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Wait-time distributions for photoelectric detection of light
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Wait-time distributions for the nth photodetection at a detector illuminated by a stationary light beam are
studied. Both unconditional measurements, initiated at an arbitrary instant, and conditional measurements,
initiated upon a photodetection, are considered. Simple analytic expressions are presented for several classical
and quantum sources of light and are used to quantify and compare photon sequences generated by them. These
distributions can be measured in photon-counting experiments and are useful in characterizing and generating
photon sequences with prescribed statistics. The effects of nonunit detection efficiency are also discussed, and
curves are presented to illustrate the behavior.
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I. INTRODUCTION

Statistical analysis of photon sequences generated by light
sources is a fundamental tool for understanding the dynamics
of light sources. By comparing the measurements of photo-
electric pulse sequences generated by the light incident on
a detector with theoretical predictions, we can correlate the
photoelectric pulse dynamics to the source dynamics. Thus, a
meaningful characterization of statistical properties of light is
limited to quantities that can be measured experimentally and
calculated theoretically [1–4].

The most commonly measured and calculated quantities
that characterize the statistical properties of light are the un-
conditional and conditional photocount distributions and a
few low-order time-dependent correlations. An example of
the latter is the conditional measurements of light intensity,
which is related to the two-time intensity correlation function
g(2)(t ; t + T ) of light [4,5]. Another quantity closely related to
the two-time intensity correlation function is the conditional
wait-time probability density w1(T |t ) such that w1(T |t )dT
is the probability that an interval T elapses before the first
photodetection is recorded at time t + T , given that a pho-
todetection was recorded at time t . The function w1(T |t ) is
extremely useful in characterizing bunching and antibunching
properties of photons in a light beam [6,7].

A generalization of the wait-time distribution is wn(T |t ),
the probability density that an interval T elapses before the
nth photodetection is recorded given that the measurement
commenced at a photodetection at time t [2,3]. Another re-
lated distribution is the unconditional wait-time distribution
Pn(t, T ) such that Pn(t, T )dT is the probability that a time T
elapses before the nth detection occurs at time t + T given
that the counting commenced at an arbitrary time t . Wait-
time distributions provide a more detailed temporal picture of
photoemissions that goes beyond that afforded by nth-order
intensity correlations. Experimental measurement of these
distributions requires detectors of high efficiencies; with low-
efficiency detectors, their measurement reduces essentially to
a measurement of intensity correlations. Additionally, the cal-
culations of wait-time distributions are usually more difficult

than those for intensity correlations. For these reasons, rela-
tively few calculations of these distributions have been carried
out. However, the availability of near-unit detection efficiency
detectors and interest in single-photon sources [8–11] have
made these distributions relevant again for characterizing light
sources. These are the quantities of interest here.

The paper is organized as follows. Section I introduces
the distributions Pn(t, T ) and wn(T |t ) and other quantities
of interest that are used to compare photon sequences emit-
ted by different sources in this paper. Section II presents
expressions for these quantities for narrowband thermal
or Gaussian light from a laser below threshold [12–14].
Section III presents wait-time distributions for the light from
a degenerate parametric oscillator operating below threshold.
This is well known to be a source of squeezed light that re-
quires a quantum-mechanical treatment to account for its sta-
tistical properties [15–25]. This is also of interest as a source
of a conditional single-photon sequence [26]. Section IV
considers a photon sequence generated in resonance fluo-
rescence from a single two-level atom driven by a coherent
field. This is another source of quantum-mechanical light that
requires quantum mechanics for its description [27–29]. We
also discuss the effects of nonunit detection efficiency on these
distributions and find that the effect of nonideal detection
efficiency is significantly different for classical and quantum
light. In all cases, exact or approximate but simple analytic
expressions for these distributions are presented. A summary
of principal results and conclusions of the paper are given in
Sec. V.

A. Wait-time distributions

Consider a stationary beam of quasimonochromatic
light incident on a photodetector of quantum efficiency η

(0 < η� 1). Throughout the paper, we will refer to photon flux
(number of photons per second) associated with the beam as
intensity. For stationary light, the average of the photon-flux
operator 〈Î (t )〉 (=〈Î〉) and the photoelectric-detection proba-
bilities are independent of the initial time t . The explicit form
for the photon flux operator depends on the source of light.
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For light generated by optical cavities, it has the form 2γ n̂,
where n̂ is the occupation number for the source cavity and
2γ is the energy decay rate for the source cavity [18]. For a
two-level atom it has the form 2βσ̂ , where σ̂ is the inversion
operator for the atom and 2β is the Einstein A coefficient for
the atomic transition that results in the emission of photons
[4]. Consequently, the unconditional and conditional wait-
time distributions Pn(t, T ) ≡ Pn(T ) and wn(T |t ) ≡ wn(T ) are
given by [2–4]

Pn(T ) =
〈
T :ηÎ (T )

[ηÛ (T )]n−1

(n − 1!)
e−ηÛ (T ):

〉
, (1)

wn(T ) = η

〈Î〉
〈
T :Î (T )

[ηÛ (T )]n−1

(n − 1!)
e−ηÛ (T )Î (0):

〉
. (2)

Here T and :( ): denote the time and normal ordering of
operators, respectively, and Û (T ) = ∫ T

0 Î (t ′)dt ′ is the inte-
grated intensity. Wait-time distributions Pn(T ) and wn(T ), as
well as the photocount distribution p(n, T ) (the probability of
recording n photocounts in an interval T ), can be obtained
from the generating function [2–4]

G(s, T ) = 〈T :e−sηÛ (T ):〉, (3)

where s is a dimensionless parameter. Note that G(1, T ) is the
probability of no photocount p(0, T ) in the interval T . The
photocount and the wait-time distributions can be expressed
in terms of G(s, T ) as

p(n, T ) = (−1)n

n!

(
∂n

∂sn
G(s, T )

)
s=1

, (4)

Pn(T ) = − (−1)n−1

(n − 1)!

(
∂n−1

∂sn−1

1

s

∂

∂T
G(s, T )

)
s=1

= − ∂

∂T

(
n−1∑
k=0

p(k, T )

)
, (5)

wn(T ) = 1

η〈Î〉
(−1)n−1

(n − 1)!

(
∂n−1

∂sn−1

1

s2

∂2

∂T 2
G(s, T )

)
s=1

= 1

η〈Î〉
∂2

∂T 2

(
n−1∑
k=0

(n − k)p(k, T )

)
. (6)

It is important to note that n and T play dual roles in these
equations; wn(T ) and Pn(T ) are distributions of T for fixed
n, whereas p(n, T ) is a distribution of n for fixed counting
interval T . An inspection of Eqs. (4)–(6) shows that Pn(T )
and wn(T ) are related by [29–31]

wn(T ) = − 1

η〈Î〉
∂

∂T

(
n∑

k=1

Pk (T )

)
. (7)

This relation can be used to determine wn(T ) once the set
Pn(T ) is known.

A comparison of these distributions for different sources
can reveal similarities or differences in photoemission se-
quences such as the dominance of short or long wait times
or bunching or antibunching of photons. For long wait times
they all decay exponentially, whereas for short times (or low

detection efficiency η), the leading terms of these distributions
are given by

wn(T )/η〈I〉 ≈ (η〈I〉T )(n−1)g(n+1)(0), (8)

Pn(T )/η〈I〉 ≈ (η〈I〉T )(n−1)g(n)(0), (9)

where g(n) is the normalized nth-order (n � 1) intensity corre-
lation function [5]. Equations (8) and (9) imply that all n � 2
distributions vanish at T = 0 and that the most probable wait
time for the second photodetection is nonzero. The short-time
dependence implied by Eqs. (8) and (9) assumes nonvanishing
zero-time intensity correlations. If these correlations vanish,
the leading short-time dependence may be different from that
given here. We will see an example of this in the discussion
of photon sequences generated in single-atom resonance fluo-
rescence.

