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Non-Markovian dynamics with a giant atom coupled to a semi-infinite photonic waveguide
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We study the non-Markovian dynamics of a two-level giant atom interacting with a one-dimensional semi-
infinite waveguide through multiple coupling points, where a perfect mirror is located at the endpoint of the
waveguide. The system enters a non-Markovian process when the travel time of the photon between adjacent
coupling points is sufficiently large compared to the inverse of the bare relaxation rate of the giant atom. The
photon released by the spontaneous emission of the atom transfers between multiple coupling points through
the waveguide or is reabsorbed by the atom with the photon emitted via the atom having completed the round
trip after reflection of the mirror, which leads to the photon being trapped and forming bound states. We find
that three different types of bound states can be formed in the system, containing the static bound states with
no inversion of population, the periodic equal amplitude oscillation with two bound states, and the periodic
nonequal amplitude oscillation with three bound states. The physical origins of the three bound states’ formation
are revealed. Moreover, we consider the influences of the dissipation of unwanted modes and dephasing on
the bound states. Finally, we extend the system to a more general case involving many giant atoms coupled
into a one-dimensional semi-infinite waveguide. The obtained set of delay differential equations for the giant
atoms might open a way to better understand the non-Markovian dynamics of many giant atoms coupled to a
semi-infinite waveguide.
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I. INTRODUCTION

The core topic of quantum optics [1] is the understanding
and application of the interaction between light and matter.
The study of the interaction between light and matter can
be well carried out on platforms such as cavity quantum
electrodynamics (QED) systems [2–7], circuit-QED systems
[8–12], and waveguide QED systems [13–15], the limited
bandwidth of the waveguide QED systems can be relaxed [13]
because the waveguides usually support a continuous mode.
These studies are usually based on point-like atoms, where
the wavelength of light is usually much larger than the size of
point-like atoms [12,14,16–19]. Therefore, we usually use the
dipole approximation [20] to simplify the interaction between
photons and atoms when dealing with these systems. With
the deepening of quantum optics research and the great tech-
nological progress of superconducting circuits [14,21–24],
artificial giant atoms [13,14,25–28] that can interact with sur-
face acoustic waves or microwaves through multiple coupling
points have been designed in experiments. Since giant atoms
can be designed to couple with waveguides at multiple points
with large separation distances, the dipole approximation is
no longer valid [25].

In systems containing giant atoms, many interesting and
previously undiscovered phenomena resulting from quan-
tum interference effects between multiple coupling points
have been predicted, such as the frequency-dependent
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relaxation rate and the Lamb shift of giant atoms [28–30],
decoherence-free interaction between multiple giant atoms
[28,31–36], nonexponential relaxation [27,37–40], genera-
tion of bound states [41–48], electromagnetically induced
transparency [49–51], and so on [52,52–78]. The giant
atom scheme provides an effective way to control photons
[79–90], especially the nonreciprocal propagation of pho-
tons [91–99]. Moreover, the giant atom scheme can also
achieve higher-dimensional cold atomic structures in optical
lattices [100]. In the past, many studies of non-Markovian
systems were based on point-like atoms in the traditional
framework of quantum optics, where the presence of mir-
rors or multiple point-like atoms is often required [101–114].
However, the non-Markovianity of a single giant atom can
be achieved by tuning the time delay between adjacent cou-
pling points [37,115] in quantum systems containing giant
atoms.

The majority of the work on giant atoms deals with
two-level or three-level systems coupled to one-dimensional
infinite waveguides. In fact, for one-dimensional waveguides,
both ends are usually terminated by other media and light can
be partially reflected in waveguides due to the difference in
refractive index. The single-ended and quasi-one-dimensional
structures have been realized, for example, by thinning one
end of the waveguide to make it almost transparent while the
other end is connected to an opaque medium [116–119]. Such
a system can be equivalent to an infinite waveguide with a
mirror at one end [120–135]. However, the non-Markovian
dynamics for the two-level giant atom coupled to a semi-
infinite waveguide still remains unexplored.

2469-9926/2024/109(2)/023712(19) 023712-1 ©2024 American Physical Society

https://orcid.org/0000-0002-4017-7367
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.023712&domain=pdf&date_stamp=2024-02-13
https://doi.org/10.1103/PhysRevA.109.023712


Z. Y. LI AND H. Z. SHEN PHYSICAL REVIEW A 109, 023712 (2024)

In this paper, we study the non-Markovian dynamics of
a two-level giant atom coupled to a one-dimensional semi-
infinite waveguide through multiple coupling points, where
the finite end of the waveguide is realized by a perfect mirror.
When the traveling time of a photon between the adjacent
coupling points is sufficiently large compared to the inverse
of the bare relaxation rate of the atom, the system enters a
non-Markovian process. The photon is continuously trans-
ferred between multiple coupling points via the semi-infinite
waveguide or is reabsorbed after the photon is reflected by
the mirror. We find three different types of bound states, con-
taining the static bound states, the periodic equal amplitude
oscillating bound states, and the periodic nonequal amplitude
oscillating bound states and discuss the physical origins of
the bound states formation. We study the atomic dynamics
and the corresponding field intensity distributions in the above
three cases. Moreover, for a realistic waveguide QED setup in
experiments, the light-matter interaction dominates over loss
and dephasing, and we discuss the influence of this detrimen-
tal phenomenon on the formation of bound states. Finally, we
extend the system to a non-Markovian quantum system with
many giant atoms and one-dimensional semi-infinite waveg-
uide coupling.

The paper is organized as follows. In Sec. II, we introduce
our model, explain methods we used to tackle the non-
Markovian dynamics, and give the dynamical equations of the
waveguide and giant atom. In Sec. III, we derive the delay dif-
ferential equation, field intensity function, and exact analytical
expression for the probability amplitude of the giant atom.
In Sec. IV, we discuss the conditions for the formation of
bound states and obtain three different types of bound states.
Section V gives the dynamical expressions of three dif-
ferent types of bound states and explores the influences
of the different parameters on field intensity distribution.
Moreover, the bound states under the different number of
coupling points are also considered. In Sec. VI, we study
the influences of the dissipation of unwanted modes and de-
phasing on the non-Markovian dynamics of the giant atom.
In Sec. VII, we generalize the system to the case containing
many two-level giant atoms coupling to a one-dimensional
semi-infinite waveguide and derive a set of delay differential
equations of the probability amplitude with different giant
atoms. In Sec. VIII, all of the above work is summarized.

II. MODEL HAMILTONIAN

We consider a two-level giant atom coupled to a one-
dimensional semi-infinite waveguide through N coupling
points, which can be realized by photonic crystal waveguide
[136–138] and microwave transmission line [14,139–142]. As
shown in Fig. 1, one end of the waveguide (x = 0) is termi-
nated by a perfect mirror with the reflectivity R = 1, allowing
the photon emitted through the atom to transfer between the
mirror and each coupling point via the waveguide. The dis-
persion relationship of the photon with the wave vector k in
the waveguide is approximately linear around the transition
frequency ω0 as �k � ω0 + v(k − k̃0) [13,143–146], where
v is the photon group velocity, and �k̃0

= ω0. Any k > 0 in
the infinite waveguide corresponds to two orthogonal static
modes with spatial profiles of ∝ cos(kx) and ∝ sin(kx), re-

FIG. 1. Schematic diagram of the scheme. A two-level giant
atom is coupled to a one-dimensional semi-infinite waveguide via N
coupling points with coupling coefficient gkm and position xm, where
the waveguide is terminated by a perfect mirror with reflectivity
R = 1 at x = 0. The distance between the adjacent coupling points
is the same as that between the mirror and the first coupling point,
both of which are x0. ω0 denotes the transition frequency between
the ground state |g〉 and the excited state |e〉 of the giant atom.

