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Many applications of quantum optics demand delicate quantum properties of light carefully tailored to
accomplish a specific task. To this end, numerical simulations of quantum light sources are vital for designing,
characterizing, and optimizing quantum photonic technology. Here, I show that exploiting information hidden
in zero-photon measurement outcomes provides an exponential speedup for time-integrated photon-counting
simulations, realizing eight orders of magnitude reduction in the time to compute six-photon detection proba-
bilities while achieving 10 orders of magnitude higher precision compared to the state of the art. This enables
simulations of large photonic experiments with an unprecedented level of physical detail. It can accelerate the
design of sources to generate photonic resource states for quantum sensing and measurement-based quantum
computing while capturing realistic imperfections. It also establishes a general theoretical framework to study
dynamic interactions between stationary qubits mediated by measurements of flying qubits, which can be used
to model distributed quantum computing and quantum communication.
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I. INTRODUCTION

Pulses of nonclassical light serve as flying qubits for
photonic quantum information processing [1], are important
resources for quantum sensing [2], and are critical ingredients
for a future quantum internet [3–5]. Combined with linear
optics and photon-counting detectors, quantum states of light
can be used to perform quantum computing [6–8] and quan-
tum communication [9]. They can be generated from classical
pulses using nonlinear processes such as parametric down-
conversion [10] and emission from single quantum emitters
[11].

In particular for single emitters, the quantum dynamics
of light-matter interaction play a large role in determining
the quality of light produced [12–14]. Capturing these dy-
namics is also necessary to understand protocols that exploit
matter degrees of freedom, such as the spin of a particle,
to generate entangled states of light [15], to perform non-
demolition measurements [16], and to serve as a quantum
memory [17]. However, achieving all of these applications to a
sufficient quality for widespread commercialization requires a
high level of engineering and optimization. It is thus crucial to
develop accurate models and numerical simulation techniques
that can provide critical feedback on current experiments and
help develop proposals for next-generation quantum photonic
devices.

Propagating pulses of light occupy the continuum of
the electromagnetic field [18]. Hence, the physics of quan-
tum photonic technology depends on continuous degrees of
freedom, such as time or frequency, that are not fully re-
solved when measuring light. The standard way to simulate
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photon-counting measurements relies on computing field
correlations in the time or frequency domain and subse-
quently integrating unresolved degrees of freedom to get
the final measurement result. For example, simulating Hong-
Ou-Mandel bunching [19] of single-photon emission from
a quantum dot requires integrating the arrival time of each
photon at each detector to get the total coincidence probability
[12]. The consequence is that each photon-counting event
contributes at least one dimension of integration, which scales
poorly and quickly prohibits simulating the dynamics and
measurement of more than a few interacting pulses of light.
In some cases, multidimensional integrals can be analytically
factored into lower-dimensional integrals [20,21], which can
alleviate the scaling problem. But this still demands a fully
time-resolved simulation, and it must be hand-tailored to spe-
cific experimental setups.

To address this problem, I introduce a general method to
simulate time-integrated quantities, such as photon-number
probability distributions, without using multivariable inte-
gration. The basic intuition is that it is relatively easy to
simulate the probability of measuring zero photons by ap-
plying perturbation theory to the source dynamics [22–25]
because there is no photon arrival time and hence nothing to
integrate. Counterintuitively, this zero-photon probability can
actually provide a lot of information about the state of light
[26,27]. Specifically, when using an inefficient detector, the
zero-photon probability can be expressed as a linear combi-
nation of all photon-number probabilities weighted by powers
of detector loss coefficients [28]. Note that the connection be-
tween the zero-photon probability and the full photon-number
distribution of light is well known and has been applied in an
experimental setting to reconstruct photon statistics without
photon-number-resolving detectors [29]. However, by apply-
ing this technique to a quantum master-equation simulation
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of the source producing the light, I show it is possible to
circumvent prohibitive multidimensional integration that hin-
ders numerical simulations of many modern quantum optics
experiments.

After making this connection, I then show that the physi-
cal loss relation holds not only for zero-photon probabilities
computed from source physics but also for source con-
ditional dynamics and multimode optical setups and even
mathematically extends to configurations of detectors with un-
physical efficiencies. By focusing on zero-photon outcomes,
a theoretical framework is uncovered that can considerably
aid in the study and design of light produced by quantum
sources. Notably, this framework leads to algorithms that pro-
vide an exponential speedup for photon-counting simulations
and constitutes a robust numerical tool for studying a wide
range of photonic experiments from boson sampling to spin-
mediated cluster-state generation using dynamic sources of
light.