From the experimental perspective, n = 1–3 distributions
are the important ones, as this paper shows. Distributions
beyond these carry little qualitatively new information. A
comparison of unconditional and conditional wait-time dis-
tributions for the same n shows that P1 and w1 can differ the
most from each other for a given source, the difference being
especially significant at short times [Eqs. (8) and (9)]. For
n � 2, the two types of distributions are qualitatively similar.
From the short-time behavior (8) and (9) we also see that
while P2 and w1 are both proportional to g(2)(0), the former
vanishes at zero delay, while the latter can be very large, as
will be seen for the parametric oscillator. Of course, w1(0)
can also vanish, as will be seen for single-atom resonance
fluorescence. Finally, for T → ∞, both Pn(T ) and wn(T )
must decay sufficiently fast for them to be normalizable. With
these preliminaries, we are ready to discuss the wait-time
distributions for various light sources.

B. Coherent light

We begin by summarizing the properties of photon se-
quence for coherent light, which may be considered to be
the output of a well-stabilized single-mode laser operating far
above threshold [32]. Coherent light corresponds to a constant
flux [I (t ) = 〈I〉] photon sequence so that

∫ T
0 I (t )dt = 〈I〉T .

Using this in Eqs. (3) and (4), the generating function and the
photocount distribution for coherent light are found to be [2,3]

G(s, T ) = e−sη〈Î〉T , (10)

p(n, T ) = (η〈Î〉T )ne−η〈Î〉T

n!
. (11)

The generating function is thus a simple exponential, and the
photocount distribution is a Poisson distribution, as expected
of a constant rate sequence of independent (uncorrelated)
photons. Since successive photoemissions are uncorrelated,
the photoelectric measurements of coherent light beginning at
a photodetection (conditioned on a photodetection) or begin-
ning at an arbitrary time (unconditional) coincide. Both the
conditional and unconditional wait-time distributions are then
given by

wn(T ) = η〈Î〉(η〈Î〉T )(n−1)

(n − 1)!
e−η〈Î〉T = Pn(T ). (12)
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In particular, w1(T ) = η〈Î〉e−η〈Î〉T = P1(T ) are simple ex-
ponentials with T = 0 as the most probable wait time. In
contrast, the wait-time distributions for n � 2 vanish at T =
0, implying a finite wait time for the second (or higher-order)
photodetection to occur.

The wait-time distributions (12) for coherent light or a
Poisson photon sequence have the form of a gamma distri-
bution with shape parameter n and rate parameter η〈Î〉 [33]. It
follows from the properties of the gamma distribution that the
mean and variance of the wait time for the nth photodetection
are given by

〈T 〉n = n

η〈Î〉 , (13)

〈(�T )2〉n = n

(η〈Î〉)2
. (14)

In writing these equations we have not distinguished between
conditional and unconditional averages because for a Poisson
sequence of uncorrelated photons underlying coherent light,
the conditional and unconditional averages coincide. These
quantities for a Poisson photon sequence set the references
relative to which long or short wait times for photodetection
or bunching or antibunching of photons for other photon se-
quences can be defined.

II. THERMAL LIGHT

Thermal light (narrowband Gaussian light) is an excellent
model for filtered light from electrical discharge lamps or
the light from a single-mode laser operating below threshold.
In this paper we consider thermal light as coming from a
single-mode laser operating below threshold with mean cavity
photon number n̄, cavity decay rate 2γ , and average photon
flux (referred to as intensity throughout the paper) 〈Î〉 = 2γ n̄.
The electric-field amplitude for such a light beam can be mod-
eled as a complex Gaussian random process with zero mean
and variance n̄ (average modulus squared of the complex field
amplitude, also the mean photon number in laser cavity) [12].
The generating function of light emitted by the laser below
threshold is then given by [34,35]

G(s, T ) = e2γ T

cosh(zT ) + 1
2

(
z

2γ
+ 2γ

z

)
sinh(zT )

, (15)

where z2 = (2γ )2 + 2sη(2γ )〈Î〉 = (2γ )2(1 + 2sηn̄). Using
this generating function in Eq. (4), p(n, T ) can be expressed
in terms of modified Bessel functions [34], which can be used
in Eqs. (5) and (6) to obtain Pn(T ) and wn(T ) or Eq. (15) can
be used directly in Eqs. (5) and (6) to compute these distribu-
tions. The resulting expressions in general have complicated
algebraic forms. They simplify considerably, however, for
small and large mean photon number n̄. We consider these
separately.

A. Small mean cavity photon number n̄

For small mean cavity photon number n̄ 	 1, we expand
G(s, T ) as a power series in n̄, using the constraints imposed
by Eqs. (8) and (9) as a guide. Then the number of terms
that need to be retained depends on n (subscript of wait-time

distribution). This procedure leads to the expressions for un-
conditional wait-time distributions

P1(T ) ≈ 2ηγ n̄e−2ηγ n̄T , (16)

P2(T ) ≈ 2ηγ n̄e−2ηγ n̄T ηn̄

2
(1 + 4γ T − e−4γ T ), (17)

P3(T ) ≈ 2γ n̄e−2ηγ n̄T (ηn̄)2

4
[1 + 8γ T + 8(γ T )2

− e−4γ T (12γ T + 1)]. (18)

A similar procedure for the conditional wait-time distribution
leads to

w1(T ) ≈ 2ηγ n̄e−2ηγ n̄T (1 + e−4γ T ), (19)

w2(T ) ≈ 2ηγ n̄e−2ηγ n̄T ηn̄[1 + 2γ T

+ e−4γ T (−1 + 6γ T )], (20)

w3(T ) ≈ 2ηγ n̄e−2ηγ n̄T (ηn̄)2{1 + 3γ T + 2(γ T )2

− e−4γ T [2 + 3γ T − 18(γ T )2] + e−8γ T }. (21)

These expressions are compared with the exact wait-time dis-
tribution in Fig. 1 for small n̄ = 0.01. The solid curves are
computed by using Eq. (15) in Eqs. (5) and (6) and the dashed
curves represent small-n̄ approximations of Eqs. (16)–(21).
It can be seen that the approximate expressions capture the
essential features of unconditional and conditional wait-time
distributions both for short times and long times.

Here P1(T )/2ηγ n̄ always starts out at the value 1 at
T = 0 and monotonically decreases for long times. In contrast,
w1(T )/2ηγ n̄ starts out at twice this value as w1(0)/2ηγ n̄ =
g(2)(0), which for thermal light is known to have twice the
value for coherent photons [13]. In addition, w1(T ) also dis-
plays a prominent narrow peak at short wait times riding on
top of a long exponential, which can be seen more clearly in
the expanded view of w1(T ) in the inset in Fig. 1(b). This
prominent short wait-time peak in w1(T ) for small n̄ results
from bunching of photons in thermal light. Recall that for
small n̄, the average photodetection rate 2γ n̄ is small, but
immediately following a photodetection, the detection rate
surges to twice the average rate due to photon bunching. The
surge in photoemission rate lasts only about one cavity life-
time and its importance relative to the average photoemission
rate decreases as the mean cavity photon number grows, as
will be seen in the next section.

