terms that are at least cubic in the creation
and annihilation operators [63]. However, these operators are
difficult to realize on optical tables [64,65]. An alternative and
often preferred approach to generating non-Gaussian states
involves performing a measurement on a Gaussian state ρ

[66,67] such that

ρ →
∑

j XjρX †
j

Tr{ρ ∑
j X †

j Xj}
, (17)

where Xj represents a linear operator in the Fock space.
For instance, in the case of photon-number-resolving detec-
tors (PNRDs), we have Xi jk... = |i jk · · ·〉〈i jk · · ·|. Performing
a measurement on m modes of an n-mode Gaussian state
using PNRDs provides a practical method for conditionally
generating a (n − m)-mode non-Gaussian state. The scheme
originally developed for Gaussian boson sampling can indeed
be modified for this purpose.

C. Gaussian boson sampling and state generation

Gaussian boson sampling is a quantum computational
method that provides a significant advantage over classical
computers for some specific problems [68]. The method con-
sists of two steps. First a n-mode Gaussian state is generated
by injecting n squeezed vacuum states into a linear interferom-
eter. Then, each mode of the output Gaussian state is measured
with a PNRD. The measurement pattern is the output of
the computation. Finding the probability of any measurement
pattern is in fact a problem with several relevant applications
but classically hard to solve [69]. Since it is only possible to
sample from such an output distribution, the applications are
tempered, but even the sampling problem is computationally
challenging for classical machines.

The GBS device described thus far, and displayed in Fig. 2
for four modes, can be slightly modified to serve as a condi-
tional source of non-Gaussian states. In fact, if some modes
are left unmeasured, the corresponding heralded mode is
proven to be non-Gaussian, provided that at least one photon
is detected in the other modes. In general, in an n-mode
GBS-like device, (n − m) modes are measured to produce
an m-mode non-Gaussian state. However, from now on, we
consider the case where only one mode is left unmeasured be-
cause our goal is to produce single-mode non-Gaussian states.

023717-3



CRESCIMANNA, GOLDBERG, AND HESHAMI PHYSICAL REVIEW A 109, 023717 (2024)

FIG. 3. GBS device with n squeezed displaced input vacuum
states and n − 1 PNRDs.

An example of GBS device used for state preparation [52,71],
with n input modes, and n − 1 PNRDs is shown in Fig. 3. Any
unitary operation U (θ) on the n modes can be realized using a
linear interferometer with as few as n(n − 1)/2 beam splitters
and phase shifters [70,72].

When no photons are detected by the PNRDs the Wigner
function of the heralded state is Gaussian and is unambigu-
ously determined by squeezing and displacement coefficients.
In general, if nT photons are detected in the measurement,
then the output state can be expressed as a squeezed and
displaced linear superposition of Fock states

|ψout〉 = D̂(d )Ŝ(ζ )
nmax∑
n=0

cn|n〉. (18)

Equation (18) is known as the stellar representation of the
state |ψ〉 with a stellar rank r∗ = nmax � nT [73]. The value
of nmax depends on the connections established between the
modes by U (θ). Gaussian states indeed have a stellar rank of
r∗ = 0, while nmax is equal to nT only when the heralded mode
is fully connected with all the detected modes. Furthermore,
the number of independent coefficients cn is constrained by
the angles θ that unambiguously determine the N-mode linear
interferometer. In fact, the maximum number of independent
parameters is given by D = (N + 2)(N − 1)/2.

III. GBS-LIKE DEVICE WITH SINGLE-PHOTON
SOURCES

Conditional state generation via a GBS-like device uses
measurements with PNRDs as a source of non-Gaussianity,
which is required to generate non-Gaussian states. The non-
linearity of the measurement is, in fact, a technique frequently
employed to produce quantum optical non-Gaussian states
[74–79]. It has even been used to develop a systematic tech-
nique that generates GKP qubits by exploiting the symmetries
of the target states [71]. Conditional state generation provides
an alternative to the use of challenging-to-realize determinis-
tic non-Gaussian operators and offers easier implementation.
However, it has a drawback due to the probabilistic nature of
the outcome. The desired state is actually generated only when
certain conditions are met. If the conditions are not satisfied,
one has two options: either choose to encode the qubit into
a Gaussian state, thereby losing protection against noise, or
run the non-Gaussian source again until the conditions are

