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Relating the Glauber-Sudarshan, Wigner, and Husimi quasiprobability distributions operationally
through the quantum-limited amplifier and attenuator channels
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The Glauber-Sudarshan, Wigner and Husimi quasiprobability distributions are indispensable tools in quantum
optics. However, although mathematical relations between them are well established, not much is known about
their operational connection. In this paper, we prove that a single composition of finite-strength quantum
limited amplifier and attenuator channels, known for their noise-adding properties, turns the Glauber-Sudarshan
distribution of any input operator into its Wigner distribution, and its Wigner distribution into its Husimi
distribution. As we dissect, the considered process, which can be performed in a quantum optical laboratory
with relative ease, may be interpreted as realizing a quantum-to-classical transition.
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I. INTRODUCTION

In 1932 [1], Wigner discovered what is now called the
Wigner function, a description of quantum mechanics akin to
the classical phase space, though not fully compatible with it.
A few years later, in 1940 [2], Husimi invented the Husimi
representation, a function even closer to classical mechanics
due to its nonnegativity. Finally, in 1963 [3,4], Glauber and
Sudarshan discovered that any quantum state of the radia-
tion field can be written as a diagonal sum over the set of
coherent states weighed according to the Glauber-Sudarshan
distribution.

Today, these three quasiprobability distributions, the
“quasi” part coming from the fact that none of them ful-
fill all the properties of an actual probability distribution,
are some of the most important theoretical tools in quantum
optics, especially in quantum tomography and investigations
of nonclassicality [5–10]. In the case of the former, the
Wigner function has allowed for probing classes of sys-
tems as varied as squeezed vacuum [11], thermal [12], and
single-photon states, among others [13–15]. In the case of the
latter, both Wigner and Glauber-Sudarshan distributions are
used [16–18], with the negativity of the Glauber-Sudarshan
distribution typically accepted as the very definition of
nonclassical light [19,20]. The Husimi function also has
many applications, ranging from the aforementioned tomog-
raphy [21,22] to the quantum phase measurement [23,24].

The three phase-space distributions are not indepen-
dent: the mathematical relations between them are well
known [7,9]. More explicitly, the Wigner and Husimi dis-
tributions can be understood in terms of simple Gaussian
smoothing of the Glauber-Sudarshan distribution. However,
to the best of our knowledge, the physical connection be-
tween these distributions is not established, aside from the fact
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that the Glauber-Sudarshan distribution of a system subjected
to the quantum limited amplifier channel of infinite strength
approaches its Husimi distribution [25]. This process, how-
ever, requires infinite energy, and is therefore unphysical.

In this paper, we propose a simple physical process that
turns the Glauber-Sudarshan distribution of any operator (in-
cluding any density operator) into its Wigner function, and its
Wigner function into its Husimi function. This process, given
by a finite-strength quantum limited amplifier followed by
an attenuator channel [26–29], has a well-known operational
interpretation in terms of noise addition, and being Gaussian,
is readily accessible experimentally [30,31]. Furthermore, as
we show, it has a number of properties expected from a “clas-
sicalization” procedure: for example, its double application
realizes a projection onto the set of coherent states.

This paper is organized as follows. In Sec. II, we for-
mally introduce the discussed quasiprobability distributions.
In Sec. III we do the same for our main tool: quantum limited
amplifier and attenuator channels. In Secs. IV and V, we first
derive and then thoroughly discuss our main results. Finally,
we provide outlooks in Sec. VI.

II. GLAUBER-SUDARSHAN, WIGNER AND HUSIMI
QUASIPROBABILITY DISTRIBUTIONS

We start by providing basic information about the three
considered quasiprobability distributions, relevant for the
derivation and understanding of our results. For a more thor-
ough treatment, we refer the reader to one of the numerous
didactic sources, e.g., [5,8,9]. We remark that, for clarity of
presentation, we assume the Hilbert space to be one-mode.
However, we stress that our results apply (through a straight-
forward generalization) to an arbitrary number of modes.