Wait-time distributions for n � 2 start at zero, reach a
maximum for some nonzero wait time (which depends on n),
and decay to zero for long wait times. We also note that the
two types of distributions n � 3 are similar. It is also worth
pointing out that these expressions for Pn and wn are new,
although the statistical properties of thermal light have been
studied extensively for a long time [3,34,35].

B. Large mean cavity photon number n̄

A large mean photon number results in high photon flux
from the source. Therefore, the wait-time distributions are
expected to be dominated by short wait times. The gener-
ating function (15) for thermal light in this limit can be
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(a) (b)

FIG. 1. Comparison of the exact (solid curves) and approximate (dashed curves) expressions (a) (16)–(18) for Pn(T ) and (b) (19)–(21) for
wn(T ) with n = 1, 2, 3 for thermal light for small mean photon number n̄ = 0.01.

approximated by [3,6]

G(s, T ) ≈ 1

1 + s2γ ηn̄T
. (22)

Use of this generating function in Eqs. (4)–(6) leads to the
photocount and wait-time distributions

p(n, T ) ≈ (2γ ηn̄T )n

(1 + 2ηγ n̄T )n+1
, (23)

Pn(T ) ≈ 2ηγ n̄
n (2γ ηn̄T )n−1

(1 + 2γ ηn̄T )n+1
, (24)

wn(T ) ≈ 2ηγ n̄
n(n + 1)(2γ ηn̄T )n−1

(1 + 2γ ηn̄T )n+2
. (25)

These approximations for the wait-time distributions satisfy
the short-time constraints (8) and (9). They are compared with
the exact expressions based on Eqs. (5) and (6) in Fig. 2,
which shows excellent agreement for short times.

For long wait times 2γ T 
 1, the integrated intensity
U (T ) = ∫ T

0 I (t )dt ≈ 〈I〉T = 2γ n̄T , so the generating func-
tion (15) takes the form

G(s, T ) ≈ e−2sηγ n̄T − O(n̄s)2. (26)

This has the same form as the generating function (10) for
coherent light. Thus, the long-wait-time statistics are those
of coherent light with mean photon flux 2γ n̄. Note that
the wait-time distributions (16)–(21) for small mean cavity

photon number n̄ have the expected exponential tail e−2ηγ n̄T .
The approximate wait-time distributions (24) and (25) for
large n̄ do not fall off exponentially for long wait times but
they do capture the most significant part of the distributions
and become increasingly accurate as n̄ increases. This is the
high degeneracy (large mode occupation number) limit of
wait-time distributions [3].

From Eqs. (23)–(25) we see that for large n̄, the conditional
and unconditional wait-time distributions for thermal light are
related by

wn(T ) ≈ n + 1

1 + 2γ ηn̄T
Pn(T ). (27)

We also note that both w1 and P2 are proportional to g(2)(0) for
short times [Eqs. (8) and (9)], as both involve the detection
of a pair of photons, but their behavior is quite different.
The conditional wait-time distribution w1(T ) has a maximum
at T = 0. This means, given that the counting begins at the
detection of a photon, that the first photodetection is most
likely to occur immediately after the counting begins. In other
words, thermal photons are bunched in time; the detection of
a photon makes the detection of the next photon most proba-
ble immediately after the first. In contrast, the unconditional
wait-time distribution P2(T ) vanishes at T = 0. This means
that if the counting begins at an arbitrary instant, the second
photodetection can occur only after a finite wait. It is clear

(a) (b)

FIG. 2. Comparison of the exact (solid curves) and approximate (dashed curves) expression (a) (24) for Pn(T ) and (b) (25) for wn(T ) with
n = 1, 2, 3 for thermal light for large mean photon number n̄ = 10.
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there must be one photodetection already before the second
photodetection can occur.

The mean and variance of unconditional wait-time distribu-
tions can be evaluated analytically in terms of hypergeometric
functions [36]. However, they will not be reproduced here.
Instead, certain trends will be noted. In the small-n̄ regime, the
leading terms in the mean and variance have the same values
as coherent light of the same mean intensity. As n̄ increases,
the mean and variance of wait-time decrease monotonically
for all values of n. A comparison of the most probable wait
times for thermal and coherent lights provides further insight
into photon bunching in a thermal light beam. For coher-
ent light, the most probable wait time for the nth detection
is Tn,coh = (n − 1)/η〈I〉. In contrast, for thermal light, the
most probable wait time T (P)

n,th = (n − 1)/2η〈I〉 for uncon-

ditioned nth detection is shorter, and shorter still, T (w)
n,th =

(n − 1)/3η〈I〉, for conditioned detection. This difference is
to be expected due to bunching of photons in a thermal light
beam compared to a random distribution of photons in time
in a coherent beam. In particular, the wait time T (w)

1,th for con-
ditioned detection of a photon pair in a thermal light beam is
shorter than the wait time T (P)

2,th for unconditioned detection of
a photon pair in a coherent beam.

Finally, we note that the effect of detection efficiency on
wait-time distributions for thermal light is already included in
the expressions given by Eqs. (16)–(25). Detection efficiency
appears multiplied by n̄ in the generating function. Thus,
its effect is to reduce the photodetection rate from 2γ n̄ (for
η = 1) to η2γ n̄, without affecting the shape of the wait-time
distributions.

III. DEGENERATE PARAMETRIC OSCILLATOR

The degenerate parametric oscillator (DPO) is perhaps the
most important source of squeezed light [17]. The basic mech-
anism of the DPO is the conversion of a pump photon into a
pair of photons in a subharmonic mode (down-conversion) in
a nonlinear medium inside an optical cavity. Photons escaping
from the cavity constitute the photon flux from the cavity.

The light from the DPO requires a fully quantum-
mechanical treatment to describe its statistical properties.
Using the phase-space representation of the field density ma-
trix, photon annihilation and creation operators can be mapped
onto two real independent Gaussian stochastic processes of
zero mean but different variances [15,16]. The generating
function G(s, T ) for the light from a DPO operating be-
low threshold is then found to have the form G(s, T ) =
Q1(s, T )Q2(s, T ), with Qi(s, T ) given by [18,19]

Qi(s, T ) = eλiT/2√
cosh(ziT ) + 1

2

( zi
λi

+ λi
zi

)
sinh(ziT )

, (28)

where λi = γ ∓ |κε|, z2
i = λ2

i ± 2sηγ κε for i = {1, 2},
(2γ )−1 is the lifetime of the cavity, |ε|2 is proportional to
the pump intensity, s is a dimensionless parameter, and κ is a
coupling constant which depends on the properties of the non-
linear interaction between the pump and the down-converted
photons inside the optical cavity. The mean photon number for
the DPO cavity is given by n̄ = 1

2 |κε/γ |2/(1 − |κε/γ |2). This
allows us to express the generating function G(s, T ), more

concisely, in terms of only γ and n̄. It is interesting to note that
thermal light is also described in terms of two real (classical)
Gaussian processes with zero mean but both processes with
the same variance or equivalently a single complex Gaussian
stochastic process [12]. This difference leads to very different
quantum-statistical properties for thermal light and the light
from the DPO.

We first consider the unit detection efficiency (η = 1).
The photodetection sequence then is a direct representative
of the photon sequence. The general expressions for Pn(T )
and wn(T ) cannot be written in terms of elementary func-
tions and are not very illuminating [36]. However, in several
practically important limits, both Pn(T ) and wn(T ) can be
written in terms of simple analytic functions, which are excel-
lent approximations to the exact expressions. These limits are
discussed below. They allow us to construct a physical picture
of photon sequences generated by this quantum-mechanical
source.