spectively. However, for a semi-infinite waveguide, we only
need to consider the sine-like modes because there is a perfect
mirror at one end of the waveguide. Therefore, the giant atom
interacts with the waveguide at the mth coupling point with
coupling strength gkm ∝ sin(kmx0)(m = 1, 2, . . . , N ). Under
the rotating-wave approximation, the Hamiltonian of the sys-
tem reads (h̄ = 1),

Ĥ = Ĥa + Ĥw + Ĥaw,

Ĥa = ω0|e〉〈e|,

Ĥw =
∫ kc

0
dk�kâ†

k âk,

Ĥaw =
N∑

m=1

∫ kc

0
dk(gkmâ†

kσ− + g∗
kmâkσ+),

(1)

where Ĥa and Ĥw denote the free Hamiltonian of the atom
and waveguide, respectively. Ĥaw describes the interaction
between the atom and the semi-infinite waveguide. kc stands
for a cutoff wave vector depending on a specific waveg-
uide. We define the raising operator (lowering operator) of
the atom as σ+ = |e〉〈g|(σ− = |g〉〈e|), where |e〉 and |g〉 de-
note the excited and ground states, respectively. â†

k (âk ) is the
photon generation (annihilation) operator, which satisfies the
[âk, â†

k′ ] = δ(k − k′). Moreover, we set the distance between
adjacent coupling points equaling x0 (the distance between
the endpoint of a semi-infinite waveguide and the first cou-
pling point is also x0). Therefore, the time for the photon to
travel between any two adjacent coupling points (including
between the endpoint of a semi-infinite waveguide and the
first coupling point) is a constant τ0 = x0/v. In this paper,
we explore the non-Markovian dynamics caused by the time
delay τ0 induced through adjacent coupling points and the
semi-infinite waveguide for the giant atom.

We choose |e, 0〉 as the initial state, where the atom is
in the excited state |e〉, while the field in the waveguide
remains in the vacuum state |0〉. As we work under the
rotating-wave approximation, the processes we are interested
in involve a narrow range of wave vectors around k = k̃0,
and the boundary of the integral can be changed to

∫ kc

0 dk →∫ +∞
−∞ dk [13,146–148]. Since the total number of atomic and
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field excitations in the system is conserved, the state of the
total system in the single excitation subspace can be written as

|ψ (t )〉 = ε(t )|e, 0〉 +
∫

dkϕ(k, t )â†
k |g, 0〉, (2)

where ε(t ) denotes the probability amplitude of the giant atom
in the excited state |e〉, while the second term on the right side
of Eq. (2) describes the state of a single boson propagating
in the waveguide with the probability amplitude ϕ(k, t ).
Substituting Eqs. (1) and (2) into the Schrödinger equation
i∂t |ψ〉 = Ĥ |ψ〉, we get the set of differential equations of the
probability amplitudes

ε̇(t ) = −iω0ε(t ) − i
N∑

m=1

∫
dkg∗

kmϕ(k, t ), (3)

ϕ̇(k, t ) = −i�kϕ(k, t ) − i
N∑

m=1

gkmε(t ), (4)

which determine the dynamical evolutions for the giant atom
and the semi-infinite waveguide.

III. EQUATION OF MOTION AND THE SOLUTION

In this section, we derive the analytical expressions for the
probability amplitude of the two-level giant atom by solving
a set of delay differential equations. We set the coupling
strength as gkm = √

�v/π sin(kmx0) [102], where � denotes
the spontaneous emission rate of the atom without a mirror.
By substituting the coupling strength gkm and initial condition
ϕ(k, 0) = 0 into Eqs. (3) and (4), we can obtain the atomic
excitation probability amplitude

ε̇(t ) = − iω0ε(t )

− �

2

N∑
m,n=1

ε(t − |m − n|τ0)(t − |m − n|τ0)

+ �

2

N∑
m,n=1

ε[t − (m + n)τ0][t − (m + n)τ0], (5)

where (x) [(x) = 0 for x < 0 and (x) = 1 for x > 0]
denotes the Heaviside step function, which describes the

delayed feedback from the coupling points and the reflection
of the semi-infinite waveguide. The first term on the right side
of Eq. (5) describes atomic coherent dynamics. The second
term on the right side of Eq. (5) indicates that the photon
transfers from the mth coupling point to the nth coupling point
without being reflected by the mirror, including the Markovian
approximation that the photon released from the mth coupling
point is reabsorbed at the same point without the reflection
of the mirror. The last term on the right side of Eq. (5)
denotes the feedback term that the photon released from the
mth coupling point is absorbed by the nth coupling point after
being reflected through the mirror. The atomic reabsorption
of the emitted photon denoted in the second and third terms
of Eq. (5) occurs at the evolution time t � |m − n|τ0 and
t � (m + n)τ0, respectively. Moreover, we find the probability
amplitude with the giant atom in Eq. (5) can be reduced to that
with the point-like atom in Ref. [102] when m = n = 1.

In addition to the dynamics of the atom, the dynamical
characteristics of the output field are also crucial. The an-
nihilation operator of the photon in real space is Ĉ(x) =√

2/π
∫

dkâk sin(kx), and Ĉ(x)|ψ (t )〉 = φ(x, t )|g, 0〉 can be
obtained by substituting Ĉ(x) into Eq. (2). Therefore, the
probability amplitude φ(x, t ) = √

2/π
∫

dkϕ(k, t ) sin(kx) of
the real space field is

φ(x, t ) = − i

√
�

2v

N∑
m=1

ε(t − |τ − mτ0|)(t − |τ − mτ0|)

+ i

√
�

2v

N∑
m=1

ε[t − (τ + mτ0)][t − (τ + mτ0)],

(6)

with τ = x/v. The derivation details of Eqs. (5) and (6) can be
found in Appendix A. The field intensity function P(x, t ) =
|φ(x, t )|2 indicates the probability density at position x and
time t to find a single phonon or photon for all possible wave
vectors k. Making the Laplace transform to Eq. (5), we get

ε̃(s) = ε(0)

s + iω0 + �
2

∑N
m,n=1 [e−s|m−n|τ0 − e−s(m+n)τ0 ]

. (7)

Inverting the Laplace transformation to Eq. (7) results in

ε(t ) =
∑

k

ε(0)eskt

1 + �
2

∑N
m,n=1 [−|m − n|τ0e−sk |m−n|τ0 + (m + n)τ0e−sk (m+n)τ0 ]

. (8)

The complex frequency parameters sk in Eq. (8) are determined by

sk + iω0 + �

2

N∑
m,n=1

[e−sk |m−n|τ0 − e−sk (m+n)τ0 ] = 0. (9)

For finite time delay τ0 > 0, Eq. (9) has multiple solutions.
We will further investigate the specific form of sk of Eq. (9) in
Sec. IV.