The Glauber-Sudarshan P distribution [3,4] of an arbitrary
operator X̂ (including any density operator) is defined through
a diagonalization in the set of coherent states |α〉, i.e., the
eigenstates of the annihilation operator â with eigenvalue α.
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More precisely, the P distribution is such that

X̂ =
∫

d2α

π
PX̂ (α)|α〉〈α|, (1)

where ∫
d2α :=

∫ ∞

−∞
d Re(α)

∫ ∞

−∞
d Im(α). (2)

In general, the P distribution is not a function, and in fact it
can be highly singular. This is most easily seen from its formal
expression in the Fock basis [9]

PX̂ (α) =
∞∑

n,m=0

Xnm
(−1)n+m

√
n!m!

e|α|2 ∂n+m

∂αn∂α∗m
δ(α), (3)

where δ(α) is the Dirac delta distribution. For example, for a
pure Fock state, we have

P|n〉〈n|(α) = 1

n!
e|α|2 ∂2n

∂αn∂α∗n
δ(α). (4)

Still, for states considered semi-classical, such as, e.g., ther-
mal states, the P distribution does reduce to an ordinary,
nonnegative function, meaning that the state can be expressed
as a classical mixture of coherent states. For this reason, the
nonpositivity of the P distribution is used as a criterion for
nonclassicality [19,20]. Note that, like all quasiprobability
distributions, the P distribution is normalized to 1.

The Wigner W distribution [1] (sometimes called a func-
tion) is closer to an ordinary probability distribution: although
it may obtain negative values for some states, it is never
singular for them. For our purposes, it is most conveniently
defined as

WX̂ (α) :=
∫

d2β

π
Tr[X̂ D̂(β )]eαβ∗−α∗β, (5)

where D̂(β ) is the displacement operator

D̂(β ) := exp(βâ† − β∗â). (6)

The W distribution of a Fock state equals [9]

W|n〉〈n|(α) = 2(−1)ne−2|α|2 Ln(4|α|2), (7)

with Ln being the nth Laguerre polynomial. As seen, although
it does take on negative values, it is still a well-behaved func-
tion. Similarly to the P distribution, nonpositivity of the W
function can be considered a measure of nonclassicality [16].

Finally, the Husimi Q distribution [2] (or function) is the
most classical-like: it is nonnegative for all quantum states,
which is obvious from its definition:

QX̂ (α) := 〈α|X̂ |α〉. (8)

For the particular case of a Fock state, we obtain the Poisson
distribution in the particle number with mean |α|2:

Q|n〉〈n|(α) = |α|2n

n!
e−|α|2 . (9)

We stress that, despite its nonnegativity, even the Q func-
tion is not a true probability distribution as, due to the
nonorthogonality of coherent states, different values of α do
not correspond to mutually exclusive events.

Let us remark that, historically, the discussed distributions
were often defined with an additional multiplicative factor
of 1/π . Here, we follow the more modern convention of,
e.g., [32,33] and omit this factor (of course in the end both
conventions give exactly the same results). In addition to
resulting in more consistent formulas (the factor of 1/π now
simply always appears with the integration measure d2α),
this arguably brings the quasiprobability distributions closer
to classical distributions. Specifically, the Q distribution is
now bounded from above by 1, rather than 1/π , meaning that,
e.g., in the case of Eq. (9) it becomes precisely the Poisson
distribution, instead of only being proportional to it.

It is well known that the three discussed quasiprobability
distributions are related by means of Gaussian smoothing, a
so-called Weierstrass transform [7,9]

WX̂ (α) = 2
∫

d2β

π
PX̂ (β )e−2|α−β|2 , (10)

QX̂ (α) = 2
∫

d2β

π
WX̂ (β )e−2|α−β|2 , (11)

which, applied in succession, imply also

QX̂ (α) =
∫

d2β

π
PX̂ (β )e−|α−β|2 . (12)

Equations (10) to (12) provide a basic intuition about why the
Q distribution behaves more classical-like than the W distribu-
tion, which, in turn, is more classical than the P distribution:
the potential irregularities in the input distribution are being
“smeared” in the output by a Gaussian function. The main aim
of our paper is to give these mathematical formulas an explicit
operational interpretation in terms of well-known, experimen-
tally available transformations: the quantum limited amplifier
and the quantum limited attenuator.