This paper is organized as follows. Section II covers the
background theory on the photon-number decomposition of
an emitter quantum master equation. The results for the
single-mode scenario are given in Sec. III, followed by the
multimode extension in Sec. IV. Section V discusses applica-
tions and extensions of the method, and Sec. VI concludes the
paper.

II. BACKGROUND

Consider a quantum source of light that evolves following
Markovian dynamics generated by a linear superoperator [30]
L called the Lindbladian [31]. The evolution of the density
operator ρ̂ is given by the Gorini-Kossakowski-Sudarshan-
Lindblad master equation [32,33]

d

dt
ρ̂(t ) = L(t )ρ̂(t ) (1)

for an initial state ρ̂(t0). The solution is then given by ρ̂(t ) =
P (t, t0)ρ̂(t0), where the propagator is

P (t, t0) = T exp

[∫ t

t0

L(t ′)dt ′
]

(2)

and where T orders time-dependent superoperators.
Suppose that the source emits a pulse of light that is mon-

itored by a number-resolving detector with efficiency η = 1
[see Fig. 1(a)]. The elementary problem is to simulate time-
integrated quantities such as the probability p(n) of detecting
n photons during the detection window. Luckily, for many
source models, such as those satisfying a Heisenberg input-
output relation [34], the detection of a photon at an instant
t implies that the source underwent an instantaneous state
transition, described by a linear jump superoperator J (t ), at
the corresponding time of emission. This standard assump-
tion [12,13,21,35] allows the problem to be tackled using an
intuitive open-systems approach to quantum optics [22] where
the master equation can be decomposed into photon-number
subspaces [25].

The photon-number decomposition begins by constructing
an effective master equation [23] governed by a zero-photon

(a)

(c)

(b)

FIG. 1. The photon-number decomposition. (a) A source evolv-
ing with Markovian dynamics generated by the Lindbladian L emits
a pulse of light collected into a single mode. The pulse is measured by
an ideal photon-number-resolving detector with efficiency η, which
induces the linear superoperator J acting on the source density op-
erator when a single photon is detected. (b) The absence of detected
light conditions the source to evolve with dynamics governed by the
zero-photon generator L(0)

η = L − ηJ . (c) The initial source density
operator ρ̂(t0) is decomposed into states ρ̂ (n)(t ) = P (n)(t, t0 )ρ̂(t0)
conditioned on detecting n photons between time t0 and time t , where
p(n) = Tr[ρ̂ (n)] is the probability of detecting n photons.

generator (ZPG)

L(0) = L − J . (3)

In some cases, this ZPG can be rewritten as an effective non-
Hermitian Hamiltonian, which is the primary object studied in
quantum trajectories [24] and stochastic simulations [35].

The general solution P (0)(t, t0) to the effective master
equation defined by a ZPG is similarly given by Eq. (2)
when replacing L with L(0). This propagator P (0) describes
the dynamics of the source conditioned on detecting zero
photons [see Fig. 1(b)]. By applying time-dependent pertur-
bation theory, the full propagator P can be recovered using
the mixed-state analog of the Dyson series

P =
∞∑

n=0

P (n) (4)

to add individual photon-counting events back into the dy-
namics. The perturbations P (n)(t, t0) are source propagators
conditioned on detecting n photons between the initial time t0
and the final time t , and they can be solved recursively [25] by

P (n)(t, t0) =
∫ t

t0

P (0)(t, t ′)J (t ′)P (n−1)(t ′, t0)dt ′. (5)

From this perspective, each photon-counting event adds a
source jump J at some time t ′. The photon-counting result
is then given by integrating over all possible jump times t ′
between t0 and t .

This photon-number decomposition [see Fig. 1(c)] pro-
vides the state of the source ρ̂ (n)(t ) = P (n)(t, t0)ρ̂(t0) given
that n photons have been detected between times t0 and t ,
which occurs with the probability of p(n)(t ) = Tr[ρ̂ (n)(t )].
However, the recursive solution, which can be evaluated using
the scattering module in QUTIP [36], implies that simulating
nth-order time-integrated quantities requires solving an n-
dimensional time integral. Hence, the time to compute p(n) in
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this way will scale exponentially, roughly following O(Ndt
n),

where Ndt is the number of time steps needed to resolve the
time dynamics.