IV. DISCUSSION OF BOUND-STATE CONDITIONS

In this section, we give the conditions for the generation of
bound states and discuss whether these conditions can coexist.

sk in Eq. (9) is pure imaginary when the real part of the
complex frequency sk denoting the relaxation rate equals 0.
In this case, the corresponding mode is a bound state not
decaying despite the dissipative environment. We seek the
pure imaginary solution sk = −iωk in Eq. (9), which can be
satisfied when

sk = −iωk = −iω0 = −i2kπ/τ0, (10a)
sk = −iωk = −iω0 = −i(2k + 1)π/τ0, (10b)

023712-3



Z. Y. LI AND H. Z. SHEN PHYSICAL REVIEW A 109, 023712 (2024)

and the corresponding bound-state conditons are

ω0τ0 = ωkτ0 = 2kπ, (11a)

ω0τ0 = ωkτ0 = (2k + 1)π. (11b)

To find more sk meeting Eq. (9), we divide Eq. (9) into real
and imaginary parts, respectively, described through

�τ0csc2
(ωkτ0

2

)
sin2

(
Nωkτ0

2

)
sin2

[
(N + 1)ωkτ0

2

]
= 0,

�τ0 sin(ωkτ0) + 2N�τ0 sin(ωkτ0) − 2�τ0 sin(Nωkτ0)

− 2�τ0 sin [(N + 1)ωkτ0] + �τ0 sin [(2N + 1)ωkτ0]

− 4(ωkτ0 − ω0τ0)[1 − cos(ωkτ0)] = 0, (12)

which can be derived in Appendix B. Solving the two equa-
tions in Eq. (12) simultaneously, we obtain

sk = −iωk = −i2kπ/(Nτ0), (13a)

sk = −iωk = −i2kπ/[(N + 1)τ0], (13b)

and the corresponding bound-state conditions satisfy

ω0τ0 = 2kπ

N
− 1

2
N�τ0 cot

(
kπ

N

)
, (14a)

ω0τ0 = 2kπ

N + 1
− 1

2
(N + 1)�τ0 cot

(
kπ

N + 1

)
. (14b)

Under the Markovian limit (�τ0 → 0), the bound-state con-
ditions (14a) and (14b) can be reduced to ω0τ0 = 2kπ/N and
ω0τ0 = 2kπ/(N + 1). However, in the non-Markovian regime
with the large enough �τ0, the influence of the cotangent
terms in Eqs. (14a) and (14b) cannot be ignored. Solving the
transcendental equation in Eq. (14a) or (14b) leads to two
cases containing only one integer k satisfying it or both two
integers k1 and k2 meeting it, whose derivation can be found
in Appendix C. To ensure the validity of the rotating-wave
approximation, we need to guarantee |ωk − ω0|/ω0 � 1,
which is equivalent to |N� cot(kπ/N )/(2ω0)| � 1 and |(N +

1)� cot[kπ/(N + 1)]/(2ω0)| � 1 with k ∈ Z+ according to
Eqs. (14a) and (14b).

Based on the number of bound states in the waveguide, we
obtain three cases and summarize them as follows.

(i) One of the bound-state conditons (11a), (11b), (14a),
and (14b) is satisfied, and there is only one integer k0 as its
solution. In this case, there will be four situations given by
Eqs. (15) to (18) with Eqs. (10) and (13) (see Sec. V for more
details).

(ii) Two integer solutions k1 and k2 meet the bound-state
condition (14a) or (14b), which will induce two cases obtained
by Eqs. (19) and (20) with Eq. (13) in Sec. V.

(iii) Equations (11a) or (11b) is satisfied on the basis of
meeting the case (ii), which leads to the existence of three
integers k0, k1, and k2 simultaneously. The corresponding four
results determined by Eqs. (21), (22), (D1), and (D2) with
Eqs. (10) and (13) will be studied in Sec. V and Appendix C.

Next, we discuss the dynamics and output field of the giant
atom in detail.

V. BOUND STATES IN THE SEMI-INFINITE WAVEGUIDE

We study the non-Markovian dynamics in the three cases
obtained from the discussion of the bound-state conditions in
Sec. IV. For the sake of clearness, we divide them into the
static bound states with the no inversion of population, the
periodic equal amplitude oscillation with two bound states,
and the periodic nonequal amplitude oscillation with three
bound states. In the following sections, we will discuss them
and give the physical origins of the bound states formation.

A. No inversion of population

We consider the static bound state satisfying case (i) in
Sec. IV, which means that the bound state in the waveguide
has only one frequency. Substituting four sk in Eqs. (10)
and (13) into Eq. (8), the long-time dynamics of the atomic
excitation probability amplitude for four cases reads

ε(t ) = 1

1 + �
2

∑N
m,n=1 [−|m − n|τ0 + (m + n)τ0]

e−i2kπt/τ0 , (15)

ε(t ) = 1

1 + �
2

∑N
m,n=1 [−|m − n|τ0(−1)|m−n| + (m + n)τ0(−1)(m+n)]

e−i(2k+1)πt/τ0 , (16)

ε(t ) = 2sin2(ωkτ0/2)

2sin2(ωkτ0/2) + N�τ0
e−i2kπt/(Nτ0 ), (17)

ε(t ) = 2sin2(ω̃kτ0/2)

2sin2(ω̃kτ0/2) + (N + 1)�τ0
e−i2kπt/[(N+1)τ0], (18)

where ωk = 2kπ/(Nτ0) and ω̃k = 2kπ/[(N + 1)τ0].
To compare the analytical solutions given by Eqs. (15)

to (18) with the numerical simulations of Eq. (5), we plot
the atomic excitation probability with N = 3 as a function
of time t (in units of �−1) in Fig. 2. The blue-solid and
orange-dashed lines indicate the numerical and analytical
results, respectively. We find that the analytical expressions

show good agreement with those obtained by the numerical
simulations with different parameters. In Fig. 2, the atomic
excitation probabilities |ε(t )|2 in the four cases finally hold a
nonzero steady value after a long time, which means that the
photon is captured and forms a bound state. This originates
from the transferring of the photon in multiple coupling points
and reflecting via the semi-infinite waveguide.
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FIG. 2. Static bound states for the giant atom with the number of
coupling points N = 3, the blue-solid and orange-dashed lines corre-
spond to the numerical simulations in Eq. (5) and the analytical solu-
tions with Eqs. (15) to (18), respectively. The parameters chosen are
(a) k = 1, ω0τ0 = 2π,�τ0 = 0.05π ; (b) k = 1, ω0τ0 = 3π, �τ0 =
0.05π ; (c) k = 4, ω0τ0 = 2.6234π, �τ0 = 0.05π ; (d) k = 3, ω0τ0 =
1.6π,�τ0 = 0.05π .

To observe how the bound state is formed, we take the field
intensity function P(x, t ) as a function of the time t (in units of
�−1) and the position x (in units of x0). The time evolution of
the field intensity function for the four different bound states
with the number of coupling points N = 3 is shown in Fig. 3.
We observe that the field intensity outside the last coupling
point (x > 3x0) disappears with time, while the field intensity
at x < 3x0 forms a steady state, where a static bound state
is formed in the waveguide. In Fig. 4, we plot the long-time

FIG. 3. The figure shows the evolution of the field intensity
P(x, t ) = |φ(x, t )|2 with time and position by solving Eq. (6) in
the waveguide under four different conditions. The colors indicate
the field intensity of the bound states. The parameters chosen are the
same as those in Fig. 2.

FIG. 4. The field intensity distribution P(x, t ) in the waveg-
uide at t → ∞. The four cases shown by (a)–(d) correspond to
Figs. 3(a)–3(d), where the blue-dotted line corresponds to the nu-
merical simulations based on Eq. (6). The parameters chosen are the
same as those in Fig. 3.

field intensity distribution corresponding to Fig. 3, where the
blue-dashed line denotes the numerical simulations given by
Eq. (6). In Fig. 4, the field intensities in the above four cases
are distributed between the last coupling point and the mirror
at the endpoint of the semi-infinite waveguide with �t → ∞.

The variation of the atomic excitation probability |ε(t )|2
with respect to the �t for different number coupling points
N is plotted in Fig. 5. We find that the atomic excitation
probability is a steady value although it changes with the
number of coupling points. This means that the static bound
states with different probabilities can be got through tuning
the number of coupling points N .