III. QUANTUM LIMITED AMPLIFIER
AND ATTENUATOR CHANNELS

For a single mode, the action of the quantum limited am-
plifier channel of strength κ � 1 on an operator X̂ is defined
through an interaction with an ancillary system in the vacuum
state as [34,35]

Aκ (X̂ ) := Tr2[Ŝ12(κ )(X̂ ⊗ |0〉〈0|)Ŝ†
12(κ )], (13)

where

Ŝ12(κ ) := exp[arcosh
√

κ (â†b̂† − âb̂)] (14)

is the two-mode squeezing operator and b̂ is the annihilation
operator of the ancillary system traced out in Eq. (13). The
larger the value of κ , the stronger the amplification, with
κ = 1 corresponding to the identity channel. Physically, the
amplifier describes the process of pumping particles into the
system

〈â†â〉Aκ (ρ̂ ) = κ 〈â†â〉ρ̂ + κ − 1, (15)

which is easy to prove from the definition of the channel and
the fact that [35]

Ŝ†
12(κ ) â Ŝ12(κ ) = √

κ â + √
κ − 1 b̂†. (16)
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Importantly, the amplification occurs in a way that is asso-
ciated with making the system more classical-like [25]. For
example, it is known that P distribution of an infinitely ampli-
fied state is always nonnegative [25], i.e., semi-classical.

The action of the quantum limited attenuator channel of
strength λ ∈ [0, 1] on an operator X̂ is defined similarly as

Eλ(X̂ ) := Tr2[B̂12(λ)(X̂ ⊗ |0〉〈0|)B̂†
12(λ)], (17)

where

B̂12(λ) := exp[arccos
√

λ(â†b̂ − âb̂†)] (18)

is the two-mode beamsplitter operator. Here, the strength
of the channel is decreasing with λ, with the largest value
λ = 1 corresponding to the identity channel. Intuitively, the
quantum limited attenuator, sometimes called a pure-loss
channel [28,29], has an inverse effect to the amplifier: it weak-
ens the system by decreasing the number of particles within

〈â†â〉Eλ(ρ̂ ) = λ 〈â†â〉ρ̂ + 1 − λ. (19)

Again, this easily follows from the definition of the channel
and the identity [35]

B̂†
12(λ) â B̂12(λ) =

√
λ â + √

1 − λ b̂†. (20)

IV. MAIN RESULTS

We are now in the position to state and prove our main
result. An in-depth discussion is provided in the next section.

Proposition 1. Let

C := E1/2 ◦ A2, (21)

with Aκ and Eλ being the quantum limited amplifier and
attenuator, respectively, as defined in the previous section.
The following relations between the P, W, Q quasiprobability
distributions hold:

WX̂ (α) = PC(X̂ )(α), (22)

QX̂ (α) = WC(X̂ )(α), (23)

QX̂ (α) = PC2(X̂ )(α). (24)

Proof. We begin by observing that it is enough to prove
only Eq. (22). If this equation is true, then by comparison with
Eq. (10) we would have

PC(X̂ )(α) = 2
∫

d2β

π
PX̂ (β )e−2|α−β|2 . (25)

Since PX̂ is completely arbitrary, we could substitute WX̂ for
it, which together with Eq. (11), would yield Eq. (23). The
remaining Eq. (24) follows directly from Eqs. (22) and (23).

To prove Eq. (22), it will be convenient to first compute
the action of the channel C on an arbitrary coherent state. We
begin by calculating A2(|α〉〈α|). By definition (13),

A2(|α〉〈α|) = Tr2[Ŝ12(2)|α0〉〈α0|Ŝ†
12(2)]

= Tr2[Ŝ12(2)D̂1(α)|00〉〈00|D̂†
1(α)Ŝ†

12(2)]. (26)

Here and below, the bottom index for the displacement opera-
tor denotes the mode it acts upon. Using the unitary property

of squeezing and the fact that [36]