A. Small mean cavity photon number n̄

This corresponds to a small mean photon flux 2γ n̄ from the
DPO cavity. The wait times in this limit will be dominated by
large intervals T 
 (2γ )−1. The generating function and the
photocount distribution in this limit take the form [18–20]

G(s, T ) ≈
(

1 − n̄

2
s2

)
exp[γ n̄T (s2 − 2s)], (29)

p(2k, T ) ≈ (n̄γ T )k

k!
e−n̄γ T , (30)

p(2k + 1, T ) ≈ n̄
(n̄γ T )k

k!
e−n̄γ T . (31)

An inspection of Eqs. (30) and (31) reveals a peculiar nature
of photocount distribution for the DPO: The probability of de-
tecting an odd number of photocounts is negligible compared
to the probability of detecting an even number of photocounts
(p2k+1/p2k ∝ n̄ 	 1). It is as if the DPO emits photon pairs.
This interpretation is reflected in the mathematical structure of
Eqs. (30) and (31). A cavity with mean photon number n̄ will
generate a photon flux 2γ n̄, resulting in 2γ n̄T photocounts in
time interval T . This amounts to half as many photon pairs
n̄γ T in time T . A comparison of Eq. (30) with the corre-
sponding expression (11) for coherent light then shows that
the probability of recording 2k photocounts in DPO light is the
same as the probability of recording k (random) photon pairs.
To appreciate this result, recall that the down-conversion of a
pump photon results in a photon pair deposited inside the DPO
cavity, where each photon of a pair circulates independently,
escaping the cavity in a lifetime of order (2γ )−1. It is clear
that the creation of photon pairs inside the cavity alone is not
sufficient to give rise to a pairlike photocount distribution of
Eqs. (30) and (31). Only, if the rate of photon-pair creation
is sufficiently low, both photons of a pair will escape the
cavity before another pair is created. A detector monitoring
the output will then record, with high probability, an even
number of photocounts in a time T large compared with the
cavity lifetime (2γ )−1.

This pairlike character of photoemission from the DPO is
reflected in the wait-time distributions as well. Equation (29)
correctly captures the long-time behavior of wait-time
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(a) (b)

FIG. 3. Exact wait-time distributions (a) Pn(T ) and (b) wn(T ) for the light from the DPO for small cavity photon number n̄ = 0.01. The
dashed curves are derived from the approximate expressions (32)–(37).

distributions but short-time behavior, constrained by Eqs. (8)
and (9), requires inclusion of more terms in n̄ in the expansion
of the generating function. As in the case of thermal light, this
can be done relatively easily for n = 1–3, which are sufficient
for experimental characterization of photon sequences. The
results for the unconditional distribution Pn are

P1(T ) ≈ 2γ n̄e−γ n̄T 1
2 [1 + e−2γ T ], (32)

P2(T ) ≈ 2γ n̄e−γ n̄T 1
2 [1 − e−2γ T ], (33)

P3(T ) ≈ 2γ n̄e−γ n̄T

(
n̄

2

)
{3 + γ T + 3e−4γ T

+ e−2γ T [6 + γ T − 4(γ T )2]}. (34)

A similar procedure for the conditional wait-time distribution
leads to

w1(T ) ≈ 2γ n̄e−γ n̄T

[
1

4
+ e−4γ T + e−2γ T

(
1

2n̄
+ 7

4

)]
, (35)

w2(T ) ≈ 2γ n̄e−γ n̄T
[

1
2 − 2e−4γ T + e−2γ T

(
3
2 + 4γ T

)]
, (36)

w3(T ) ≈ 2γ n̄e−γ n̄T
{

1
4 + e−4γ T

+ e−2γ T
[
2(γ T )2 + 3

2γ T − 5
4

]}
. (37)

Equations (32)–(37) for the wait-time distributions are com-
pared with the exact distributions in Fig. 3. It can be seen
that these approximate expressions capture both the short-
and long-time behaviors as well as the general shape of the
distributions.

Several features of small-n̄ distributions given by
Eqs. (32)–(37) are noteworthy. First, the most significant
qualitative difference between unconditional and conditional
wait-time distributions appears in low-order (n = 1–3) distri-
butions. For n � 3, the two types of wait-time distributions
have similar behaviors in that they both vanish at T = 0,
reach a maximum at some nonzero value of T , and then
decay exponentially to zero for long wait times. Second, they
are characterized by two very different timescales. The short
timescale is the inverse of the photoemission rate 2γ (which
would correspond to the photoemission rate with n̄ = 1). This
rate, which far exceeds the average photoemission rate 2γ n̄,
can be thought of as photoemission rate conditioned upon a

photodetection. In this small-n̄ regime, the cavity has either
a pair of photons (for a period lasting a few cavity lifetimes)
or no photons. The detection of a photon in this regime sig-
nals, with high probability, the presence of one photon in
the cavity, resulting in a photoemission rate 2γ following a
photodetection. This is a manifestation of strong nonclassi-
cal correlations between the photons of a pair produced in
the process of down-conversion. The long timescale approx-
imately equal to (γ n̄)−1 is the inverse of the mean photon
pair emission rate. Indeed, the long-wait-time tail of these
distributions is Poissonian with mean flux γ n̄, which is half
the mean photon flux 2γ n̄ from the cavity. Also, for long wait
times 2γ T 
 1, P1 ≈ P2 and P3 ≈ P4. This pattern extends
to higher-order distributions with P2k+1 ≈ P2k+2. Thus, the
long-wait-time behavior of wait-time distributions mimics a
random photon sequence of mean flux γ n̄ (not 2γ n̄). Both of
these aspects reflect the pairlike character of photoemissions
from the DPO in the small-n̄ regime.

Another interesting feature is that the short-time distribu-
tions for the DPO are superthermal. To appreciate this, recall
that for short times, the wait-time distributions are propor-
tional to zero-delay intensity correlation functions [Eqs. (8)
and (9)]. For example, w1(T ) ∝ 〈:Î2:〉, which for thermal light
is approximately n̄2 [3], whereas for the light from the DPO it
is approximately n̄ [18,37]. Since n̄ > n̄2 for n̄ < 1, it follows
that g(2)

DPO(0) > g(2)
th (0). Similar results hold for all other dis-

tributions except P1(T ), which, by definition, is normalized to
P1(0)/2γ n̄ = 1. This can also be seen by comparing Fig. 1 for
thermal light and Fig. 3 for the light from the DPO.

B. Large mean cavity photon number n̄

The large-photon-number regime is also of practical inter-
est. As the oscillator approaches the threshold of oscillation,
many photon pairs are created inside the cavity in a cavity
lifetime and the photons escaping the DPO cavity cannot be
interpreted as coming from the same pair [18]. In this case,
the wait times are dominated by intervals small compared to
the cavity lifetime (2γ )−1 and the generating function G(s, T )
can be approximated by [18,19]

G(s, T ) ≈ 1

(1 + 4sηγ n̄T )1/2
. (38)
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(a) (b)

FIG. 4. Exact curves for (a) Pn(T ) and (b) wn(T ) for the light from the DPO compared with approximate expressions (39) and (40) (dashed
curves) for large mean cavity photon number n̄ = 10.

Using this in Eqs. (5) and (6), we find that Pn(T ) and wn(T )
can be obtained by differentiation, leading to

Pn(T ) ≈ 2ηγ n̄
(2n − 1)!!

(n − 1)!

(2ηγ n̄T )n−1

(1 + 4ηγ n̄T )n+1/2
, (39)

wn(T ) ≈ 2ηγ n̄
(2n + 1)!!

(n − 1)!