FIG. 5. Probability amplitudes in Eq. (5) as function of time t
(in units of �−1) when the number of coupling points N is different.
The blue-dashed, orange-dotted, and green-solid lines correspond to
N = 2, N = 3, N = 4, respectively. The other parameters chosen are
(a) k = 1, �τ0 = 0.04π ; (b) k = 1, �τ0 = 0.08π ; (c) k = 5, �τ0 =
0.1π ; (d) k = 7, �τ0 = 0.1π .
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FIG. 6. Periodic equal amplitude oscillating bound states in the
waveguide for a giant atom with the number of coupling points
N = 6. The orange-dashed and blue-solid lines correspond to the
analytical solutions in Eqs. (19) and (20) and numerical simulations
of Eq. (5), respectively. The parameters chosen are (a) k1 = 23, k2 =
26, ω0τ0 = 8.4167π, �τ0 = 0.1443π ; (b) k1 = 27, k2 = 30, ω0τ0 =
8.3336π,�τ0 = 0.0852π . ωkn in (a) and (b) are determined by
Eqs. (13a) and (13b), respectively. The insets in the figure magnify
the probability amplitudes.

B. Periodic equal amplitude oscillating bound states

When case (ii) in Sec. IV is met, two bound states with
frequencies ωk1 and ωk2 exist simultaneously in the sys-
tem. Substituting sk = {−i2kπ/(Nτ0),−i2kπ/[(N + 1)τ0]}
obtained by Eq. (13) into Eq. (8), the long-time atomic ex-
citation probability amplitudes are given by

ε(t ) = 2sin2(ωk1τ0/2)

2sin2(ωk1τ0/2) + N�τ0
e−iωk1 t

+ 2sin2(ωk2τ0/2)

2sin2(ωk2τ0/2) + N�τ0
e−iωk2 t , (19)

where ωkn = 2knπ/(Nτ0) (n = 1, 2), and

ε(t ) = 2sin2(ωk1τ0/2)

2sin2(ωk1τ0/2) + (N + 1)�τ0
e−iωk1 t

+ 2sin2(ωk2τ0/2)

2sin2(ωk2τ0/2) + (N + 1)�τ0
e−iωk2 t , (20)

with ωkn = 2knπ/[(N + 1)τ0] (n = 1, 2). In this case, two in-
tegers k1 and k2 that satisfy the transcendental equation (14a)
or (14b) can be found. The atomic excitation probability
|ε(t )|2 is the superposition of the bound states with different
frequencies ωk1 and ωk2 . In Appendix C, we give ω0τ0 and �τ0

for the existence of two bound states. The long-time dynamics
in Eq. (19) is consistent with that given in Refs. [41,42].
However, in addition to Eq. (19), another solution in Eq. (20)
can be sought out, which is significantly different from that in
Refs. [41,42] and induced by the reflection of the semi-infinite
waveguide and time delay between multiple coupling points.
This indicates that the atomic excitation probability can be
manipulated due to the existence of the mirror in the semi-
infinite waveguide without changing the number of coupling
points.

We plot the numerical result based on Eq. (5) and ana-
lytical results in Eqs. (19) and (20) for the atomic excitation
probability denoted by the blue-solid and orange-dashed lines
in Fig. 6. In principle, we can get the atomic excitation

FIG. 7. Plot of the field intensity function P(x, t ) solved by
Eq. (6) as a function of �t and x/x0. (a,c) show the evolution of
the field intensity in the waveguide corresponding to Fig. 6. The
colors in (a,c) show the field intensity of the bound states. (b,d)
denote the field intensity distribution P(x, t ) in the waveguide at fixed
parameter t = 15/� corresponding to (a) and (c), respectively, where
the blue-dotted line is the numerical simulations based on Eq. (6).
The other parameters are the same as those in Fig. 6.

probability |ε(t )|2 as a function of �t with any N in the above
two cases. We take the number of coupling points N = 6 to
exhibit typical features of the atomic excitation probability.
Interestingly, the quantum interference effects between multi-
ple coupling points and the semi-infinite waveguide lead to the
approximate periodic oscillation behaviors of the dynamics,
and the amplitudes of periodic oscillations do not decrease
with time.

Similar to the case of the static bound state, we study the
dependence of the field intensity function P(x, t ) on x/x0

and �t in Fig. 7. We show the time evolution of the field
intensity function P(x, t ) at x/x0 in Figs. 7(a) and 7(c). The
energy is bound between 0 ∼ 6x0 with the position of the last
coupling point as the boundary, while the energy outside the
last coupling point disappears with time. The field intensity
oscillates persistently after a long time due to the existence of
bound states with two different frequencies in the waveguide.
In Figs. 7(b) and 7(d), we show the field intensity distribution
calculated by Eq. (6) at �t = 15 corresponding to Figs. 7(a)
and 7(c).

To understand the influence of the number of coupling
points on the atomic excitation probability, the dynamics with
different number of coupling points (N = 7, 8) in two cases
given by Eqs. (19) and (20) is shown in Fig. 8. The amplitude
and frequency of the atomic excitation probability change
with the number of coupling points.

C. Periodic nonequal amplitude oscillating bound states

We study the coexistence of bound states with three
different frequencies ωk0 , ωk1 , and ωk2 described by case
(iii) in Sec. IV. In this section, we analyze the situation that
Eqs. (11a) or (11b) is satisfied when meeting Eq. (14a). The
other cases of bound states with three frequencies are dis-
cussed in Appendix D. With Eqs. (10) and (13), the atomic
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dynamics in Eq. (8) becomes

ε(t ) = 1

1 + �
2

∑N
m,n=1 [−|m − n|τ0 + (m + n)τ0]

e−iωk0 t + 2sin2(ωk1τ0/2)

2sin2(ωk1τ0/2) + N�τ0
e−iωk1 t + 2sin2(ωk2τ0/2)

2sin2(ωk2τ0/2) + N�τ0
e−iωk2 t ,

(21)

ε(t ) = 1

1 + �
2

∑N
m,n=1 [−|m − n|τ0(−1)|m−n| + (m + n)τ0(−1)(m+n)]

e−iωk0 t

+ 2sin2(ωk1τ0/2)

2sin2(ωk1τ0/2) + N�τ0
e−iωk1 t + 2sin2(ωk2τ0/2)

2sin2(ωk2τ0/2) + N�τ0
e−iωk2 t , (22)

where ωkn (n = 0, 1, 2) in Eqs. (21) and (22) are given by
Eqs. (C2) and (C3), respectively. The derivation details of ωkn

can be found in Appendix C. The dynamics with three coexist-
ing bound states ωk0 , ωk1 , and ωk2 in Eqs. (21) and (22) stems
from the interaction of the photon through a semi-infinite
waveguide and multiple coupling points, which is completely
different from that in Refs. [41,42], where the coexistence
of at most two bound modes is achieved. The dynamics of
the atomic excitation probability amplitude ε(t ) determined
by Eqs. (21) and (22) in a semi-infinite waveguide is the
superposition of three bound states with different frequencies
in the long-time limit after the disappearance of all dissipative
modes.