Ŝ12(κ ) â Ŝ†
12(κ ) = √

κ â − √
κ − 1 b̂†, (27)

we get

A2(|α〉〈α|) = Tr2[Ẑ12(α)Ŝ12(2)|00〉〈00|Ŝ†
12(2)Ẑ†

12(α)], (28)

where

Ẑ12(α) := Ŝ12(2)D̂1(α)Ŝ†
12(2)

= exp[α(
√

2â† − b̂) − α∗(
√

2â − b̂†)]

= D̂1(
√

2α)D̂2(α∗). (29)

Substituting this into Eq. (28), we make two observations.
First, because the trace is only over the second subsystem, the
displacement operators for the first subsystem can be taken
outside. Second, because partial trace is cyclic in the subsys-
tem that we trace out, the displacement operators in the second
subsystem can be moved to cancel with each other (since they
are unitary). In summary, we obtain

A2(|α〉〈α|) = D̂1(
√

2α)Tr2[Ŝ12(2)|00〉〈00|Ŝ†
12(2)]D̂†

1(
√

2α).
(30)

However, by definition, the partial trace above is nothing but
A2(|0〉〈0|), which is known [35] to be just the thermal state

ĝβ := e−βâ†â

Tre−βâ†â
, (31)

with inverse temperature β = ln 2. This yields

A2(|α〉〈α|) = D̂(
√

2α)ĝln 2D̂†(
√

2α). (32)

We now move to the phase space. The P representation of
thermal states is [9]

Pĝβ
(γ ) = 1

n̄
e−|γ |2/n̄, (33)

where n̄ = 1/(eβ − 1) is the mean number of photons in the
state. For our case, i.e., β = ln 2, it is easy to see that n̄ = 1,
resulting in

A2(|α〉〈α|) =
∫

d2γ

π
e−|γ |2 D̂(

√
2α)|γ 〉〈γ |D̂†(

√
2α)

=
∫

d2γ

π
e−|γ |2 |γ +

√
2α〉〈γ +

√
2α|, (34)

where we use the defining property of the displacement op-
erator: displacing coherent states. Changing the integration
variable, the above reduces to

A2(|α〉〈α|) =
∫

d2γ

π
e−|γ−√

2α|2 |γ 〉〈γ |. (35)

To obtain C(|α〉〈α|), we need only to apply E1/2 to the above,
i.e.,

C(|α〉〈α|) =
∫

d2γ

π
e−|γ−√

2α|2E1/2(|γ 〉〈γ |). (36)

However, the action of the quantum limited attenuator on
coherent states is simple [35]:

Eλ(|α〉〈α|) = |
√

λα〉〈
√

λα|. (37)
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Therefore, we have

C(|α〉〈α|) =
∫

d2γ

π
e−|γ−√

2α|2 |γ /
√

2〉〈γ /
√

2|, (38)

and ultimately, after a change of integration variable,

C(|α〉〈α|) = 2
∫

d2γ

π
e−2|γ−α|2 |γ 〉〈γ |. (39)

Note that 2e−2|γ−α|2 is actually the Wigner function of a coher-
ent state, meaning that with the above equation, we essentially
prove Eq. (22) for coherent state inputs.

To generalize to arbitrary operators, we once again employ
the P representation, obtaining

C(X̂ ) =
∫

d2α

π
PX̂ (α) C(|α〉〈α|). (40)

However, we already know C(|α〉〈α|) from Eq. (39). We thus
get

C(X̂ ) =
∫

d2γ

π
|γ 〉〈γ | × 2

∫
d2α

π
PX̂ (α)e−2|γ−α|2 . (41)

Comparing the rightmost integral in the above equation with
Eq. (10), we can see that

C(X̂ ) =
∫

d2γ

π
WX̂ (γ )|γ 〉〈γ |. (42)

Clearly, then, by definition (1), the P distribution of C(X̂ ) is
the W distribution of X̂ . This is exactly what we wanted to
prove.