III. RESULTS: SINGLE-MODE SCENARIO

To avoid the unfavorable scaling imposed by the recursive
solution, one can exploit the relationship between the detector
efficiency and the ZPG. If a photon is detected with probabil-
ity η, the ZPG becomes

L(0)
η = L − ηJ . (6)

At the level of probabilities, the lossy zero-photon mea-
surement outcome p(0)

η now depends not only on the true
zero-photon probability p(0) but also on all higher-order
probabilities p(n) multiplied by an appropriate detector loss
coefficient. That is, one can infer that the loss relation must
remain valid,

p(0)
η =

∞∑
n=0

(1 − η)n p(n). (7)

Although this expression is a known probability-generating
function in linear-optical optics [28,29,37], we can now see
that it is directly connected to the source dynamics through
the solution to the ZPG. Notably, this realization is impossible
if taking η = 1 so that the ZPG can be reduced to an effective
non-Hermitian Hamiltonian.

Assuming the pulse has finite energy, an N exists such that
p(n) � 0 for n > N . Then, by evaluating p(0)

η for N unique

values of η along with p(0)
0 = 1, all p(n) up to n = N can

be estimated by inverting the loss relation, as has been real-
ized experimentally [28,29]. Most importantly, this indirect
approach to obtain all non-negligible p(n) can be accomplished
by solving the ZPG just N times for different η. When neglect-
ing the inversion step, which for reasonable N is negligible
compared to solving the dynamics, this leads to a linear scal-
ing O(NNt ) and hence an exponential speedup. Here, Nt is
the number of time steps needed to solve the effective master
equation until time t , and this can even be much smaller than
Ndt for time-independent evolution.

Arriving at the loss relation from physical arguments alone
is not very satisfactory. In fact, as shown in Appendix A, the
loss relation outlined above is just a special case of a more
general mathematical relation that extends to the conditional
states ρ̂ (n) and propagators P (n) of the source for any com-
plex η, not just those bound to physical detector efficiencies
0 � η � 1. Hence, the first main result of this work is that the
general solution

Gz(t, t0) = T exp

[∫ t

t0

L(0)
z (t ′)dt ′

]
(8)

to the effective master equation defined by a ZPG of the form

L(0)
z = L − (1 − z−1)J (9)

is equal to the Z transform of the set of conditional propaga-
tors

Gz = Z{P (n)} ≡
∞∑

n=0

P (n)z−n (10)

FIG. 2. Scattering photons off a two-level emitter. (a) A square
pulse with temporal width τ and area � driving a two-level emitter
with decay rate γ , whose evolution is governed by the Lindbladian
L = −iH + γDσ , where Hρ̂ = �(t )[σ̂ + σ̂ †, ρ̂]/2, σ̂ = |g〉 〈e|, and
Dσ ρ̂ = σ̂ ρ̂σ̂ † − {σ̂ †σ̂ , ρ̂}/2. The zero-photon generator (ZPG) is
then L(0)

z = L − η(z)J , where J ρ̂ = γ σ̂ ρ̂σ̂ † and η(z) = 1 − z−1.
(b) Exact photon-number probabilities p(n) for τ = 2γ −1 and � =
10π using analytic integration. (c) Convergence of the simulated
distribution to the exact solution with increasing truncation N of ZPG
sampling points. (d) Numerical simulation time using the QUTIP scat-
tering module (circles) for 2 significant digits of precision compared
to the ZPG method (triangles) with up to 12 significant digits.

for z ∈ C and z 	= 0. Thus, the decomposition is obtained with
the inverse transform P (n) = Z−1{Gz} for a set of unique z.
In short, the proof involves taking the nth derivative of Gz

with respect to z−1 and then showing that z → ∞ provides
the lossless propagator P (n). It follows from linearity that
Gzρ̂(t0) = Z{ρ̂ (n)} and Tr[Gzρ̂(t0)] = Z{p(n)}. The original
loss relation is then recovered from this latter expression by
setting z = (1 − η)−1.

A major advantage of the Z-transform approach is that one
need not restrict η to be physical. This is because values of η

less than 1 lead to extremely small loss coefficients for large
n, resulting in a loss of precision during the inversion step.
Instead, the set of z can now be chosen as roots of unity,
zN = 1. Then, photon-counting outcomes become encoded in
the phase of unphysical zero-photon-generating probabilities.
In this case, the Z transform becomes a discrete Fourier trans-
form, so Z−1 can be implemented using the numerically stable
and optimized fast Fourier transform (FFT) algorithm [38].