fulfilled. Each iteration of the source, however, delays the
encoding and actual processing of the information, exposing
the system to decoherence and photon loss. For this reason,
enhancing the probability of non-Gaussian state generation
is crucial for scalable quantum computation. Multiplexing
can be used to get around this problem but at the cost of
added loss in the system. As an alternative, to increase the
probability of success, we can introduce an additional source
of non-Gaussianity alongside the measurements with PNRDs.
Specifically, instead of using vacuum states, non-Gaussian
states can be employed in some of the modes of the in-
terferometer. The generation of single-mode non-Gaussian
states has indeed been theorized [1,13,80–86] and success-
fully realized [2,87,88] in less general setups by incorporating
non-Gaussian resources at the input and utilizing PNRDs.

Naturally, this approach is helpful as long as the elected
input non-Gaussian states can be produced with a highly effi-
cient alternative approach. Single-photon states, for example,
can be generated with several efficient protocols [89,90] that
are compatible [91,92] with the integrated photonics plat-
forms on which GBS experiments have been demonstrated. In
fact, squeezed single-photon states proved to be advantageous
compared with squeezed vacuum states in other applications
[93,94] and practical routes to squeezing single photons have
been demonstrated [95–97], following the general trend of
developing the ability to add light to nonvacuum light fields
[4,98,99]. In this work, we evaluate the impact of using
single-photon Fock states instead of vacuum states on the
performance of non-Gaussian state generation. We compare
the results achieved with a standard GBS-like device depicted
in Fig. 3 and thoroughly described in Ref. [15] where the
only non-Gaussian resource is the type of measurement being
conducted. The two schemes are essentially the same when
no single-photon sources are integrated into the protocol.
Furthermore, an equivalence can be established between the
two schemes even when single-photon Fock states are used
as inputs in our approach. This equivalence arises when, in
the full Gaussian scheme, one considers a portion of the in-
terferometer as serving as a conditional single-photon source,
achieved through generalized photon subtraction at the cost
of one additional ancillary mode per input Fock state. We
observe that the theory developed for GBS enables the an-
alytical determination of the generated heralded state when
(n − m) modes are measured out of an n-mode linear interfer-
ometer receiving squeezed vacuum states as input. However,
for a desired target state, finding the parameters that ensure
high levels of fidelity and probability in the measurement
pattern becomes impractical to solve analytically. In such
cases, numerical optimizations are often preferred to address
this problem effectively. The libraries provided by Xanadu
are optimal tools for simulating GBS devices and optimizing
their tunable parameters. Specifically, the library Mr Mustard
is employed here both for GKP and cat states.

The approximate GKP state used as a target is the truncated
core state of

|0A4〉 = S(r)
4∑

n=0

cn|n〉
︸ ︷︷ ︸

Core state

, (19)
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FIG. 4. GBS-like device with one single-photon source in the
purple box.

where |0A4〉 maximizes 〈0A4|0�|0A4〉, where |0�〉 corresponds
to the canonical normalization of the ideal GKP state |0I〉 →
|0�,κ〉 defined in Eq. (7) with κ = �. In fact, the same state is
used as a target by Tzitrin et al. in Ref. [52].

The target cat state is instead, in turn, defined as

|cate(2)〉 = 1√
2

(|2〉 + |−2〉), (20)

which is the even cat state defined in Eq. (9) with amplitude
α = 2.

Since both the probability p and the fidelity F to the target
state are relevant features of a desirable source, the reward
function maximized by the optimized parameters is set as a
linear combination of these figures of merit. While the choice
of the reward function is essentially arbitrary, it requires care-
ful consideration because of the nature of the optimizer used
in simulations, especially when dealing with larger circuits.
Prioritizing probability over fidelity runs the risk of generating
a state far from the target. Conversely, assigning excessive
weight to fidelity can slow down optimization and lead to the
generation of nearly unattainable states.

For our specific objective, we opt for a reward function
F + p that evenly balances both probability and fidelity in
all the optimizations, regardless of the number of modes and
the target. This is simply a means to an end: we then report
the results of all of these optimizations in terms of both F
and p to see how single-photon sources can simultaneously
improve both quantities. The actual relationship between the
number of single-photon sources and a combined figure-of-
merit parameter is more complicated; quod vide Fig. 9.