Figure 9 shows the excitation dynamics of the giant atom,
where the blue-solid and orange-dashed lines denote the nu-
merical simulations of Eq. (5) and analytical results based
on Eqs. (21) and (22), respectively. We find that atomic

FIG. 8. The influence of different number of coupling points
N on the equal amplitude oscillating bound states for the gi-
ant atom. The orange-dashed and blue-solid lines correspond to
the analytical solutions in Eqs. (19) and (20) and numerical sim-
ulations based on Eq. (5), respectively. The parameters chosen
are (a) N = 7, k1 = 27, k2 = 30, ω0τ0 = 8.3336π, �τ0 = 0.0852π ;
(b) N = 8, k1 = 31, k2 = 34, ω0τ0 = 8.2803π, �τ0 = 0.0549π ;
(c) N = 7, k1 = 31, k2 = 34, ω0τ0 = 8.2803π, �τ0 = 0.0549π ;
(d) N = 8, k1 = 35, k2 = 38, ω0τ0 = 8.2428π, �τ0 = 0.0376π .
ωkn in (a),(b) and (c),(d) are determined by Eqs. (13a) and (13b),
respectively.

excitation dynamics of bound states with three frequencies
exhibits nonequal amplitude persistent oscillation, where the
differences between the dynamical characteristics in Figs. 9(a)
and 9(b) are explained in Appendix D. We use the field inten-
sity function P(x, t ) as a function of �t and x/x0 and show the
field intensity distribution in Fig. 10. Consistent with the static
and equal amplitude oscillating bound states, the field inten-
sity is bound between the mirror and the last coupling point.
For clearer observation, we plot the field intensity distribution
in the waveguide with the fixed parameter �t = 20 corre-
sponding to Figs. 10(a) and 10(c), as shown in Figs. 10(b)
and 10(d). We find that the field intensity distribution outside
the last coupling point is 0, which means that a perfect bound
state is formed in the waveguide.

Finally, we plot the dynamics of the giant atom with dif-
ferent number of coupling points in Fig. 11. The probability
of the giant atom in the excited state depends on the number
of coupling points. Tuning the number of coupling points
can change the frequency and amplitude of atomic excitation
probability.

VI. EXTENSION TO GENERAL MODEL

We focus on the non-Markovian dynamics of a two-level
giant atom in a semi-infinite waveguide, where the waveguide
is terminated by a perfect mirror with reflectivity R = 1 at
x = 0. Considering the realistic experimental environment,

FIG. 9. Nonequal amplitude oscillating bound states of a giant
atom. The orange-dashed and blue-solid lines correspond to the
analytical solutions in Eqs. (21) and (22) and numerical simulations
solved by Eq. (5), respectively. The parameters chosen are (a) N =
5, k0 = 4, k1 = 19, k2 = 21, q = 1, ω0τ0 = 8π,�τ0 = 0.1162π ;
(b) N = 8, k0 = 8, k1 = 63, k2 = 73, q = 1, ω0τ0 = 17π, �τ0 =
0.1294π . ωkn in (a) and (b) are determined by Eq. (13a).
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FIG. 10. The field strength P(x, t ) = |φ(x, t )|2 as a function
of �t and x/x0 based on Eq. (6). (a,c) show the time evolution
of the field intensity P(x, t ) in the waveguide corresponding to
Figs. 9(a) and 9(b), where the parameters k0, k1, and k2 are the
same as those in Fig. 9. The colors in (a) and (c) describe the field
intensity of the bound states. For clarity, (b,d) show the distribution of
P(x, t ) in the waveguide at t = 20/�, which respectively correspond
to (a) and (c). The blue-dotted line corresponds to the numerical
simulations of Eq. (6).

we make some changes to the model to explain the detrimental
factors.

First, for the waveguide in the experiment, the
reflectivity R of the mirror is usually less than 1.
The complex probability amplitude −r for backward

FIG. 11. The influence of different number of coupling points
N on the nonequal amplitude oscillating bound states for the
giant atom. The orange-dashed and blue-solid lines correspond,
respectively, to the analytical solutions in Eqs. (21) and (22) and the
numerical simulations of Eq. (5). The parameters chosen are (a) N =
6, k0 = 4, k1 = 23, k2 = 25, q = 1, ω0τ0 = 8π,�τ0 = 0.0642π ;
(b) N = 7, k0 = 4, k1 = 27, k2 = 29, q = 1, ω0τ0 = 8π, �τ0 =
0.0393π ; (c) N = 9, k0 = 8, k1 = 71, k2 = 82, q = 1, ω0τ0 =
17π,�τ0 = 0.0989π ; (d) N = 10, k0 = 8, k1 = 79, k2 = 91, q =
1, ω0τ0 = 17π,�τ0 = 0.078π . ωkn in (a)–(d) are determined by
Eq. (13a).

reflection of the mirror satisfies |r|2 = R. Solving
the one-dimensional scattering problem yields r =
R + i

√
R(1 − R). The delay term in Eq. (5) suggests the

replacement �
2

∑N
m,n=1 ε[t − (m + n)τ0][t − (m + n)τ0] →

�
2 r

∑N
m,n=1 ε[t − (m + n)τ0][t − (m + n)τ0] since the giant

atom will reinteract only with the reflected part of the light.
In addition to the emissions of the atomic excited state into
waveguide modes at rate �, we allow for an extra atomic
coupling to a reservoir of external nonaccessible modes
at a rate �ext. When the external mode does not decay to
the waveguide mode, the total effective dissipation rate
of the excited atom is �tot = � + �ext. It simply amounts
to adding a term −N�extε(t )/2 on the right-hand side of
Eq. (5). Finally, we add a small white-noise stochastic
term ω(t ) = ω0 + λ(t ) to the excited state frequency
to introduce (inhomogeneous) phase noise on the giant
atom. Here the Gaussian distributed stochastic term λ(t ) is
characterized by its zero mean 〈λ(t )〉t = 0 and the noise
correlation function 〈λ(t )λ(t ′)〉 = 2δωδ(t − t ′) (〈. . .〉 stands
for the ensemble average) [149,150], where δω denotes the
associated dephasing rate. In conclusion, Eq. (5) involved in
the dephasing processes becomes

ε̇(t ) = − i[ω0 + λ(t )]ε(t ) − N�ext

2
ε(t )

− �

2

N∑
m,n=1

ε(t − |m − n|τ0)(t − |m − n|τ0)

+ �

2
r

N∑
m,n=1

ε[t − (m + n)τ0][t − (m + n)τ0]. (23)

When we adjust the reflectivity R of the mirror at the end of
the semi-infinite waveguide, the atomic excitation probabil-
ities of the static, equal amplitude oscillating and nonequal
amplitude oscillating bound states are shown in Fig. 12.
Except for Figs. 12(c), 12(e), 12(g), and 12(i) obtained by
Eqs. (17), (19), (21), and (22), the atomic excitation proba-
bilities decay significantly when the reflectivity R = 0, which
denotes that the formation of the bound states except for
these four cases strongly depend on the existence of the
semi-infinite waveguide. The results obtained without con-
sidering the presence of a mirror (R = 0) are equivalent to
those through a two-level giant atom interacting with a one-
dimensional infinite waveguide.

For practical giant atom waveguide systems, in addition
to dephasing, we also allow the giant atom to couple to a
reservoir of external inaccessible modes and the semi-infinite
waveguide of nonideal mirrors. In Figs. 13(a) to 13(d), we
show the atomic excitation probabilities for static bound
states with R = 0.98 and δω = 0.1�. We give the differ-
ent external reservoir decay rates �ext = {0.1�, 0.2�} and
compare them with the ideal case (R = 1, �ext = 0, δω =
0). The atomic probability decreases as the decay rate �ext

increases, which indicates that the decay of the external in-
accessible mode inhibits the formation of bound states. We
plot the atomic probabilities with different dephasing rates
δω = {0.1�, 0.2�} and compare them with the ideal case
(R = 1, �ext = 0, δω = 0) in Figs. 13(e) to 13(h), where
the other parameters chosen are R = 0.98 and �ext = 0.1�.
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FIG. 12. To understand the influence of reflectivity R on the bound states, we plot the atomic excitation probability with different reflectivity
R. The blue-dotted line denotes the ideal case, where the mirror has a perfect reflectivity R = 1. The green-dashed and orange-solid lines
correspond, respectively, to the case of no mirror (R = 0) and the general case (R = 0.9). The atomic excitation probability |ε(t )|2 is plotted by
solving Eq. (23). The static bound states, equal amplitude oscillating bound states and nonequal amplitude oscillating bound states correspond
to (a)–(d), (e,f), and (g)–(j), respectively. The parameters chosen are �ext = 0 and λ(t ) = 0 without considering the influence of the dephasing
process and external decay.