The ability to quickly compute states and channels of the
source conditioned on photon-counting outcomes is an ad-
ditional major advantage of this approach that has a wide
range of applications to study and design quantum devices.
However, to demonstrate the exponential speedup I will focus
on computing photon-counting probabilities.

Consider the textbook example of a two-level emitter
driven by a square excitation pulse [see Fig. 2(a)], for which
there is an analytic solution for p(n) [24]. To best illustrate
the method, I choose an excitation pulse with an integrated
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FIG. 3. Multimode photon-number decomposition. (a) An ensemble of sources, each described by a Lindbladian Li, emits pulses into their
respective collection modes âi at a rate γi. The pulses pass through a linear-optical circuit described by a unitary matrix Û . Each output d̂i is
monitored by a detector with efficiency ηi. (b) The absence of detection conditions the sources to evolve following the zero-photon generator
(ZPG) L(0)

z . The ZPG is solved for D unique virtual configurations z, where D is the number of outcomes n with non-negligible probability
p(n). Applying the inverse transform Z−1 to the resulting set of generating maps {Gz}, states {Gzρ̂(t0)}, or probabilities {Tr[Gzρ̂(t0)]} provides
the set of conditional propagators {P (n)}, states {ρ̂ (n)}, or probabilities {p(n)}, respectively. (c) Average total variation distance (TVD) relative
to perfect single-photon interference for emission from M = 4 identical two-level emitters each driven by a square pulse with area � = π

and a varying width τ . The TVD for both photon-number-resolved (PNR) and threshold-detection distributions converge to zero as τ → 0.
The curve thickness represents the standard deviation of the TVD over 10 Haar-random Û . (d) The time needed to simulate a full PNR or
threshold-detection distribution in PYTHON as a function of the number of two-level emitters producing single photons.

area of � = 10π and a temporal width τ = 2γ −1 of twice
the emitter lifetime γ −1, so that the distribution is both non-
classical and non-negligible up to p(6) [see Fig. 2(b)]. The
QUTIP package [36] can then be used to solve the ZPG,
and the photon-number probabilities are reconstructed us-
ing an FFT (see [39]). Figure 2(c) shows that the simulated
probability distribution converges exponentially to the analyt-
ically exact solution when increasing the truncation N , such
that the relative error is <10−12 for p(n) up to n = 6 for
N = 14. In addition, Fig. 2(d) shows an exponential speedup
over the recursive integration method implemented using the
QUTIP scattering module [24,36]. Remarkably, extrapolating
the recursive integration approach to n = 6 indicates that an
evaluation time of 150 days is needed to reach two significant
digits of precision. On the other hand, using the ZPG along
with an FFT accomplishes the task to a precision of 12 signif-
icant digits in just 100 ms.

The exponential speedup in the simulation of single-mode
photon statistics enabled by the ZPG can be used to simulate
figures of merit of quantum light sources and optimize control
parameters, such as excitation pulse shape. However, to simu-
late contemporary large-scale photonic experiments that may
involve linear-optical circuits and other optical elements, it is
necessary to broaden the concept to include multiple sources
producing emission into multiple possible modes of light.

IV. RESULTS: MULTIMODE SCENARIO

To generalize the method to one or more sources producing
light collected into M modes that are each monitored by a
detector, we first construct the associated multimode ZPG [25]

L(0)
z = L − η(z) · J , (11)

where J = (J1, . . . ,JM ) is a vector of jump superoperators
J j describing the action on the source when detecting a pho-
ton by the jth detector, and η = (η1, . . . , ηM ) is a vector of
corresponding virtual detector efficiencies η j = 1 − z−1

j for
z j ∈ C. Since adding additional detectors only adds linear
perturbations to the ZPG, the Z transform extends in a trans-
parent way, leading to the second main result of this work,

T exp

[∫ t

t0

L(0)
z (t ′)dt ′

]
=

∑
n

P (n)(t, t0)
M∏

j=1

z
−n j

j , (12)

where n = (n1, . . . , nM ) is the vector of detected photon num-
bers and P (n) is the propagator conditioned on observing n. In
analogy with the loss relation, the term

∏M
j=1 z

−n j

j represents
the conditional probability of detecting zero photons given the
photon pattern n.