The squeezing amplitude r is a tunable parameter opti-
mized in the simulations, but a maximum energy threshold
is set for it at 12 dB. As a final remark, ancillary GBS has
been introduced as a single-photon source instead of directly
using the single-photon Fock state |1〉 in the input modes of
the interferometer. The example of a scheme of a GBS-like
device with one single-photon source into the N th mode is
shown in Fig. 4. This choice is made because non-Gaussian
input states could potentially make the simulation with the
libraries less reliable (see Appendix A for a discussion of
how we numerically introduce single-photon sources based on
physical architectures).

The photon subtraction technique is also used to prepare
squeezed single-photon states [100]. Here, instead, the simu-

lations of the inline squeezing of single photons are performed
independently of the state-generation process since optimal
single-photon sources are intended to replace the GBS-like
devices employed in the simulation. In fact, we assume to have
a deterministic single-photon source.

The measurement patterns are chosen with a small total
number of subtracted photons to prioritize the probability of
generating the state over the fidelity with the target state,
which is already satisfactory for many applications. We in-
deed expect to increase the fidelity at the cost of smaller
probability when more photons are detected [14]. This choice
also helps reduce the runtime of the optimizations. We inves-
tigate multiple measurement patterns to evaluate the expected
trend of the results with the number of detected photons. In
all measurements, however, all the PNRDs detect at least one
photon.

Furthermore, we observe that both the target GKP and even
cat states can be expressed as linear combinations of even
number states in the Fock representation. The same argument
holds for the squeezed vacuum states in each input mode:

S(r)|0〉 =
∞∑

n=0

tanhn r√
cosh r

√
(2n)!

2nn!
|2n〉. (21)

Since beam splitters and phase shifters conserve the num-
ber of photons in the state, the N-mode output state can be
expressed as

|ψout〉 =
∞∑

n=0

∑
m1+···+mM=2n

cm1,...,mN |m1, . . . , mN 〉. (22)

As a consequence, in order to herald a state with an even
number of photons, the PNRDs have to detect an even number
of photons in total. If, instead, single-photon sources are used,
then the necessary parity of the measured photons depends
on how many squeezed single-photon states are present in the
input.

IV. RESULTS AND DISCUSSION

First, we consider the case of a 2-mode GBS-like device
and target state given by the approximate GKP states |0A4〉
defined in Eq. (19). The probabilities p and fidelities F ob-
tained with n = 0, 1 and two single-photon sources are plotted
in Fig. 5. The best results are also reported in Table I.

The results obtained with the target state given by the even
cat state of amplitude α = 2 are displayed in Figs. 6 and 7
for two-mode and three-mode GBS-like devices, respectively.
The best results are listed in Tables II and III.

As expected, the results reported in Table II for the case
without any single-photon sources align with those presented
in Table II of Ref. [15], where slightly improved fidelity
and probability are achieved only with squeezing amplitudes
exceeding the threshold considered in our work.

Each data point depicted in the two-dimensional plots cor-
responds to an optimization run utilizing the Python libraries
“Mr Mustard” developed by Xanadu. Mr Mustard [101] is
a Python library particularly suited for simulating Gaussian
boson sampling devices. It efficiently handles the phase-space
representation of Gaussian states and Gaussian channels, and
it possesses several built-in functions simulating the action
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FIG. 5. Plot of the results obtained with a 2-mode GBS-like
device when the target state is the approximate GKP state |0A4〉.
The blue dots represent the optima found without single-photon
sources. The star refers to the best result reported in Ref. [52] without
any single-photon sources (n = 0). The orange triangles depict the
results obtained with one single-photon source. The green squares
correspond to the results obtained with two single-photon sources.
Diagonal lines limit regions in the fidelity-probability space where
results of the corresponding color can be found.