V. DISCUSSION

Let us discuss our results. To start with, our Eqs. (22)
to (24) provide a direct operational interpretation for the
mathematical relations (10) to (12). As we show, the Gaus-
sian smoothing appearing there corresponds physically to a
combination of quantum limited amplification and attenua-
tion. Notably, both channels enter the relations with finite
strengths, meaning that, as Gaussian operations, they can
be relatively easily performed in a modern quantum optical
laboratory [30,31]. This improves upon a previously known
relation between the P and Q distributions [25], which re-
quires infinite amplification and thus infinite energy, and is
therefore unphysical.

Our findings also strengthen the intuition that the Q
distribution can be considered more classical than the W
distribution, which in turn is more classical than the P
distribution. As mentioned previously, the quantum limited
amplifier is already known for making various phenomena
more classical: besides the previously mentioned transfor-
mation of the P distribution into the Q distribution [25],
it also transforms the von Neumann entropy into the semi-
classical Wehrl entropy [32] and the Pegg-Barnett quantum
phase formalism into the Husimi distribution-based Paul for-
malism [37]. Furthermore, both the quantum limited amplifier
and the quantum limited attenuator are irreversible channels,
meaning that the application of the channel C to the system
results in irreversible coarse-graining, i.e., loss of the full
quantum information.

Notably, unlike for the quantum limited amplifier A2 or the
quantum limited attenuator E1/2, where the coarse-graining
comes at the price of a radical change in the number of parti-
cles in the system (roughly either doubling or halving it), their
combined action through the channel C leaves this number
effectively intact for all but very low particle numbers. By
combining the formulas (15) and (19) one can easily calculate
that under the action of the channel, the mean particle number
of the system transforms as

〈â†â〉C(ρ̂) = 〈â†â〉ρ̂ + 1. (43)

The additional term of 1 can be considered negligible for all
systems but those very close to the vacuum state.

The classicality-increasing effect of the channel C can
be seen by considering sets of semi-classical states. Let us
define by S the set of all quantum states associated with
the considered Hilbert space and by SW+ , SP+ the subsets of
S consisting of all the states with nonnegative Wigner and
Glauber-Sudarshan distributions, respectively. We have that

S ⊃ SW+ ⊃ SP+ , (44)

with the classicality of the subsequent sets increasing from
left to right (since the nonnegativity of the P distribution is
a stronger criterion for classicality than its analog for the W
function). Now, consider the image Im(C) of the channel C
when acting on ρ̂ ∈ S . Because the Q distribution is non-
negative for all density operators, it follows directly from our
main result that Im(C) ⊂ SW+ and Im(C2) ⊂ SP+ : subsequent
actions of the channel C take the quantum state into more and
more semi-classical sets.

Let us observe that, because the action of the channel C2

is equivalent to replacing the P distribution of the input by its
Q distribution, the channel must necessarily coincide with the
projection onto the set of coherent states:

C2(X̂ ) =
∫

d2α

π
|α〉〈α|X̂ |α〉〈α|. (45)

Using the P representation with Eqs. (37), (35), and (12),
one can also easily derive yet another representation for the
channel (for convenience, we present the full derivation in
Appendix A)

C2 = A2 ◦ E1/2. (46)

In other words, C2 has identical components as the channel C,
but applied in reverse order. These findings have two worth-
while consequences.

(1) The projection onto the set of coherent states, effec-
tively a projection onto a set of semi-classical pure states, can
be experimentally implemented either by a double application
of the channel C = E1/2 ◦ A2 or by a single application of the
channel C2 = A2 ◦ E1/2.

(2) The channel C can be regarded as a square root of such
a projection, i.e., a square root of a projection onto the set of
semi-classical pure states.