The results show the inhibition effect of dephasing rate on
probability, which is more obvious when the dephasing rate
becomes larger. Figures 14 and 15 correspond to the influence
of dephasing and external reservoir decay rates on the equal
amplitude and nonequal amplitude oscillating bound states.
Consistent with the static bound states, the atomic excitation
probabilities decay rapidly when the dephasing and relaxation
rates increase.

VII. MULTIPLE GIANT ATOMS ARE COUPLED TO A
ONE-DIMENSIONAL SEMI-INFINITE WAVEGUIDE

We generalize the system to a more general model in-
volving Q noninteracting two-level giant atoms coupled to
a one-dimensional semi-infinite waveguide, where ground
state |g〉 and excited state |e〉 of the qth atom are sepa-
rated in frequency by ωq,0 (q = 1, 2, . . . , Q). In Fig. 16, Q
giant atoms interact with a one-dimensional semi-infinite

FIG. 13. The influence of the external reservoir decay rate �ext and dephasing rate δω on the static bound states with the number of coupling
points N = 3. The blue-dotted line represents the ideal case (R = 1, δω = 0, �ext = 0). For (a)–(d), we fix R = 0.98 and δω = 0.1� and vary
the ratio between �ext and � with keeping � fixed. For (e)–(h), we remain R = 0.98 and �ext = 0.1�, and change the dephasing rate δω.
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FIG. 14. Influences of the different dephasing processes and ex-
ternal decay on the equal amplitude oscillating bound states for a
giant atom with the number of coupling points N = 6. The atomic
excitation probability |ε(t )|2 is plotted by solving Eq. (23). (a,b)
show the influences of different external reservoir decay rates �ext on
the atomic excitation probability with the fixed parameter R = 0.98
and δω = 0.1�. The orange-solid and green-dashed lines respec-
tively correspond to �ext = 0.1� and �ext = 0.2�. In (c,d), we take
R = 0.98 and �ext = 0.1�, where the orange-solid and green-dashed
lines correspond to δω = 0.1� and δω = 0.2�, respectively. The
blue-dotted line corresponds to the ideal case with R = 1, �ext = 0,
and δω = 0.

waveguide through
∑Q

q=1 Nq coupling points, where Nq de-
notes the number of coupling points for the qth giant atom.
The distance between any adjacent coupling points is the same
as that between the mirror and the first coupling point, both of
which are x0. lq denotes the sum of the number of all coupling
points before the first coupling point of the qth giant atom,
which is expressed as lq = ∑q−1

q′=1 Nq′ . The total Hamiltonian
of the system in the rotating-wave approximation is

ĤQ =
Q∑

q=1

ωq,0|e〉qq〈e| +
∫ kc

0
dk�kâ†

k âk

+
Q∑

q=1

lq+Nq∑
m=lq+1

∫ kc

0
dk(gkmâ†

kσq− + g∗
kmâkσq+), (24)

where σq+ and σq− are the raising and lowering opera-
tors of the qth giant atom. The first and second terms of
Eq. (24) describe the free Hamiltonian of Q giant atoms
and the one-dimensional semi-infinite waveguide, where the
frequency of the qth atom is denoted by ωq,0 = ω0 + δq (δq

is a small quantity related to q). The last term of Eq. (24)
results from the interaction between the qth giant atom and
semi-infinite waveguide. We assume that the initial state is
prepared in |ψ (0)〉 = ∑Q

q=1 εq(0)|eq, 0〉, where |eq, 0〉 de-
notes that the qth giant atom is on the excited state |e〉 with the

probability amplitude εq(0), but simultaneously all the modes
of the waveguide are all in the vacuum state. The Schrödinger
equation drives the initial state |ψ (0)〉 as

|ψ (t )〉 =
Q∑

q=1

εq(t )
∣∣eq, 0

〉 + ∫
dkϕ(k, t )â†

k |G, 0〉, (25)

with |eq, 0〉 = |g〉1 ⊗ |g〉2 ⊗ · · · |e〉q ⊗ · · · |g〉Q ⊗ |0〉 and
|G, 0〉 = |g〉1 ⊗ |g〉2 ⊗ · · · |g〉q ⊗ · · · |g〉Q ⊗ |0〉. Substituting
Eqs. (24) and (25) into the Schrödinger equation, we obtain
the probability amplitudes

ε̇q(t ) = −iωq,0εq(t ) − i
lq+Nq∑

m=lq+1

∫
dkg∗

kmϕ(k, t ), (26)

ϕ̇(k, t ) = −i�kϕ(k, t ) − i
Q∑

q=1

lq+Nq∑
m=lq+1

gkmεq(t ). (27)

Integrating Eq. (27) with coupling coefficient gkm =√
�v/π sin(kmx0) results in

ϕ(k, t ) = 1

i

∫ t

0

Q∑
q=1

lq+Nq∑
m=lq+1

√
�v

π
sin(kmx0)εq(s)e−i�k (t−s)ds.

(28)

With Eq. (28), the probability amplitude in Eq. (26) becomes

ε̇q(t ) = − iωq,0εq(t )

− �

2

Q∑
q̃=1

lq̃+Nq̃∑
m,n=lq̃+1

εq̃(t − |m − n|τ0)(t − |m − n|τ0)

+ �

2

Q∑
q̃=1

lq̃+Nq̃∑
m,n=lq̃+1

εq̃[t − (m + n)τ0][t − (m + n)τ0].

(29)

Solving the set of time-delay differential equations in Eq. (29),
we can get complete information about the Q noninteracting
two-level giant atoms. Interactions between any two or more
giant atoms caused by the semi-infinite waveguide generally
exist, which leads to quantum correlations between different
giant atoms. The result of Eq. (29) is reduced to that in
Eq. (5) when Q = 1. It can be predicted that when Q �= 1,
there will be more modes of bound states in the waveguide si-
multaneously, which provides a positive way for us to control
the coupled giant atoms through engineering the structured
environment.

VIII. CONCLUSION AND DISCUSSION

In this paper, we investigated the non-Markovian dynam-
ics in the spontaneous emission of a two-level giant atom
interacting with a one-dimensional semi-infinite waveguide.
We derived the analytical solutions for the atomic probability
amplitude by Laplace transform, which show nonexponential
dissipations due to the photon transferring between multiple
coupling points and being reabsorbed after it is reflected by
the semi-infinite waveguide. We discussed the conditions and
origins for the formation of bound states and obtained three
different types of bound states. According to the number of
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FIG. 15. The figure shows the influences of the external reservoir decay rate �ext and dephasing rate δω on the nonequal amplitude
oscillating bound states. The blue-dotted line denotes the ideal case (R = 1, δω = 0, �ext = 0). The orange-solid and green-dashed lines
correspond, respectively, to �ext = 0.1� and �ext = 0.2� in (a)–(d), while those in (e)–(h) correspond, respectively, to δω = 0.1� and
δω = 0.2�. The other parameters chosen are (a)–(d) R = 0.98, δω = 0.1�; (e)–(h) R = 0.98, �ext = 0.1�.

bound states in the waveguide, the bound states are divided
into the static case with one bound state, equal amplitude
oscillation with two bound states, and nonequal amplitude
oscillation with three bound states. The equal and nonequal
amplitude oscillating bound states show the period oscillation
behavior for the system, which can arise from the quantum
interference effects between the multiple coupling points and
semi-infinite waveguide. The oscillating bound states with
multiple bound states provide a way for us to store and manip-
ulate more complex quantum information. We assessed that
the formation of bound states can be restricted in the presence
of dissipation into unwanted modes and dephasing of the giant
atom. Finally, we further expanded our analysis to a more
general quantum system containing many noninteracting

giant atoms interacting with a semi-infinite waveguide
through multiple coupling points.