of various optical devices used in GBS protocols, such as
beam splitters, phase shifters, squeezers, Mach-Zender in-
terferometers, and PNRDs. The description in the number
representation, especially useful at the last measurement stage
of the protocol, can be realized with this library with arbitrary
precision and cutoff for any Gaussian state. Finally, the library
is equipped with optimization routines expressly dedicated to
the specific gate. Unitary optimization is used in our opti-
mizations for the linear interferometer, while optimization in
Euclidean space is adopted for the squeezing amplitudes at the
input modes. On the vertical axis, the plots report the fidelity
between the state generated by simulating a photonic circuit
with the given optimized parameters and the predefined target
state. On the horizontal axis, it is reported the probability
that the PNRDs measure the detection pattern that guaran-
tees the generation of the desired state. Irrespective of the
number of Fock states in the input modes of the interferom-

TABLE I. Table showing the fidelities F and probabilities p
obtained by a 2-mode GBS-like device when the target state is
the approximate GKP state |0A4〉. The parameter n represents the
number of input modes receiving the single-photon state |1〉, while
nT denotes the number of photons observed in the detected mode.

n 1 − F p nT

0 0.35 11% 4
0.32 5.4% 4

1 0.35 27% 3
0.31 8.6% 3

4.9 × 10−2 3.1% 5
2 0.40 37% 2

6.6 × 10−2 24% 2

FIG. 6. Plot of the results obtained with a 2-mode GBS-like
device when the target state is the cat state |cate(2)〉. The blue dots
refer to the optima found without single-photon sources. The orange
triangles correspond to the results obtained with one single-photon
source. The green squares indicate the results obtained with two
single-photon sources.

eter, the optimization of the circuit’s tunable parameters can
yield varying outcomes. These outcomes depend on the initial
parameters and the specific measurement pattern considered.
As a consequence, the optimizations over a GBS-like device
with a fixed number of modes and of input Fock states can
lead to possibly very different results in terms of fidelity and
probability. Nevertheless, a general trend can be identified,
and it is highlighted by straight lines in the fidelity-probability
space that demarcate the regions where given classes of results
are present and where they are absent.

As expected [14], at a fixed number of single-photon
sources, the fidelity increases at the expense of lower prob-

FIG. 7. Plot of the results obtained with a 3-mode GBS-like
device when the target state is the cat state |cate(2)〉. The blue dots
refer to the optima found without single-photon sources. The orange
triangles correspond to the results obtained with one single-photon
source. The green squares indicate the results obtained with two
single-photon sources. The purple hexagons indicate the results ob-
tained with three single-photon sources. Diagonal lines limit regions
in the fidelity-probability space where results of the corresponding
color can be found.
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TABLE II. Same as Table I but with the target state being the
even cat state of amplitude α = 2.

n 1 − F p nT

0 3.1 × 10−2 10% 2
2.7 × 10−3 4.7% 4
7.5 × 10−4 2.7% 6

1 5.0 × 10−2 38% 1
5.5 × 10−3 14% 3

2 3.6 × 10−2 39% 2

ability when more photons are measured. Overall, we observe
that the efficiency of the non-Gaussian state source, realized
with a boson sampling-like device, experiences improvement
when single-photon states are injected into the input modes of
the interferometer. For example, when considering the three-
mode GBS-like device, the probability of generating a cat
state with fidelity around 97% steadily increases, potentially
doubling its value, every time a squeezed single-photon state
is used instead of a squeezed vacuum state. The improvement
in the state generation is qualitatively displayed in Fig. 8
through a comparison of the Wigner functions of the target
cat state and the states generated using a three-mode GBS-like
device with and without SPSs.

From a comparison between the outcomes related to
cat-state generation with 2- and 3-mode networks, no im-
provements emerge from using more modes. Indeed, it
appears that the additional resources do not play a significant
role in increasing fidelity with the target state, as one might
expect. In fact, in the context of state generation with purely
Gaussian states, the number D of independent parameters ci

in (18) grows quadratically with the number of modes, as
conjectured in Ref. [15]. However, if the total number of
measured photons, nT < D, the problem of finding the best
parameters is underdetermined, and the optimal result can be
found with smaller Gaussian states. A similar argument holds
even when the number of measured photons nt � D, but the
target state can be well approximated by a quantum state with
a small rank, as is the case for the cat state with amplitude
α = 2. In this scenario, the state that can be generated by
the smaller circuit exhibits satisfactory fidelity, and the search
for a better state attainable with additional modes becomes
unfeasible for the optimizer.