We remark that channels of the form

NE = AE+1 ◦ E1/(E+1), (47)

which realize C2 for E = 1, are known in the literature under
the name of additive-noise channels [26].
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To demonstrate that the action of the channel C indeed
makes its input more classical, let us consider the displaced
parity operator [38–40]

�̂(α) := 2D̂(α)(−1)â†âD̂†(α), (48)

used, e.g., in spectroscopy. Here, the multiplicative factor of 2
was added to normalize the operator to 1 [41]. As we explicitly
calculate in Appendix B, despite not even being a valid quan-
tum state (due to its negative eigenvalues), the displaced parity
operator becomes semi-classical after subjecting it once and
twice to the channel C. After a single application, we obtain
the coherent state

C[�̂(α)] = |α〉〈α|, (49)

which is, of course, regarded as one of the most classical states
in quantum mechanics. However, it can be argued that the
state is still partially quantum due to its ideal purity: its von
Neumann entropy SV (ρ̂ ) := −Tr(ρ̂ ln ρ̂ ) vanishes, indicating
zero uncertainty about the quantum system it describes. This
stops being the case after a second application of the channel

C2[�̂(α)] = 2
∫

d2γ

π
e−2|α−γ |2 |γ 〉〈γ |, (50)

where we obtain a classical Gaussian mixture of (already
semi-classical) coherent states.

The fact that coherent states can be written as the action
of C on the parity operator has some further implications.
Namely, using the P representation, we have that, for any
operator

X̂ = C
[∫

d2α

π
PX̂ (α)�̂(α)

]
. (51)

However, if this is true, then we can identify the following
formal expression for the channel inverse:

C−1(X̂ ) =
∫

d2α

π
PX̂ (α)�̂(α). (52)

We stress that this formula should be treated with care: al-
though the operator above indeed behaves like the channel
inverse (e.g., applying C to the above gives X̂ ), it may not be
unique. Furthermore, and perhaps more importantly, the above
formal inverse may in practice not exist for certain inputs, in
the same way that, although formally the P distribution may
be obtained from the Q distribution by inverting the Weier-
strass transform (12), in practice, the result is often divergent.

The example of the parity operator highlights another sub-
tlety of the “classicalization” procedure through the channel
C. According to Proposition 1, if we apply the channel C (or
C2) to any valid density operator, regardless of how much
“quantumness” it contains, we will end up with another valid
density operator: a completely semi-classical one in the sense
of having a nonnegative W (or P) distribution. However, the
converse is, in general, not true: if we start with a semi-
classical state, it will, in general, not be possible to write it as
the action of C (or C2) on some other valid density operator.
An explicit example of this is given by the state (50): although
it is semi-classical, it originates through the channel C2 by
the displaced parity operator (48), which does not describe a
quantum state.

This property allows us to define new formal crite-
ria for nonclassicality based on negativity of the Wigner
and Glauber-Sudarshan distributions. Using the channel in-
verse (52) in Eq. (23), we immediately find that for any
state ρ̂

Wρ̂ (α) = QC−1(ρ̂ )(α). (53)

Since C−1(ρ̂ ) does not have to be a valid density operator, its
Husimi distribution may have negative values, corresponding
to a nonclassical Wigner function of ρ̂. This implies the fol-
lowing conditions.

(1) A sufficient condition for classicality of the state ρ̂

with respect to Wigner function negativity is that C−1(ρ̂) is
positive semi-definite, i.e., it is a valid quantum state.

(2) A necessary condition for nonclassicality of the state
ρ̂ with respect to Wigner function negativity is that C−1(ρ̂) is
not positive semi-definite.

Note that even if C−1(ρ̂) is not positive semi-definite, it
can still have a nonnegative Husimi distribution, which is
why the second criterion given above is only necessary for
nonclassicality.

Similar conditions can be constructed for the Glauber-
Sudarshan distribution. Due to Eq. (24), we have

Pρ̂ (α) = QC−2(ρ̂ )(α), (54)

meaning the following.
(1) A sufficient condition for classicality of the state ρ̂

with respect to Glauber-Sudarshan distribution negativity is
that C−2(ρ̂) is positive semi-definite.

(2) A necessary condition for nonclassicality of the state
ρ̂ with respect to Glauber-Sudarshan distribution negativity is
that C−2(ρ̂) is not positive semi-definite.

The above criteria could even give rise to nonclassicality
measures based on the degree to which C−1(ρ) and C−2(ρ) fail
to be positive semi-definite, similarly to how it is sometimes
possible to measure state entanglement based on the degree to
which its partial transpose is negative [42–44]. Alternatively,
one could consider the distance (such as the trace distance or
relative entropy) of state ρ̂ from the set of states of the form
C(σ̂ ) [or C2(σ̂ )], with σ̂ being valid quantum states. As open
problems for future research we leave both: in-depth formal
analysis of the above idea within the framework of resource
theories, as well as its practical applications for selected fam-
ilies of states (e.g., with high symmetry).