To elaborate on a specific scenario, consider a system
of M independent classically driven quantum sources [see
Fig. 3(a)]. Each source is governed by a Lindbladian Li and
satisfies a Heisenberg input-output relation âi = √

γiĉi + âi,in

arising from a linear dipole interaction in the Markovian limit
[34], where âi is the mode collecting emission and ĉi is the
system operator coupled to the electromagnetic continuum
with rate γi. The operator âi,in describes the quantum fluctua-
tions of the electromagnetic vacuum input to the ith source,
which is inconsequential when simulating photon-counting
measurements [22]. Also, as is typical of boson-sampling-
type experiments, suppose there is a linear-optical unitary
transformation Û on the collection modes producing output
modes d̂ j = ∑

i Ujiâi that are each monitored by a detector.
By choosing to decompose the dynamics using jump su-

peroperators J j that describe the detection of a photon at the
jth detector after the unitary transformation, the multimode
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ZPG can be rewritten as

L(0)
z = L − J + · η̂′(z) · J −, (13)

where L = ∑M
i=1 Li, and J ± = (J ±

1 , . . . ,J ±
M ), with J −

i ρ̂ =√
γiĉiρ̂ and J +

i ρ̂ = √
γiρ̂ĉ†

i . The matrix η̂′(z) = Û †η̂(z)Û
is the unitary transformation of the diagonal matrix η̂(z) of
virtual efficiencies η(z). Note that a source k can also produce
uncorrelated vacuum by setting γk = 0 and neglecting Lk .

Interestingly, from the perspective of the source, the uni-
tary transformation acts on the detector efficiencies rather than
the modes of light. In addition, this multimode ZPG strongly
resembles a Hamiltonian of a coupled many-body system with
potential long-range two-body interactions. By expanding the
coupling term, it is apparent that each source experiences a
local zero-photon shift Li − η′

iiJ +
i J −

i and there is a condi-
tional coupling η′

i jJ +
i J −

j + η′
jiJ −

i J +
j that depends critically

on the efficiency matrix η̂ and the unitary transformation
Û . For example, if η̂ is the identity, then the observation
of no photons implies each input was vacuum, and hence,
all sources must individually follow their local zero-photon
evolution governed by L(0)

i . If η̂ is zero, then the zero-photon
measurement provides no information, and each source inde-
pendently evolves following Li. Otherwise, provided that η̂

and Û do not commute, zero-photon measurement outcomes
generate correlations in the source dynamics.

Consider again the case of a two-level emitter driven by a
square excitation pulse, but now with integrated area � = π

so that its emission converges to an ideal single photon as
the excitation pulse width tends to zero τ → 0. Note that
when τ > 0, the emission from the source will include mul-
tiphoton components that alter the quantum interference. To
demonstrate the ZPG method for multimode simulations [see
Fig. 3(b)], I evaluate zero-photon probabilities of M such
emitters and use a multidimensional FFT to reconstruct the
photon detection statistics following Eq. (12) (see [39]). For
various pulse widths τ and unitary transformations Û , I com-
pute the total variation distance (TVD)

DTV = 1

2

∑
n

|p(n) − q(n)| (14)

of the simulated probability distribution p(n) relative to the
single-photon boson-sampling distribution q(n) computed us-
ing PERCEVAL [40]. To capture possible variation in the TVD
for choices of unitary Û , I average the TVD for Û sampled
from the Haar measure [41]. Figure 3(c) shows that emis-
sion from M = 4 emitters interfering in M = 4 modes and
monitored by M = 4 detectors shows an average TVD that
approaches zero as the excitation pulse width τ decreases.
This verifies that the method reproduces exact single-photon
quantum interference patterns in the limit that the dynamics
of each source leads to the emission of ideal single photons.
Thus, the multimode ZPG correctly captures correlations due
to quantum optical interference.

The time to simulate the full photon-counting distribution
for M two-level emitters and M detectors increases
exponentially [see Fig. 3(d)], as expected due to the
exponentially increasing Hilbert space size and number
of outcomes. Note that the illustrated scaling comes from the
relatively naive implementation in PYTHON that generalizes
the ZPG method to multimode scenarios by independently

computing NM zero-photon probabilities, where N is the
number of outcomes per detector. So the evaluation time
roughly follows O(CzNM ), where Cz is the cost to compute
a single zero-photon probability. The cost Cz can vary
significantly since it requires solving the master equation but
will also scale exponentially similar to 22M , which is the size
of the density matrix of M two-level emitters.