Finally, in Fig. 9, we plot the results presented in Table III
by showing how the relationship between the quality of the

TABLE III. Same as Table II but with a 3-mode GBS-like device.

n 1 − F p nT

0 3.1 × 10−2 8.5% 2
2.1 × 10−3 2.7% 4
3.1 × 10−3 2.8% 4
6.1 × 10−4 1.5% 6

1 4.2 × 10−3 10% 3
6.4 × 10−4 6.1% 5

2 3.2 × 10−2 25% 2
2.3 × 10−3 10% 4

3 3.6 × 10−2 39% 3

FIG. 8. Color maps of the Wigner functions of (a) the target cat
state, (b) the state generated using a GBS-like device without any
single-photon sources, and (c) the state generated using a GBS-like
device with one single-photon source. The probability of generating
the state P is higher when a single Fock state is injected into an input
mode, P = 10.5%. In comparison, the probability achieved solely
with Gaussian inputs is P = 8.5%. Moreover, an improvement in
fidelity is observed, with an increase from 96.9% to 99.6%. This
enhancement is visually apparent in the Wigner function plotted.
The differences in color shading between the generated states and
the target state correspond to reduced values of the Wigner function,
where the norm of this function corresponds to the probability of
generating the displayed states.

results changes with the number of single-photon sources used
to generate the state. The figure of merit for quantifying the
quality of these results is determined as the difference between
the probability p of generating the state and the quantum angle
QA ≡ cos−1

√
F [102], which serves as the measure of the

distance between the generated and target state. Our analysis
reveals that the quality of the results consistently improves
as the number of single-photon sources employed increases.
Indeed, these two quantities are positively correlated, with
a Pearson correlation coefficient of approximately 92% the
sample Pearson correlation coefficient between the variable x
and y, rx,y � 92%, where the coefficient rx,y is defined as

rx,y =
∑

i (xi − x̄)(yi − ȳ)√∑
i (xi − x̄)2

√∑
i (yi − ȳ)2

, (23)

FIG. 9. Plot depicting the difference between the probability of
state generation and the quantum angle with the target state as a
function of the number of single-photon sources, using the data from
the Table III. The dashed line represents the linear regression of the
data, with a slope of approximately 6.7 × 10−2 and an intercept of
approximately −4.0 × 10−2; note that this difference can indeed be
negative
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x̄ is the sample mean of x, while xi and yi are respectively the
number of single-photon sources, and the difference between
probability and QA of the ith optimization.

We close with a brief discussion of single-photon sources
on or compatible with integrated photonic devices. Currently,
these have efficiencies above 84% that are constantly improv-
ing via advances such as better mode coupling [90]. They have
high purities (99.3%) and indistinguishabilities (98%) [90].
Together, purities and indistinguishabilities may each multi-
ply our fidelities and the efficiencies may drop our success
probabilities by a factor of 0.84m for m single-photon sources.
Even so, the states generated using these noisy single-photon
sources will be better than what is possible with ideal GBS
devices alone, with 1 − F and p on the last lines of Tables II,
III, and I being updated to 0.12 < 0.32 and 17% > 11%,
8.7 × 10−2 and 27% > 10%, and 1.1 × 10−1 and 23% >

8.5%, respectively. Moreover, adding realistic noise only on
the single-photon sources elicits a new trade-off, with even
cat states of amplitude α = 2 having higher overall success
probabilities with one single-photon source than with two. As
single-photon-source qualities improve including via quantum
memories and as realistic noise sources such as loss on ideal
GBS devices are considered, we expect the optimal results to
converge to following the trends in Fig. 9.