(2ηγ n̄T )n−1

(1 + 4ηγ n̄T )n+3/2
. (40)

Equations (39) and (40) are compared with the exact curves
in Fig. 4 and can be seen to be good approximations to the
exact distributions. A comparison of these curves with those
in Fig. 3 for small n̄ shows that the most significant change
in the wait-time distributions with increased cavity photon
number n̄ is that the two very different timescales (2γ )−1

and (γ n̄)−1, the former corresponding to enhanced cavity
emission following the detection of the first photon and the lat-
ter corresponding to separation between photon pairs, which
were so prominent at small cavity photon numbers, have been
replaced by a single timescale (2ηγ n̄)−1 determined by the
mean cavity photoemission rate 2γ n̄. This is the so-called
high degeneracy limit of squeezed light discussed in Ref. [6].

The wait-time distributions of Eqs. (39) and (40) are
related by

wn(T ) = (2n + 1)

(1 + 4ηγ n̄T )
Pn(T ), (41)

which is remarkably similar to the relation (27) for thermal
light. In fact, for large mean cavity photon number, the curves
of Fig. 4 are qualitatively similar to those in Fig. 2 for thermal
light. However, a closer examination of Eqs. (27) and (41) and
the curves in Figs. 2 and 4 reveals quantitative differences.
The conditional wait times for the DPO are biased toward
shorter times compared to thermal light; they are peaked at
shorter wait times and are narrower than those for thermal
light. For example, w1(0) for the DPO is 3

2 times as large as
that for thermal light. Indeed, the most probable conditioned
wait time for the nth photodetection, T (w)

DPO = (n − 1)/5〈Î〉, for
the DPO is shorter than the corresponding time for thermal
photons, T (w)

th = (n − 1)/3〈Î〉, where 〈Î〉 is the mean photon
flux.

C. Effect of detection efficiency

Nonunit detection efficiency (η < 1) causes the photode-
tection sequence to differ from the photoemission sequence.

The most significant effect of the nonunit detection efficiency
for the DPO is to degrade the even-odd oscillations in the
photocount distribution. This has been discussed in detail in
Ref. [18]. For nonunit detection efficiency, the expressions for
Pn(T ) and wn(T ) for arbitrary n do not have simple forms in
general. However, for large n̄, the dominant effect of detection
efficiency is already contained in the expressions (39) and
(40) and is similar to that found for thermal light in the high
degeneracy limit [6].

For small n̄, where quantum effects dominate, the effect of
detector efficiency is more interesting and illustrates how the
quantum nature of photoemission sequence can be obscured
in the photodetection sequence. As noted earlier, wait-time
distributions beyond n = 1 and 2 carry little qualitatively
new information. Therefore, we will limit our considera-
tion of nonunit detection efficiency to n = 1, 2 distributions.
Following a procedure similar to that used in arriving at
Eqs. (32)–(37) for small n̄, we expand the generating func-
tion in powers of n̄ and retain terms necessary to satisfy the
constraints of Eqs. (8) and (9). We then obtain the expressions

P1(T ) ≈ 2ηγ n̄e−(2η−η2 )γ n̄T 1
2 [2 − η + ηe−2γ T ], (42)

P2(T ) ≈ 2ηγ n̄e−(2η−η2 )γ n̄T η

2
[1 − e−2γ T ], (43)

w1(T ) ≈ 2ηγ n̄e−(2η−η2 )γ n̄T

[
1

4
(η − 2)2 + η2e−4γ T

+ e−2γ T

(
2 + 1

2n̄
+ η − 5

4
η2

)]
, (44)

w2(T ) ≈ 2ηγ n̄e−(2η−η2 )γ n̄T η

2

[
2 − η − 4ηe−4γ T

+e−2γ T (5η − 6ηγ T + 14γ T − 2)
]
. (45)

As a check, we note that for η = 1, these expressions reduce to
those in Eqs. (32)–(37) and satisfy the constraints (8) and (9).
Noteworthy is the nonlinear dependence of wait-time distri-
butions, especially the exponents (2η − η2)γ n̄T on detection
efficiency. Thus, the overall effect of detection efficiency on
wait-time distributions goes beyond simple scaling of wait-
time distributions.

Figure 5 illustrates the effect of nonunit detection effi-
ciency on wait-time distributions. The solid curves represent
numerical calculations using the generating function (28)
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(a) (b)

FIG. 5. Effect of detection efficiency on wait-time distributions for the DPO for small mean photon number (n̄ = 0.01). The dashed curves
show the approximations of Eqs. (48)–(51) for (a) P1(T ) and (b) w1(T ).

in Eqs. (5) and (6). The dashed curves are obtained from
Eqs. (42)–(45). Note that as η decreases, the long timescale
determined by the pair-emission rate γ n̄ for η = 1 is replaced
by a timescale determined by the mean photon flux 2γ n̄.
We can also see analytically, from the exponential before
the square brackets, that for small detection efficiency, the
exponent (2η − η2)γ n̄T → 2ηγ n̄. In this quantum regime,
the detection efficiency changes the timescales as well as
the shape of the distributions. As the detection efficiency
decreases, the observed wait-time distribution resembles a
rate-limited distribution for classical (thermal and coherent)
light. Here we have an analytical model that allows us to see
how the quantum-mechanical properties of a photoemission
sequence are washed out in the photodetection sequence as
detection efficiency decreases.

IV. TWO-LEVEL-ATOM RESONANCE FLUORESCENCE

Consider now the photon sequence produced by a two-
level atom driven by a coherent field with frequency close
to the atomic resonance frequency. With each photoemission,
the atom returns to its lower state, and so each subsequent
photon-emission occurs with the atom starting in the lower
state, independent of the history of previous photoemissions.
The driving field, being in a classical (coherent) state, remains
unaffected. This property allows the averages of products of
photon flux operators to be simplified and expressed in terms
of the products of two-time averages. This fascinating exam-
ple of a quantum-mechanical light source has been studied in
detail [27–29,38–41] using the photocount distribution as well
as the wait-time distributions [4,30,31]. We have generalized
these to arbitrary n and efficiency of detection. The details of
this are relegated to the Appendix. Here we simply quote the
steady-state results for the conditional wait-time distributions
wn(T ) for n = 1, 2, 3 to allow a comparison with light from
the DPO.

A. Wait-time distributions

The conditional wait-time distributions for n = 1–3 in the
steady state are given by (see the Appendix and Ref. [30])

w1(T ) = �2

ω2
e−βT [−1 + cosh ωT ], (46)

w2(T ) = 1

2

�4

ω4
βTe−βT

[
2 + cosh ωT − 3

sinh ωT

ωT

]
, (47)

w3(T ) = 1

8

�6

ω6
(βT )2e−βT

[
−4 + cosh ωT − 9

sinh ωT

ωT

+ 24
cosh ωT − 1

(ωT )2

]
, (48)

where 2β is the Einstein A coefficient, � is the Rabi fre-
quency for the atomic transition, and ω =

√
β2 − �2. These

expressions written for Rabi frequency � < β also hold for
� > β if we replace the hyperbolic functions by trigonomet-
ric functions cosh(ωT ) → cos |ω|T and sinh(ωT )/ωT →
sin(|ω|T )/|ω|T . These wait-time distributions are shown in
Fig. 6 for two values of Rabi frequency � < β (�/β =
0.2

√
2) and � > β (�/β = 10

√
2). In all cases, the con-

ditional wait-time distributions vanish at T = 0 and reach
a single maximum (or more) at some nonzero time before
decreasing to zero as T increases. The behavior of wn for short
times 2βT 	 1 can be obtained by a Taylor expansion of the
terms inside square brackets in Eqs. (46)–(48), giving us the
leading term

wn ≈ �2n

β2n
β

(βT )3n−1

(3n − 1)!
e−βT . (49)

Thus, for short wait-times, wn is proportional to a gamma
distribution with shape parameter 3n and rate β [33]. This
short-time behavior of wn(T ) differs from that derived in
Eq. (8) for the light from the DPO or the thermal light from
a laser operating below threshold. This is because the zero-
delay intensity correlation functions g(n)(0) (n � 2) vanish in
resonance fluorescence. Therefore, the leading nonzero term
in the short-time limit requires a calculation carried out to a
higher order in the small parameter βT . Physically, the van-
ishing of wn(0) reflects the fact that a photodetection signals
the return of the atom to its ground state and therefore its
inability to emit another photon immediately after a photode-
tection has occurred.