Regardless, the speedup provided by the ZPG method
enables the simulation of exact time-integrated quantum
dynamics, interference, and full photon-number-resolved
probability distribution of pulsed emission from up to six
emitters in less than 3 h on a laptop using PYTHON. To the best
of my knowledge, this is the only implementation in such a
simulation category and sets the bar for future advances in ex-
act simulation of multimode time-integrated photon counting.
Preliminary work suggests that implementations using JULIA

(see [39]) or C++ could decrease this evaluation time by up
to two orders of magnitude.

V. DISCUSSION

It is important to emphasize that the time-dynamic sim-
ulation approach introduced in this paper can capture an
extremely broad range of pure and mixed states of light—the
only restriction is that the state must be produced by a physical
source model defined by Markovian dynamics. This approach
differs substantially from state-of-the-art boson-sampling
simulations based on combinatorics and matrix permanents
[38,40,42]. In those cases, the abstract treatment of the con-
strained physical problem enables a significant reduction in
complexity, such as a time complexity of O(N

(N+M−1
M−1

)
) to

obtain the full boson-sampling distribution of N ideal single
photons monitored by M detectors [43]. Although it may
be possible to borrow techniques from more abstract ap-
proaches to improve performance, the combinatoric approach
is expected to always outperform the ZPG method demon-
strated in this paper for problems that fall within both of their
constraints. In other words, the general time-dynamic photon-
counting problem is likely fundamentally harder to solve.
This is supported by the fact that the single-mode scenario
is already a nontrivial problem for time-dynamic simulations.
Interestingly, due to its generality, the ZPG method is well
suited to verifying abstract noise models that are often used
in conjunction with idealized simulations of boson sampling
[44–47].

The ZPG method has multiple extensions and applications.
Notably, the ZPG can be evaluated independently for each
configuration z, allowing for embarrassingly parallel compu-
tation and potential implementations using high-performance
computing. The set of z and the corresponding Z transform
can also be designed to efficiently provide other quantities that
can be written as a function of p(n). For example, as shown
in Appendix B, the method can provide threshold-detection
probabilities directly [37], which drastically reduces simula-
tion times [see Fig. 3(d)] and is relevant for state-of-the-art
photonic devices [48].

Exploiting threshold detection along with a ZPG can also
be used to derive efficient algorithms to directly simulate
figures of merit for single-photon sources such as bright-
ness, single-photon purity, and indistinguishability without
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integrating multitime field correlation functions. In addition,
the method is not limited to photon-counting simulations. By
including a local oscillator explicitly as a source [22], the
method can be used to simulate homodyne measurements of
time-integrated Wigner functions at individual points in phase
space [49] by setting z = −1 so that the Z transform becomes
the parity summation.

The method is fully compatible with the Scattering-
Lindblad-Hamiltonian (SLH) framework for quantum cas-
caded networks [50], which enables the simulation of sources
with nonvacuum input fields [51] or circuits containing non-
linear materials. The unitary property of Û can also be
relaxed, at no disadvantage, to take into account nonuniform
circuit losses, which are notoriously neglected in noisy boson-
sampling simulations.

Simulated measurements can involve many different de-
grees of freedom of light emitted by one or more sources,
such as the polarization, frequency, spatial mode, and time
bin. Degrees of freedom can be binned together to accurately
represent experimental setups while drastically reducing sim-
ulation time [38]. Moreover, since the method gives the
dynamics conditioned on photon-counting measurements, it
can be used to simulate realistic conditional quantum chan-
nels for spin-photon entanglement [52] and photon-heralded
spin-spin entanglement protocols for quantum communica-
tion [25,53,54].

It is worth noting that the ZPG and corresponding Z trans-
form can also be used to simulate optical systems without the
need to explicitly model the source of light. In this case, the
ZPG can be treated as a purely phenomenological object that
captures the properties and evolution of light, such as deco-
herence. Since, for a fixed ZPG dimension and mode number,
the approach enables photon-counting simulations that scale
linearly with the number of photons, this framework can be
used to simulate single-mode pulses of light composed of po-
tentially thousands of photons while still capturing quantum
properties. As such, it may serve as an attractive framework
to explore quantum-to-classical transitions in optics.