V. CONCLUSIONS

We have introduced and evaluated an alternative scheme
to non-Gaussian state generation with GBS-like devices pre-
sented in Ref. [15]. Specifically, we have compared the
performance of the source when single photons and inline
squeezing are employed in place of squeezed vacuum states in
the input modes, serving as additional non-Gaussian resources
for the PNRDs. Fidelity with the target state and probability of
success of the conditional source have been used as figures of
merit of the performance. We tested the efficiency of the
model on 2- and 3-mode devices by targeting the Schrödinger
cat state and the GKP code state, as two prominent examples
of non-Gaussian states that complement Gaussian resources
to realize universal quantum computation in the continuous-
variable domain. Despite a variability in the results, ascribable
to the dependence of the classical optimization on the initial
conditions of the quantum circuit, overall, we observe that
the introduction of single photons successfully increases the
probability of generating the states as well as their fidelity
with the target. The 4-photon GKP core state |04〉, can be
generated with fidelities greater than 90% only when at least
one squeezed photon interferes with the other mode. More-
over, the probability of generating a state with a fidelity above
this threshold appears to be eight times larger when two
single-photon sources are employed instead of one. Similarly,
looking at the optimal probability of generating states whose
fidelity with cat states of amplitude α = 2 is approximately
equal to 95%, we see that it increases monotonically with
the number of single photons introduced. Analogous evalu-
ations with higher fidelities or more complex targets could
be conducted with additional simulation resources, enabling
the study of schemes with modes and measuring patterns
that account for a greater number of photons. The advantage
of the presented scheme over a traditional one can also be

FIG. 10. GBS device with single-photon source. The SPS is
necessary because single-photon Fock states are not handled by the
optimizer.

experimentally assessed using high efficiency single-photon
sources and inline squeezing. Since state generation is used
numerous times at the heart of quantum computation proto-
cols, the advantages presented here should compound to make
a marked difference in reducing the overhead for fault-tolerant
quantum computation.
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APPENDIX: SINGLE-PHOTON SOURCE

The Python libraries Strawberry Fields [103,104] and Mr
Mustard [101], developed by Xanadu and used in this work,
are indeed effective to simulate GBS devices. Non-Gaussian
input states are, however, often mishandled by the logic of
those libraries due to the inevitable need to truncate Fock
spaces. As such, it is convenient using always squeezed
vacuum states in the input modes of the interferometer. To
overcome this problem, whenever a single-photon Fock state
|1〉 is chosen as input state, another 2-mode GBS is introduced
as source of the Fock state |1〉. The two input states for this
source are indeed Gaussian as well and the PNRD on the an-
cillary mode can be simulated when all the other modes of the
main GBS are detected. In this way the ancillary GBS single-
photon source can be integrated with the actual GBS device
under investigation. The simulator then effectively treats an
n-mode GBS-device with m single-photon input states |1〉 as
an (n + m)-mode linear interferometer where only one mode
is left unmeasured, and the optimization is restricted to the
tunable parameters of the main GBS device leaving the an-
cillary mode parameters fixed. An example with an N-mode
GBS and a single-photon source is given in Fig. 10.
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FIG. 11. Interferometer made of two symmetric 50 : 50 beam
splitters and four phase shifters that realizes the evolution described
in (A5).

The single-photon source (SPS) shown in the violet box
of Fig. 10 is created itself with another GBS device. A Gaus-
sian state can be prepared by squeezing single-mode vacuum
states and letting them interfere in a linear interferometer. The
single-mode squeeze operator S(r) with r ∈ R is expressed in
terms of creation operator â† and annihilation operator â as

S(r) = exp

[
r

2
(â2 − â†2)

]
. (A1)

The squeezed vacuum state |r〉 is then given by

|r〉 = S(r) =
∞∑

n=0

αn(r)|2n〉, (A2)

where

αn(r) =
√

(2n)!

2nn!

tanhn r√
cosh r

. (A3)

As it has been shown above any linear N-mode linear interfer-
ometer can be decomposed into N (N − 1)/2 beam splitters θ,
ϕ and phase-shift gate R(φ). The beam splitter operation in
terms of creation and annihilation operator on the modes i and
j is

Bi j (θ, ϕ) = exp[θ (eiϕ âiâ
†
j − e−iϕ â†

i â j )]. (A4)

The unitary operator describing the evolution of the opera-
tors âi, â j under the action of the beam splitter in (A4) is

U (θ, ϕ) =
(

cos θ eiφ sin θ

−e−iφ sin θ cos θ

)
, (A5)

where ϕ = π − φ. This evolution can be realized with an
interferometer made of two 50 : 50 beam splitters and four
phase shifters arranged as displayed in Fig. 11.

Given a two-mode pure input Fock state |n〉|m〉, the output
state produced by the beam splitter B(θ, φ) is [105]

B(θ, φ)|n〉|m〉 =
∑
q,q′

(
n

q

)(
m

q′

)√
(q + q′)!(n + m − q − q′)!

n!m!