VI. OUTLOOKS

We derived explicit operational relations between the three
most well-known quantum quasiprobability distributions: the
Glauber-Sudarshan distribution and the Wigner and Husimi
functions. Notably, these relations, summarized in Proposi-
tion 1, rely fully on the channel C, a single composition of
finite-strength quantum limited amplifier and quantum lim-
ited attenuator, both readily available in a modern quantum
optical laboratory. Our results shed light on the operational
understanding of the quantum-to-classical transition.

Our findings may provide a basis for further research. Most
notably, as discussed in the last section, the channel C can
be used to define new formal criteria for and measures of
nonclassicality of quantum states. It would be interesting to
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see whether these criteria and measures could be employed
in practical calculations or if they can be related to other
known objects of this type. Furthermore, one could verify
experimentally what happens to quantum systems when sub-
jected to the channels C and C2, with special emphasis on
systems with strong quantum features, such as a high degree
of entanglement or purity.
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APPENDIX A: PROOF OF EQ. (46)

In this Appendix, we prove Eq. (46). Using the P represen-
tation and Eq. (37), we immediately get

A2 ◦ E1/2(X̂ ) =
∫

d2α

π
PX̂ (α)A2(|α/

√
2〉〈α/

√
2|). (A1)

Employing (35) and rearranging, this becomes

A2 ◦ E1/2(X̂ ) =
∫

d2γ

π
|γ 〉〈γ | ×

∫
d2α

π
PX̂ (α)e−|γ−α|2 .

(A2)

Comparing with Eq. (12), we immediately see that the second
integral is just the Q distribution of X̂ . Since the latter is
arbitrary, the channel A2 ◦ E1/2 must coincide with the r.h.s.
of Eq. (45), concluding the proof.

APPENDIX B: PROOF OF EQS. (49) AND (50)

In this Appendix, we calculate the action of the channels
C, C2 on the displaced parity operator (48). First, let rewrite
Eq. (32) as [we remind the reader that ĝln 2 = A2(|0〉〈0|)],

A2[D̂(α)|0〉〈0|D̂†(α)] = D̂(
√

2α)A2(|0〉〈0|)D̂†(
√

2α).
(B1)

As we can see, at least for the initial vacuum state, the dis-
placement channel and the quantum limited amplifier nearly
commute, i.e., they commute if we rescale the displacement
factor by

√
2. However, it is not difficult to convince oneself

that our derivation of Eq. (32), and hence (B1), made no use of
the fact that the initial state was the vacuum state. This means
that for arbitrary X̂ , the following holds:

A2[D̂(α)X̂ D̂†(α)] = D̂(
√

2α)A2(X̂ )D̂†(
√

2α). (B2)

In particular, for the displaced parity operator,

A2[�̂(α)] = 2D̂(
√

2α)A2[(−1)â†â]D̂†(
√

2α). (B3)

The action of the quantum limited amplifier can be calculated
from the explicit formula in the number basis [37]

Aκ (X̂ ) = 1

κ

∞∑
j=0

(
κ − 1

κ

) j ∞∑
m,n=0

Xmn√
κ

m+n

×
√(

j + m

j

)(
j + n

j

)
| j + m〉〈 j + n|, (B4)

which yields

A2[(−1)â†â] = 1
2 |0〉〈0|, (B5)

and hence

A2[�̂(α)] = D̂(
√

2α)|0〉〈0|D̂†(
√

2α) = |
√

2α〉〈
√

2α|.
(B6)

Applying E1/2 to both sides and by using Eq. (37), we obtain
Eq. (49).

It remains to prove Eq. (50). However, according to what
we have just shown, C2[�̂(α)] = C(|α〉〈α|), which we have
already calculated in Eq. (39). As we can easily see, the latter
indeed coincides with Eq. (50).
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