VI. CONCLUSION

By exploiting source physics conditioned on zero-photon
measurement outcomes, it is possible to circumvent mul-
tidimensional integration when simulating time-integrated
photon counting. This provides an exponential computational
speedup for simulating photon-counting experiments using
time-dynamic quantum systems, which has a broad range
of applications in quantum photonics. Further studies could
extend the concept of a ZPG to include non-Markovian dy-
namics, linear-optical circuits that include delay lines, and
measurement feed-forward.

The ZPG defines an equation of motion that can simulate
quantum information processing using stationary qubits, fly-
ing qubits, or both in a hybrid approach. Thus, it connects two
physically very different quantum technology paradigms. It is
promising to develop an analogy between the ZPG and the
Hamiltonian dynamics of many-qubit systems to uncover al-
gorithms that exploit noise to solve the ZPG more efficiently,
such as tensor network techniques [55,56]. In addition, the
coupling between sources during the photonic measurement,

and hence the correlations built up over time, depends on
the efficiency, unitary transformation, and coherence between
emissions from each source. Therefore, the ZPG also has
features in line with known results on the classical simulabil-
ity of boson-sampling problems [44,45,57], which provides
a theoretical perspective that could lead to further studies on
the complexity and quantum advantage for photonic quantum
information processing.

The code used to produce the numerical results is avail-
able on GitHub [39] and a Python package implementing the
method is also available on GitHub [58].
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APPENDIX A: PHOTON-NUMBER DECOMPOSITION
USING A Z TRANSFORM

To demonstrate that the zero-photon conditional propa-
gator P (0)

η (t, t0) = T exp[
∫ t

t0
L(0)

η (t ′)dt ′] defined by the ZPG
L(0)

η (t ) = L(t ) − ηJ (t ) is equal to the generating map
Gz = Z{P (n)} = ∑∞

n=0 P (n)z−n for z = (1 − η)−1, we can
equate each coefficient of the polynomial by showing that
dnP (0)

η /dLn|L→0 = n!P (n), where L = 1 − η is a complex loss
coefficient. Note that we already have P (n)

η |L→0 = P (n) for all
n by definition, and so it suffices to show that dP (n)

η /dL =
(n + 1)P (n+1)

η for all n.
To proceed we can first consider the case where L and J

do not depend on time. Then P (0)
η (t, t0) = exp[(t − t0)(L −

ηJ )]. For the base case showing n = 0 implies n = 1, we can
make use of the Wilcox formula for the exponential map,

d

dx
eA(x) =

∫ 1

0
eαA(x) dA(x)

dx
e(1−α)A(x)dα, (A1)

to find that dP (0)
η (t, t0)/dL is

(t − t0)
∫ 1

0
eα(t−t0 )(L−ηJ )J e(1−α)(t−t0 )(L−ηJ )dα. (A2)

By substituting α(t − t0) = t − t ′ we get

d

dL
P (0)

η (t, t0) =
∫ t

t0

e(t−t ′ )(L−ηJ )J e(t ′−t0 )(L−ηJ )dt ′

=
∫ t

t0

P (0)
η (t, t ′)JP (0)

η (t ′, t0)dt ′

= P (1)
η (t, t0). (A3)
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Now, if we assume dP (n−1)
η /dL = nP (n)

η , then

d

dL
P (n)

η (t, t0) = d

dL

∫ t

t0

P (0)
η (t, t ′)JP (n−1)

η (t ′, t0)dt ′

=
∫ t

t0

dP (0)
η (t, t ′)
dL

JP (n−1)
η (t ′, t0)dt ′

+
∫ t

t0

P (0)
η (t, t ′)J

dP (n−1)
η (t ′, t0)

dL
dt ′

=
∫ t

t0

P (1)
η (t, t ′)JP (n−1)

η (t ′, t0)dt ′

+ n
∫ t

t0

P (0)
η (t, t ′)JP (n)

η (t ′, t0)dt ′

= (n + 1)P (n+1)
η (t, t0). (A4)

The last step combining the two terms makes use of the
relation∫ t

t0

P (n)(t, t ′)JP (k)(t ′, t0)dt ′ = P (n+k+1)(t, t0), (A5)

a proof of which is given in the Appendix of Ref. [59].
To extend this to the time-dependent case, we can divide

the total time interval into N piecewise time-independent parts

each of length dt = (t − t0)/N , beginning at time ti−1 and
ending at time ti. Since each Gz(ti, ti−1) satisfies an effective
master equation, we simply have Gz(t, t0) = ∏N

i=1 Gz(ti, ti−1).
Then, we can substitute the time-independent solution and
regroup terms based on the total number of photons