× cos (θ )m+q−q′
sin (θ )n−q+q′

ei(n−q−q′ )φ (−1)q′ |q + q′, n + m − q − q′〉. (A6)

We can now see how the two mode Gaussian state |ψ〉 produced by interfering two single-mode squeezed vacuum states in
the interferometer displayed in Fig. 11 can be expanded in the Fock basis. The 1 (2) label marks the first (second) mode:

|ψ〉 = B(θ, φ)S2(r2)S1(r1)|0〉1|0〉2 =
∞∑

n=0

αn(r1)B(θ, φ)S2(r2)|2n〉1|0〉2

=
∞∑

n,m=0

αn(r1)αm(r2)B(θ, φ)|2n〉|2m〉

=
∞∑

n,m=0

αn(r1)αm(r2)
∑
q,q′

(
n

q

)(
m

q′

)√
(q + q′)!(2n + 2m − q − q′)!

n!m!

× cos (θ )2m+q−q′
sin (θ )2n−q+q′

ei(2n−q−q′ )φ (−1)q′ |q + q′, 2n + 2m − q − q′〉. (A7)

We know that a single-photon state can be generated by measuring an odd number of photons in the output mode. In particular,
a single-photon Fock state whose stellar rank is equal to one can be produced even when only one photon is measured in the
ancillary mode. In this case the unnormalized heralded state is

〈1|2|ψ〉 = 〈1|2B(θ, φ)S2(r2)S1(r1)|0〉1|0〉2

= 2
∞∑

n,m=0

tanhn (r1) tanhm (r2)√
cosh (r1) cosh (r2)

√
(2n + 2m − 1)!

2n+mn!m!
[cos (θ )]2n+1[e−iφ sin (θ )]2m−1[n tan2 (θ ) − m]|2(n + m) − 1〉

= 2eiφ cot θ√
cosh (r1) cosh (r2)

∞∑
N=1

√
(2N−1)!

2N
tanhN (r2)(e−iφ sin θ )2N

N∑
n=0

(
tanh r1

tanh r2

)n
(
eiφ cot θ

)2n

n!(N−n!)

(
n

cos2 (θ )
−N

)
|2N − 1〉.

(A8)
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The single-mode unnormalized state 〈1|2|ψ〉 can thus be written as

〈1|2|ψ〉 = N
∞∑

N=1

cN |2N − 1〉, (A9)

where

N = 2eiφ cot θ√
cosh(r1) cosh(r2)

and cN is the coefficient relative to the Fock state |2N − 1〉. To determine which values of r1, r2, θ , and φ lead to a single-photon
Fock state generation, we have to ensure that c1 �= 0 and cN = 0 ∀ N � 2.

In general, we have that

cN ∝
N∑

n=0

(
tanh r1

tanh r2

)n (eiφ cot θ )2n

n!(N − n!)

(
n

cos2 (θ )
− N

)
. (A10)

By introducing the function f (r1, r2) ≡ (tanh r1/tanh r2) we find that

c1 ∝ −1 + f (r1, r2)e2iφ, (A11)

while

c2 ∝ −1 + f (r1, r2)e2iφ[1 − cot2 (θ )] + f 2(r1, r2)e4iφ cot4 (θ ). (A12)

We proceed by setting c2 = 0. We can prove by contradiction that φ ∈ {π/2, 3π/2} is a necessary condition.
Proof. Let us assume that there exists φ /∈ {π/2, 3π/2} that satisfies c2 = 0. If c2 = 0, then both Re{c2} = 0, and Im{c2} = 0:

Im{c2} = 0 ⇒ sin (2φ) f (r1, r2)[1 − cot2 (θ ) + 2 f (r1, r2) cot2 (θ ) cos (2φ)] = 0, (A13)

⇒ 1 − cot2 (θ ) + 2 f (r1, r2) cot2 (θ ) cos (2φ) = 0, (A14)

⇒ f (r1, r2) = cot2 (θ ) − 1

2 cot2 (θ ) cos (2φ)
; (A15)