The study of non-Markovian dynamics in two-level giant
atoms coupled to a one-dimensional semi-infinite waveguide
may open up a way to better understand non-Markovian
quantum networks and quantum communications. Moreover,
compared to previous models, the obtained set of delay dif-
ferential equations for the giant atom might pave the way
to better understand the non-Markovian dynamics of many
giant atoms coupled to a semi-infinite waveguide. As a
prospect, we can further study anisotropic nonrotating wave
two-level giant atomic systems through applying the method
in Refs. [151–161] and driven three-level giant atomic sys-
tems in rotating-wave approximation, which are described,

FIG. 16. One-dimensional semi-infinite waveguide coupled to an array of noninteracting two-level giant atoms through
∑Q

q=1 Nq coupling
points with coupling coefficient gkm and position xm, where Nq is the number of coupling points for the qth giant atom. The ground state |g〉
and the excited state |e〉 of the qth atom are separated in frequency by ωq,0 (q = 1, 2, . . . , Q). lq denotes the sum of the number of all coupling
points before the first coupling point of the qth giant atom, which is written as lq = ∑q−1

q′=1 Nq′ . The distance between any two adjacent coupling
points is x0, which is equal to that between the mirror and the first coupling point.
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respectively, by

Ĥ2LS = ωe|e〉〈e| +
∫ kc

0
dk�kâ†

k âk +
∑

m

∫ kc

0
dk

× [akm(â†
kσ− + âkσ+) + bkm(â†

kσ+ + âkσ−)],

Ĥ3LS = ωx|x〉〈x| + ωe|e〉〈e| +
∫ kc

0
dk�kâ†

k âk

+ �̃3LSeiωl tσex + �̃3LSe−iωl tσxe

+
∑

n

∫ kc

0
dkgkn(â†

kσgx + âkσxg),

(30)

where akm and bkm denote the coupling strengths of the
rotating-wave and non-rotating-wave interactions, respec-
tively. The transition from level |e〉 to |x〉 in Eq. (30) is driven
by the classical field with driving strength �̃3LS and driving
frequency ωl . ωe and ωx are the eigenfrequencies of the ex-
cited and metastable states, respectively. Equation (30) will
provide a way for us to further understand the influence of the
nonrotating wave effect and driving field on the dynamical
evolution of giant atoms.
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APPENDIX A: DERIVATION OF DELAY DIFFERENTIAL
EQUATIONS

Integrating Eq. (4), we get

ϕ(k, t ) = ϕ(k, 0)e−i[ω0+v(k−k̃0 )]t − ie−i[ω0+v(k−k̃0 )]t
∫ t

0
ε(s)

×
N∑

m=1

√
�v

π
sin(kmx0)ei[ω0+v(k−k̃0 )]sds. (A1)

With ε(0) = 1 and ϕ(k, 0) = 0, substituting Eq. (A1) into
Eq. (3) gives

ε̇(t ) = − iω0ε(t ) − �v

π

∫ t

0
ε(s)eiω0(s−t )e−ivk̃0 (s−t )ds

×
∫ kc

0

N∑
m,n=1

sin(kmx0) sin(knx0)eivk(s−t )dk. (A2)

Through
∫ kc

0 dk → ∫ +∞
−∞ dk [13,146–148], Eq. (A2) can be

rewritten as

ε̇(t ) = − iω0ε(t ) − �

4π

∫ t

0
ε(s)eiω0(s−t )e−ivk̃0 (s−t )ds

∫ +∞

−∞

N∑
m,n=1

{eivk[s−(t−(m−n)τ0 )] + eivk[s−(t−(n−m)τ0 )]

− eivk[s−(t−(m+n)τ0 )] − eivk[s−(t+(m+n)τ0 )]}d (vk), (A3)

where τ0 = x0/v denotes the delay time between two coupling points. Equation (A3) is reduced to

ε̇(t ) = − iω0ε(t ) − �

2

N∑
m,n=1

∫ t

0
ε(s)δ[s − (t − (m − n)τ0)]ds − �

2

N∑
m,n=1

∫ t

0
ε(s)δ[s − (t + (m − n)τ0)]ds

+ �

2

N∑
m,n=1

∫ t

0
ε(s)δ[s − (t − (m + n)τ0)]ds + �

2

N∑
m,n=1

∫ t

0
ε(s)δ[s − (t + (m + n)τ0)]ds,

(A4)

where we use the dispersion relation ω0 = vk̃0 and
1

2π

∫ +∞
−∞ eik(x−a)dk = δ(x − a). Equation (5) can be obtained

by using the Heaviside step function and
∫

f (x)δ(x − a)dx =
f (a) to Eq. (A4). The total time-dependent field function in
the waveguide

φ(x, t ) =
√

2

π

∫
ϕ(k, t ) sin(kx)dk

= − i

√
2

π

∫
e−ivkt

∫ t

0
ε(s)

N∑
m=1

√
�v

π

× sin(kmx0) sin(kx)eivksdsdk (A5)

leads to Eq. (6) by repeating the similar calculations with the
above derivations.

APPENDIX B: DERIVATION OF EQ. (12)

Substituting sk = −iωk into Eq. (9), we get

i(ω0 − ωk ) + �

2

N∑
m,n=1

[ei|m−n|ωkτ0 − ei(m+n)ωkτ0 ] = 0, (B1)

where |m − n|τ0 denotes the time delay between the cou-
pling points m and n. Defining |m − n|τ0 = lτ0 with
l = |m − n| = 0, 1, · · · , N − 1, the combination number of
time delays is N for l = 0 and 2(N − l ) for l �= 0. Therefore,
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we can expand the sum terms of Eq. (B1) as

N∑
m,n=1

ei|m−n|ωkτ0 =
N−1∑
l=0

2(N − l )eilωkτ0 − N

= 2
N − (N + 1)eiωkτ0 + ei(N+1)ωkτ0

(1 − eiωkτ0 )2 − N,

N∑
m,n=1

ei(m+n)ωkτ0 = ei2ωkτ0 (1 − eiNωkτ0 )2

(1 − eiωkτ0 )2 , (B2)

we obtain

i(ω0 − ωk ) + �

2

[
2

N − (N + 1)eiωkτ0 + ei(N+1)ωkτ0

(1 − eiωkτ0 )2

− ei2ωkτ0 (1 − eiNωkτ0 )2

(1 − eiωkτ0 )2
− N

]
= 0. (B3)

The two expressions in Eq. (12) correspond to the real and
imaginary parts of Eq. (B3), respectively.

APPENDIX C: DISCUSSION ON THE COEXISTENCE OF
MULTIPLE BOUND STATES

When k1 and k2 are simultaneously the two solutions of
Eq. (14a), the parameters ω0τ0 and �τ0 have to be

ω0τ0 = 2k1π

N
− 2(k1 − k2)π

N

cot
( k1π

N

)
cot

( k1π
N

) − cot
( k2π

N

) > 0,

�τ0 = 4(k1 − k2)π

N2

1

cot
( k1π

N

) − cot
( k2π

N

) > 0. (C1)

If both the bound-state conditions (11a) and (14a) are
satisfied, three bound states coexist in the system. Substi-
tuting ω0τ0 = ωk0τ0 = 2k0π into Eq. (14a) leads to �τ0 =
( 2k1π

N − 2k0π ) 2
N tan( k1π

N ) = 4π
N2 tan( k1π

N )(k1 − k0N ), which is
reduced to �τ0 = q 4π

N2 tan( qπ

N ) by introducing k1 = Nk0 + q,
where q, k0, k1 ∈ N+. We get k2 = Nk0 − q due to the tan-
gent function being an odd function. Collecting all these
together, the frequencies in Eq. (21) read

ωk0τ0 = 2k0π,

ωk1τ0 = 2k1π

N
= 2k0π + 2qπ

N
,

ωk2τ0 = 2k2π

N
= 2k0π − 2qπ

N
.