Gz(t, t0) =
N∏

i=1

∞∑
n=0

P (n)(ti, ti−1)z−n, (A6)

and so

Gz(t, t0) = P (0)(t, t0)

+ z−1
N∑

i=1

P (0)(t, ti )P (1)(ti, ti−1)P (0)(ti−1, t0)

+ · · · , (A7)

where tN = t . Taking the limit dt → 0, we can find that
P (n)(ti, ti−1) for n � 2 are negligible compared to all com-
binations of n single-photon propagators P (1) among bins of
vacuum P (0). In addition, J becomes localized at ti−1 � t ′ �
ti. So substituting the definition of P (1) and moving to the
continuum limit, we get

Gz(t, t0) = P (0)(t, t0) + z−1
N∑

i=1

∫ ti

ti−1

P (0)(t, ti )P (0)(ti, t ′)J (ti )P (0)(t ′, ti−1)P (0)(ti−1, t0)dt ′ + · · ·

= P (0)(t, t0) + z−1
N∑

i=1

∫ ti

ti−1

P (0)(t, t ′)J (ti )P (0)(t ′, t0)dt ′ + · · ·

= P (0)(t, t0) + z−1
∫ t

t0

P (0)(t, t ′)J (t ′)P (0)(t ′, t0)dt ′ + · · ·

=
∞∑

n=0

P (n)(t, t0)z−n. (A8)

Although I illustrated the regrouping for only the n = 1 terms,
the same argument applies to the regrouping of the n � 2
terms.

The decomposition has a straightforward extension to the
multimode scenario [25]. The perturbative series becomes
P = ∑

n P (n), where

P (n+ei )(t, t0) =
∫ t

t0

P (0)(t, t ′)Ji(t
′)P (n)(t ′, t0)dt ′, (A9)

where ei is the ith unit vector. The zero-photon propagator
P (0)(t, t0) is the solution to the effective master equa-
tion d ρ̂ (0)(t )/dt = L(0)(t )ρ̂ (0)(t ), where the ZPG is

L(0)(t ) = L(t ) −
∑

i

Ji(t ). (A10)

Multiplying each Ji by a detector efficiency ηi, the ZPG takes
the form given in the main text. Since adding additional detec-
tors only adds independent perturbations linearly to the ZPG,

the proof of the single-mode scenario immediately extends
due to the linearity of the derivative in the Wilcox formula.

APPENDIX B: THRESHOLD-DETECTION
DECOMPOSITION

Often, measurements are performed where a detector
“clicks” if it receives one or more photons. We denote the
probability that the detector clicks as the brightness β =∑∞

n=1 p(n) = 1 − p(0), where p(0) is the probability that the de-
tector does not click. The conditional state associated with the
threshold-detection probability is then similarly given by the
complement of the zero-photon conditional state: the bright
conditional state β̂ = ρ̂ − ρ̂ (0). Even more generally, the asso-
ciated bright propagation superoperator is B = P − P (0) [52].
In summary, we have β(t ) = Tr[β̂(t )] = Tr[B(t, t0)ρ̂(t0)] for
initial state ρ̂(t0) of the system.

When there are multiple detectors, the threshold-detection
probabilities are more conveniently notated by β (m). Here, m
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is a vector of binary numbers where 1 represents a threshold
detection as opposed to n in p(n), which represents the vector
of detected photon numbers. It is important to note that, un-
like the single-mode case, the threshold-detection probability
distribution β (m) cannot be computed by 1 − p(0).

To recover the associated bright propagation superopera-
tors B(m) conditioned on the threshold-detection outcome m
from the ZPG, we can notice that there is a special case
of the transform where each zi either tends to infinity (effi-
cient limit, L → 0) or tends to 1 (lossy limit, L → 1). Then,∏

i z−ni
i → ∏

i Lni
i , where Lni

i is either 1 or 0 (and L0
i → 1 for

Li → 0). We can then see that Lni
i = Li if ni � 1 and Lni

i =1
if ni = 0. Hence, all terms P (n) ∏

i Lni
i that differ by some

ni 	= 0 will be identical and sum to the associated B(n) ∏
i Lni

i .
In this particular case, the transformation can be inverted [37]
to obtain a solution for the threshold-detection decomposition

B(m) =
∑

z

Gz

∏
i

(−1)mi+Li (1 − Li )
1−mi , (B1)

where zi = L−1
i and Li = 1 − ηi.
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