Re{c2} = 0 ⇒ cot2 (θ ) − 1

2 cot2 (θ ) cos (2φ)
cos (2φ)[1 − cot2 (θ )] + [cot2 (θ ) − 1]2

4 cot4 (θ ) cos2 (2φ)
cot2 (θ )[2 cos2 (2φ) − 1] = 1, (A16)

⇒ − [1 − cot2 (θ )]2

2 cot2 (θ )
+ [1 − cot2 (θ )]2

2 cot2 (θ )
− [1 − cot2 (θ )]2

4 cot4 (θ ) cos2 (2φ)
= 1, (A17)

⇒ 1 = − [1 − cot2 (θ )]2

4 cot4 (θ ) cos2 (2φ)
� 0. (A18)

This proves that there does not exist any φ /∈ {π/2, 3π/2} that satisfies the condition c2 = 0. While (A13) is verified only when
sin(2φ) = 0, and φ ∈ {π/2, 3π/2}. �

From (A10) we can observe that the sign einπ = (−1)n can be compensated by a change of sign of r1 since tanh(r1) is an odd
function. As a consequence, we can set φ = π/2 without loss of generality.

In this case we find that

c2 = 0 ⇒ f (r1, r2)[1 − cot2 (θ ) + 2 f (r1, r2) cot2 (θ )] = 0, (A19)

⇒ 1 + f (r1, r2) = f (r1, r2) cot2 (θ )[1 + f (r1, r2)]. (A20)

Equation (A20) is verified when f (r1, r2) = −1. However, this condition also set c1 in (A11) to zero. The alternative solution is

f (r1, r2) = tan2 (θ ). (A21)

This condition satisfies cN = 0 for any N � 2.
Proof.

cN ∝
N∑

n=0

(−1)n

n!(N − n!)

(
n

cos2 (θ )
− N

)
=

N∑
n=0

(−1)n

n!(N − n!)

n

cos2 (θ )
− N

N∑
n=0

(−1)n

n!(N − n!)

=
M+1∑
n=0

(−1)n

n!(M + 1 − n!)

n

cos2 (θ )
− N

N∑
n=0

(1)N−n(−1)n

n!(N − n!)
=

M+1∑
n=1

(−1)(−1)n−1

n(n − 1)![M − (n − 1)!]

n

cos2 (θ )
− N (1 − 1)N

= − 1

cos2 (θ )

M∑
m=0

(−1)m

m!(M − m!)
= − 1

cos2 (θ )

M∑
m=0

(1)M−m(−1)m

m!(M − m!)
= − 1

cos2 (θ )
(1 − 1)M = 0 ∀ M � 1. (A22)

�
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The squeezing intensities r1, and r2 are related with the beam splitter angle θ via the relation in (A21). They can be optimized
to maximize the probability P(r1, r2) of generating the single-photon Fock state. From (A8) we have

P(r1, r2) =
∣∣∣∣〈1|1〈1|2B

(
θ,

π

2

)
S2(r2)S1(r1)|0〉1|0〉2

∣∣∣∣
2

=
∣∣∣∣ i sin (2θ )

2
√

cosh (r1) cosh (r2)
(tanh (r1) + tanh (r2))

∣∣∣∣
2

(A23)

=
∣∣∣∣ 2 tan (θ )

1 + tan2 (θ )

tanh (r1) + tanh (r2)

2
√

cosh (r1) cosh (r2)

∣∣∣∣
2

=

∣∣∣∣∣∣∣

√
tanh r1
tanh r2

1 + tanh r1
tanh r2

tanh (r1) + tanh (r2)√
cosh (r1) cosh (r2)

∣∣∣∣∣∣∣

2

(A24)

=
∣∣∣∣
√

sinh (r1) sinh (r2)

cosh (r1) cosh (r2)

∣∣∣∣
2

=
∣∣∣∣ sinh (r1) sinh (r2)

cosh2 (r1) cosh2 (r2)

∣∣∣∣. (A25)

So P(r1, r2) is a multiplicatively separable function with
respect to the variables r1, and r2. Because of the symme-
try of the function, a maximum is found for r1 = r2 = r∗,

θ = π/4, and r∗ = arctanh(1/
√

2) ≈ 0.8814 that maximizes
the function sinh(r)/cosh2(r). In this case the probability of
generating a single-photon Fock state is P(r∗, r∗) = 1/4.
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