The behavior of the wait-time distribution wn changes
qualitatively as the Rabi frequency � increases. For � < β,
the distributions have a single maximum, whereas for � > β,
they begin to develop modulations reflecting Rabi oscillations.
The wait-time distribution w1(T ) has the strongest modula-
tions and vanishes periodically at intervals that are multiples
of 2π/|ω| = 2π/

√
�2 − β2. These zeros signal the atom’s
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(a) (b)

(c) (d)

FIG. 6. Plots of (a) and (b) wn(T ) and (c) and (d) Pn(T ) for (a) and (c) small (�/β = 0.2
√

2) and (b) and (d) large (�/β = 10
√

2) driving
fields for n = 1–3. The dashed curves in (b) and (d) represent large-field approximations [Eqs. (50) and (A13)].

periodic return to the ground state when it is unable to emit
a photon. Higher-order distributions w2(T ) and w3(T ) also
exhibit modulations but of smaller amplitude and they do not
vanish except at T = 0.

For a strong driving field �2/β2 
 1, the steady-state
emission rate 〈Î〉ss = β�2/(�2 + 2β2) → β and the wait-
time distributions wn(T ) simplify to

wn(T ) ≈ β
(βT )n−1

(n − 1)!
e−βT

(
1 − (−1)n−1

2n−1
cos(�T )

)
. (50)

This is a gamma distribution modulated at Rabi frequency,
the modulations of consecutive distributions being π out of
phase. This approximation is shown by the dashed curve in
Fig. 6(b), which appears to reproduce the exact curves for both
wn beyond the first maximum quite well.

The unconditional wait-time distribution Pn(T ) can be de-
rived using a procedure similar to that used for wn(T ) or by
using Eq. (A13) in the Appendix. The resulting expressions
are similar to those for wn(T ) and we omit writing their
explicit form here. Figures 6(c) and 6(d) show Pn(T ) for small
and large driving fields. Their comparison with conditional
distributions shows that P1(T ) and w1(T ) differ the most from
each other; the latter vanishes at T = 0 whereas P1(T ) has
T = 0 as the most probable value. It is interesting to note
that although P1(T ) corresponds to the first photodetection
when counting starts at a random instant, the underlying Rabi
oscillations are not completely washed out [Fig. 6(d)]. For
n � 2, the unconditional and conditional distributions have
qualitatively similar behaviors. Both types vanish at T = 0
and reach a single maximum for �/β <

√
2 or exhibit modu-

lations for �/β >
√

2 before decreasing to zero.

A special case

A comparison of the wait-time distributions in resonance
fluorescence with those for thermal and DPO light (Figs. 1–4)
shows that for �/β <

√
2 they share a common feature by

having a single maximum. For a quantitative comparison, we
consider the special case �/β = 1 in this regime. The steady-
state photon flux in this case is 〈I〉ss = β�2/(�2 + 2β2) →
β/3 and Eqs. (46)–(48) simplify to

wn(T ) = β
(βT )3n−1

(3n − 1)!
e−βT . (51)

The corresponding expression for the unconditional distribu-
tion is

Pn(T ) = β

3

(βT )3(n−1)

(3n − 1)!
e−βT [(βT )2 + (3n − 1)βT

+ (3n − 1)(3n − 2)]. (52)

Distributions (51) and (52) are shown in Fig. 7 for n = 1–3
as a function of T . They all have a single maximum, which
occurs at increasingly larger values of T as n increases.
Equation (51) is a gamma distribution with shape parameter
3n, rate β, wait-time average 〈T 〉wn = 3n/β = n/〈I〉ss, and
variance 〈(�T )2〉wn = 3n/β2 = n/3〈I〉2

ss [33]. The mean is
the same as that for a Poisson sequence of the same flux 〈I〉ss,
but the variance is smaller than the variance for a Poisson
sequence [Eqs. (13) and (14)]. The sub-Poissonian variance
of wait times implies that the photoemissions in resonance
fluorescence are more regular than a Poisson sequence. The
regular nature of photoemissions is reflected in the most
probable wait time τrf = (3n − 1)/β = (n − 1

3 )〈Î〉−1
ss for the

nth photodetection being longer than the average wait time
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(a) (b)

FIG. 7. Plots of (a) wn(T ) and (b) Pn(T ) for n = 1–3 in resonance fluorescence for � = β.

τcoh = (n − 1)〈Î〉−1
ss for a Poisson sequence [Eq. (12)]. These

conclusions, though reached by considering the special case
�/β = 1, hold generally. This is discussed further for ar-
bitrary values of detection efficiency and �/β in the next
section.

B. Effect of detection efficiency

For nonunit detection efficiency, the expressions for wn(T )
and Pn(T ) become cumbersome. The exact formulas have
been relegated to the Appendix. Here we illustrate the effect
of nonunit detection efficiency on wait-time distributions by
considering some special cases.

For nonunit detection efficiency, the wait-time distribution
w1(T ) for � = β is given by

w1(T ) = ηβ

3μ2
e−βT (1−μ)

[
1 − 2e−(3/2)βμT

× cos

(√
3

2
μβT − π

3

)]
, (53)

where μ = (1 − η)1/3. This reduces to w1(T ) given by
Eq. (50) for η = 1 and vanishes for T = 0, independent of
the efficiency of detection, since w1(0) ∝ g(2)(0). On using
Eq. (A13), we find that the unconditional wait-time distribu-
tion for the first photodetection is

P1(T ) = ηβe−(1−μ)βT

9μ2

{
(1 + μ + μ2) − 2e−(3/2)μβT

×
[(

1 − μ

2
− μ2

2

)
cos

(√
3

2
μβT − π

3

)

+ μ(μ − 1)

√
3

2
sin

(√
3

2
μβT − π

3

)]}
. (54)

This also reduces to the ideal detection efficiency result (52)
for η = 1 (μ = 0). The unconditional distribution P1(T ) does
not vanish at T = 0. Noting that the parameter μ increases
from 0 to 1 as the efficiency of detection η decreases from 1
to zero, Eqs. (53) and (54) then allow us to see that the effect
of degrading detection efficiency is to damp out oscillatory
features and push the long-time tail of the distribution to
be Poisson-like. Simple expressions like this are not possi-
ble for other values of �/β. However, detailed calculations

confirm that higher-order distributions also follow this trend
as detection efficiency decreases. Figure 8 illustrates the ef-
fect of nonunit detection efficiency on wait-time distributions
(n = 1, 2) for �/β = 5

√
2.

As detection efficiency decreases, Rabi oscillations in both
wn(T ) and Pn(T ) die out. For very small detection efficiency
η 	 1, regardless of the strength of the field, the distributions
for wn(T ) and Pn(T ) are qualitatively very close to those
for coherent light (dashed curves in Fig. 8), with the excep-
tion that w1(0) = 0. For weak driving fields, photoemissions
and therefore photodetections (even with unit detection effi-
ciency) become rare events. The wait-time distributions are
then dominated by long wait times, where they are indistin-
guishable from the corresponding distributions for a Poisson
photon sequence. Similarly, if the detection efficiency is very
small, photodetections become rare events (irrespective of
photoemission rate or the strength of the driving field) and
photodetection wait times are again dominated by long inter-
vals pushing wait-time distribution close to those for random
events.