(C2)

With the same method, we obtain the frequencies in Eq. (22)
when Eqs. (11b) and (14a) exist together

ωk0τ0 = (2k0 + 1)π,

ωk1τ0 = 2k1π

N
= 2k0π − 2qπ

N
,

ωk2τ0 = 2k2π

N
= (2k0 + 1)π + 2qπ

N
.

(C3)

Replacing N with N + 1 in Eq. (C1), we get

ω0τ0 = 2k1π

N + 1
− 2(k1 − k2)π

N + 1

cot
( k1π

N+1

)
cot

( k1π
N+1

) − cot
( k2π

N+1

) > 0,

�τ0 = 4(k1 − k2)π

(N + 1)2

1

cot
( k1π

N+1

) − cot
( k2π

N+1

) > 0, (C4)

when Eq. (14b) holds.
If both Eqs. (11) and (14b) are satisfied, Eqs. (C2) and (C3)

become

ωk0τ0 = 2k0π, ωk1τ0 = 2k1π

(N + 1)
= 2k0π + 2qπ

(N + 1)
, ωk2τ0 = 2k2π

(N + 1)
= 2k0π − 2qπ

(N + 1)
, (C5)

and

ωk0τ0 = (2k0 + 1)π, ωk1τ0 = 2k1π

(N + 1)
= 2k0π − 2qπ

(N + 1)
, ωk2τ0 = 2k2π

(N + 1)
= (2k0 + 1)π + 2qπ

(N + 1)
. (C6)

APPENDIX D: NONEQUAL AMPLITUTE OSCILLATING BOUND STATES CAUSED BY THE COEXISTENCE
OF EQS. (11) AND (14b)

Here, we focus on the coexistence of three mode bound states when Eqs. (11) and (14b) are met simultaneously, which results
in that Eqs. (21) and (22) become

ε(t ) = 1

1 + �
2

∑N
m,n=1 [−|m − n|τ0 + (m + n)τ0]

e−iωk0 t

+ 2sin2(ωk1τ0/2)

2sin2(ωk1τ0/2) + (N + 1)�τ0
e−iωk1 t + 2sin2(ωk2τ0/2)

2sin2(ωk2τ0/2) + (N + 1)�τ0
e−iωk2 t , (D1)

ε(t ) = 1

1 + �
2

∑N
m,n=1 [−|m − n|τ0(−1)|m−n| + (m + n)τ0(−1)(m+n)]

e−iωk0 t

+ 2sin2(ωk1τ0/2)

2sin2(ωk1τ0/2) + (N + 1)�τ0
e−iωk1 t + 2sin2(ωk2τ0/2)

2sin2(ωk2τ0/2) + (N + 1)�τ0
e−iωk2 t , (D2)
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FIG. 17. The nonequal amplitude oscillating bound states of a
giant atom. The orange-dashed and blue-solid lines correspond to the
analytical solutions in Eqs. (D1) and (D2) and numerical simulations
with Eq. (5), respectively. The parameters chosen are (a) N =
5, k0 = 4, k1 = 23, k2 = 25, q = 1, ω0τ0 = 8π,�τ0 = 0.0642π ;
(b) N = 8, k0 = 8, k1 = 71, k2 = 82, q = 1, ω0τ0 = 17π, �τ0 =
0.0989π . ωkn in (a) and (b) are determined by Eq. (13b).

where ωkn (n = 0, 1, 2) in Eqs. (D1) and (D2) are given by
Eqs. (C5) and (C6), respectively. We take the atomic excita-
tion probability as a function of �t in Fig. 17. The excitation
probability of the giant atom is a nonequal amplitude oscillat-
ing bound state, which is consistent with the case when both
Eqs. (11) and (14a) are met. In Fig. 18, we plot the corre-
sponding time evolution of the field intensity in the waveguide
and the field intensity distribution at t = 20/�. We note that
there is a clear difference in frequency and amplitude between
Figs. 17(a) and 17(b), which is similar to the phenomenon
between Figs. 9(a) and 9(b), although they are both superposi-
tions of three different bound modes. To understand the reason
for the difference, we start with the expression of the atomic
excitation probability amplitude. When case (iii) in Sec. IV
is satisfied, the long-time dynamics of the giant atom can be
written as

ε(t ) = A0e−iωk0 t + A1e−iωk1 t + A2e−iωk2 t , (D3)

which results in

|ε(t )|2 = |A0|2 + |A1|2 + |A2|2 + 2A0A1 cos
[(

ωk0 − ωk1

)
t
]

+ 2A0A2 cos
[(

ωk0 − ωk2

)
t
]

+ 2A1A2 cos
[(

ωk1 − ωk2

)
t
]
, (D4)

where

A0 = 1

1 + �
2

∑N
m,n=1 [−|m − n|τ0 + (m + n)τ0]

,

Aα = 2sin2(ωkα
τ0/2)

2sin2(ωkα
τ0/2) + N�τ0

, (D5)

FIG. 18. The field intensity P(x, t ) = |φ(x, t )|2 is plotted as a
function of �t and x/x0 based on Eq. (6). (a,c) show the time evo-
lution of the field intensity P(x, t ) in the waveguide correspond to
Figs. 17(a) and 17(b), where the parameters k0, k1, and k2 are the
same as those in Fig. 17. The colors in (a) and (c) describe the field
intensity of the bound states. For clarity, (b) and (d) show the dis-
tribution of P(x, t ) in the waveguide at t = 20/�, which correspond
to (a) and (c). The blue-dotted line is the numerical simulations of
Eq. (6). The other parameters are the same as those in Fig. 17.

with α = 1, 2. Together with Eq. (C2), we get |ωk0 − ωk1 | =
|ωk0 − ωk2 | = 2qπ/(Nτ0), |ωk1 − ωk2 | = 4qπ/(Nτ0), and
substituting them into Eq. (D5) leads to

|ε(t )|2 = |A0|2 + |A1|2 + |A2|2 + 2A0(A1 + A2) cos(ϒt )

+ 2A1A2 cos(2ϒt ), (D6)

with ϒ = 2qπ/(Nτ0). Therefore, the nonequal amplitude
oscillating bound state is a superposition of the cosine
functions of two persistent oscillations with amplitudes
2A0(A1 + A2) and 2A1A2, respectively. We define the differ-
ence between the amplitudes of the two cosine functions as
�A = |2A0(A1 + A2) − 2A1A|. As shown in Figs. 9(a) and
17(a), the difference between two adjacent peaks is small
when �A is large. On the contrary, when �A becomes small,
the difference between two adjacent wave peaks becomes
large as depicted in Figs. 17(b) and 9(b). This is the essential
reason leading to the difference between Figs. 9(a) and 9(b)
[Figs. 17(a) and 17(b)]. Specifically, Eq. (D6) with A0 = 0
corresponds to the atomic excitation probability in the case of
equal amplitude oscillation, and then

|ε(t )|2 =|A1|2 + |A2|2 + 2A1A2 cos(2ϒt ), (D7)

which behaves a persistent oscillation with amplitude 2A1A2

and frequency 2ϒ .
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