C. Mean and variance of wait times

The mean and variance of wait times are also of interest
as both can be measured experimentally. The moments of T
with respect to wn(T ) can be expressed in terms of its Laplace
transform w̃n(s) as

〈T m〉wn = (−1)m ∂m

∂sm
w̃n(s)

∣∣∣∣
s=0

, (55)

where w̃n(s) is given by Eq. (A7). The mean and variance of
the wait time with respect to wn(T ) are then given by

〈T 〉wn = n

η〈I〉ss
, (56)

〈(�T )2〉wn = n

(η〈Î〉ss )2

(
1 − 6ηβ2�2

(�2 + 2β2)2

)
, (57)

where �T = T − 〈T 〉 and 〈Î〉ss = β�2/(�2 + 2β2) is the
steady-state photon flux.

The averages of wait time with respect to Pn(T ) can be
obtained similarly or by using Eq. (A13) relating Pn to wn.
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(a) (b)

(c) (d)

FIG. 8. Effect of nonunit detection efficiency on wait-time distributions in resonance fluorescent for (a) w1(T ), (b) P1(T ), (c) w2(T ), and
(d) P2(T ), for n = 1, 2, �/β = 5

√
2, and efficiency η = 1 (black), 0.5 (blue), and 0.1 (red). The solid curves are derived from Eq. (84). The

dashed curve in each frame represents the distribution for coherent light.

This leads to the following expressions for the first and second
moments of the wait time with respect to Pn(T ):

〈T 〉Pn = n

η〈Î〉ss

(
1 − 3ηβ2�2

n(�2 + 2β2)2

)
, (58)

〈T 2〉Pn = n(n + 1)

(η〈Î〉ss )2
+ 2

�2 + 2β2

(
1 − 6nβ

η〈Î〉ss

)
. (59)

Using these equations and Eq. (57), the variance of the uncon-
ditional wait time can then be written as

〈(�T )2〉Pn = 〈(�T )2〉wn + 2�2 − 5β2

(�2 + 2β2)2
. (60)

A comparison of Eq. (57) with Eq. (14) for the Poisson
photon sequence shows that the variance of wait time between
successive (n = 1) photoemissions in resonance fluorescence
is sub-Poissonian. In other words, the interval between suc-
cessive photoemissions in resonance fluorescence fluctuates
less than in a Poisson photon sequence, that is, successive
photoemissions in resonance fluorescence are more regular
than a Poisson photon sequence. The smallest variance of
photoemission wait times (1 − 3η/4)/(η〈Î〉ss )2 occurs when
�/β = √

2.
For strong driving fields �2/β2 
 1, the average photon

flux saturates to 〈Î〉ss ≡ β�2/(�2 + 2β2) → β or an average
of one photoemission per β−1 seconds. In this limit, 〈T 〉wn ≈
〈T 〉Pn → n/η〈Î〉ss, which shows that for strong fields the av-
erage time for the nth photodetection saturates to n times the
average interval (ηβ )−1 between successive photoemissions
and the variance approaches the Poisson limit 〈(�T )2〉Pn ≈
〈(�T )2〉wn → n/η2β2.

V. CONCLUSION

We have derived analytic expressions for conditional and
unconditional wait-time distributions for nth photodetection
for four types of light: coherent light, single-mode thermal
light, single-mode squeezed light, and fluorescence from a
single atom. We consider thermal light as coming from a
single-mode laser below threshold, squeezed light from a
degenerate parametric oscillator below threshold, and fluores-
cence from a coherently driven single atom. These dynamic
models allow a uniform way of relating wait-time distri-
butions to source dynamics. The expressions for wait-time
distributions were used to discuss and compare the temporal
distribution of photons for different light sources.

We find that the wait-time distributions for thermal light
have two timescales: (2γ )−1, determined by the cavity life-
time, and (2γ n̄)−1, determined by the average photon flux.
The former is prominent at low cavity photon numbers but is
masked by the flux-limited wait time as the mean cavity pho-
ton number n̄ increases. Wait-time distributions for squeezed
light from the DPO also have cavity lifetime (2γ )−1 as one
timescale, but, at small n̄, the second timescale is (γ n̄)−1,
which corresponds not to the photon flux but to the flux
of photon pairs. The peak in w1(T ) for short wait times is
indicative of enhanced photoemission rate conditioned on a
photodetection. This conditionally enhanced photoemission
rate, lasting for only about one cavity lifetime, leads to the
e−2γ T term in Eq. (35). Compared to thermal light, the condi-
tional photoemission rate for the DPO is enhanced by a factor
1/n̄, which for small n̄ can be large, reflecting strong quantum
correlations between the photons in the DPO light.
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We also considered the wait-time distributions for reso-
nance fluorescence [4,30,31] and extended them to include
the effect of nonunit quantum efficiency. Photons in resonance
fluorescence are known to exhibit antibunching, which is re-
flected most prominently, in the vanishing of w1(T ) at T = 0.
We find that the wait-time variance in resonance fluorescence
is sub-Poissonian, implying a more regular temporal distribu-
tion of photons than in coherent light. In contrast, for thermal
and DPO light, w1(T ) has a maximum at T = 0 and wait-
time variance is super-Poissonian, implying a more irregular
temporal distribution of photons than in coherent light.

We also investigated the effect of detection efficiency on
these distributions. We find that for classical light (thermal and
coherent), detection efficiency scales the effective photodetec-
tion rate, whereas for quantum light (DPO and single-atom
fluorescence), it not only scales the photodetection rate but
also changes the shape of the distribution. In particular, we
are able to see analytically how with decreasing detection
efficiency, the wait-time distribution with distinctive timescale
determined by pair emission rate (γ n̄) approaches a distribu-
tion limited by mean photon flux 2γ n̄ in the weak-field limit.
In general, with decreasing detection efficiency, wait-time
distributions slowly lose source specific features, such as Rabi
oscillations, and approach those for coherent light.

Based on our discussion, we also find that P1(T ), P2(T ),
w1(T ), and w2(T ) provide the most useful information on
temporal distribution of photons. Distributions beyond these
provide only incrementally new information. We also note that
the first member of the wait-time distribution family P0(T )
is the probability density that a time T elapses without a
photodetection and, interestingly, its measurement has been
proposed as a way to quantify certain nonclassical features of
light [42].

We hope that the analytic results and insights of this paper
will stimulate experimental measurements of wait-time dis-
tributions. Recent advances in photonic detector technology
have demonstrated more accurate measurements of photo-
count probabilities and moments of light intensity for thermal
light [11]. Measurements of wait-time distributions will not
only test the enhanced capabilities of the new detectors but
also extend experimental measurements of photon statistics
into a new direction to provide a more complete picture of
photoemissions from light sources.

APPENDIX: WAIT-TIME DISTRIBUTIONS
IN RESONANCE FLUORESCENCE

In resonance fluorescence from a coherently driven two-
level atom, it is more convenient to start with a calculation of
wn(T ) [Eq. (2)] and then use it to calculate Pn(T ). Expanding
the exponential in Eq. (2) and expressing the integrated flux
operator Û in terms of photon flux operator, wn(T ) can be
written as

wn(T ) = 1

〈Î (0)〉
∞∑

k=0

(k + n − 1)!(−1)kηn+k

(n − 1)!k!

∫ T

0
dtk+n−1

×
∫ tk+n−1

0
dtk+n−2 · · ·

∫ t2

0
dt1〈T :Î (T )Î (tk+n−1)

· · · Î (t1)Î (0):〉, (A1)

where we replaced
∫ T

0 dtk+n−1
∫ T

0 dtk+n−2 · · · ∫ T
0 dt1 by (k +

n − 1)!
∫ T

0 dtk+n−1
∫ tk+n−1

0 dtk+n−2 · · · ∫ t2
0 dt1 [40]. The inte-

grand of (A1) can be interpreted as the joint probability of de-
tecting photons at the successive times 0, t1, t2, . . . , tk+n−1, T
[4]. Using the Markov property of photoemissions, it can
be written as a product of two-time conditional probabilities
[4,43]. To do so, we note that the probability of a photodetec-
tion at tk conditioned upon a detection at tk−1 (<tk) depends
only on the interval tk − tk−1 and has the form

〈T :Î (tk )Î (tk−1):〉
〈Î (tk−1)〉 = 2β f0(tk − tk−1), (A2)

where 2β is the Einstein A coefficient for the atomic transition
and f0(t ) describes atomic excitation when the atom starts
initially in the ground state [41]. The integrand in Eq. (A1)
then can be written as (with T = tn+k and t0 = 0)

〈T :Î (T )Î (tk+n−1) · · · Î (t1)Î (0):〉= 〈Î (0)〉
k+n−1∏

j=0

2β f0(t j+1 − t j ).

(A3)
Using Eqs. (A3) in (A1) and taking the Laplace transform of
the resultant expression, we obtain

w̃n(s) =
∞∑

k=0

(k + n − 1)!(−1)k

(n − 1)!k!
[2βη f̃0(s)]k+n, (A4)

where w̃n(s) and f̃0(s) are the Laplace transforms of wn(T )
and f0(tk+1 − tk ), respectively. The sum in the preceding equa-
tion can be recognized as a binomial series, so w̃n(s) can be
written as

w̃n(s) =
(

2βη f̃0(s)

1 + 2βη f̃0(s)

)n

. (A5)

Using the expression for f̃0(s) [4,30,40],

f̃0(s) = �2

2s[(s + 2β )(s + β ) + �2]
, (A6)

where � is the Rabi frequency for the atomic transition, w̃n(s)
can be written directly in terms of atomic parameters as

w̃n(s) =
(

βη�2

s(s + β )(s + 2β ) + �2(s + βη)

)n

. (A7)

Using a similar procedure for Pn(T ), we start with Eq. (1)
and express it in terms of intensity correlation functions,
which factorize [Eq. (A3)]

〈T :Î (tn+k )Î (tn+k−1) · · · Î (t1):〉

= (2β )n+k f (t1)
n+k−1∏

j=1

f0(t j+1 − t j ), (A8)

where f (t1) is the probability of photoemission at t1 when the
atom starts in the steady state at t = 0. We then find [40]

Pn(T ) =
∞∑

k=0

(n + k − 1)!(−1)k (2ηβ )n+k

(n − 1)!k!

× f (t1)
n+k−1∏

j=1

f0(t j+1 − t j ). (A9)
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Taking the Laplace transform of Pn(T ) and using the Laplace
transform of f0(T ), given by Eq. (A6), and of f (t1), given by

f̃ (s) = �2

2s(�2 + 2β2)
, (A10)

we get

P̃n(s) = 2ηβ f̃ (s)
∞∑

k=0

(−1)k (n + k − 1)!

(n − 1)!k!
[2ηβ f̃0(s)]n+k−1.

(A11)

The sum can be carried out to yield

P̃n(s) =
(

s(s + 3β )

�2 + 2β2
+ 1

)(
2ηβ f̃0(s)

1 + 2ηβ f̃0(s)

)n

≡ (Cs2 + 3βCs + 1)w̃n(s), (A12)

where C = 1
�2+2β2 . Using this expression and the properties

of the Laplace transform [33], we find that Pn(T ) can be
expressed in terms of wn(T ) as

Pn(T ) = C
d2

dT 2
wn(T ) + 3βC

d

dT
wn(T ) + wn(T ). (A13)

The conditional distribution wn(T ) is found by taking the
inverse Laplace transform of w̃n(s) [Eq. (A7)] using the cal-
culus of residues [4,28,40]. This leads to the expression for
wn(T ),

wn(T ) = β(�/β )2ne−βT

[(n − 1)!]3(1 − �2/β2)n

n−1∑
k=0

(βT )n−k−1{(−1)n

× D0(n, k) + D(n, k)[(−1)ke
√

β2−�2T

+ e−
√

β2−�2T ]}, (A14)

where

D0(n, k) =
(

n − 1

k

)
1

(
√

1 − �2/β2)k

×
k∑

j=0

(−1) j

(
k

j

)
(n + k − j − 1)!(n + j − 1)!

(A15)

and

D(n, k) =
(

n − 1

k

)
1

(
√

1 − �2/β2)k

k∑
j=0

(
k

j

)

× (n + k − j − 1)!(n + j − 1)!

2n+ j
. (A16)

In general, these expressions must be evaluated numerically.
Nevertheless, it can be seen from these equations that wn(0) =
0 and w′

n(T ) = 0. The former is a reflection of the fact that a
two-level atom can emit only one photon at a time. The condi-
tional wait-time distributions for n = 1–3 are then found, from
Eqs. (A14)–(A16), to be those given by Eqs. (52)–(54). The
unconditional wait-time distribution Pn(T ) can be obtained by
taking the inverse Laplace transform of Eq. (A12) or by using
the formula for wn(T ) in Eq. (A13).

Nonunit detection efficiency

For nonunit detection efficiency, the expressions for wn(T )
and Pn(T ) become even more cumbersome. However, by in-
troducing some auxiliary quantities, they can be written in a
form similar to Eqs. (A14)–(A16). The cubic s(s + β )(s +
2β ) + �2(s + ηβ ) in the denominator of Eq. (A7) can be
factored as (s − s1)(s − s2)(s − s3), where s1, s2, and s3 are
given by [44]

s1 = β(−1 + δ1 + δ2), (A17a)

s2 = β
(−1 − δ1eiπ/3 − δ2e−iπ/3

)
, (A17b)

s3 = β
(−1 − δ1e−iπ/3 − δ2eiπ/3

)
, (A17c)

with

δ1 =
3
√

2(1 − �2/β2)

B
, δ2 = B

3 3
√

2
, (A18a)

B = {27(1 − η)(�2/β2)

+
√

108(�2/β2 − 1)3 + [27(1 − η)�2/β2]2}1/3.

(A18b)

As a check, for η = 1, B → 3
√

2
√

3(�2/β2 − 1) and we
recover s1 = −β, s2 = −β −

√
β2 − �2, and s3 = −β +√

β2 − �2. In terms of the quantities introduced in Eqs. (78a)
and (78b), the nonunit detection efficiency expressions for
wn(T ) then can be written in a form similar to Eq. (A14),

wn(T ) = Cne−βT
n−1∑
k=0

(
n − 1

k

)
(βT )n−1−k[√

3
(
δ2

1 + δ1δ2 + δ2
2

)]k
[(−1)kJ0(n, k)e(δ1+δ2 )βT + 2(−1)nJ (n, k, T )e−(δ1+δ2 )βT/2], (A19)

where

Cn = (η�2/β2)n

[(n − 1)!]33n
(
δ2

1 + δ1δ2 + δ2
2

)n ,

J0(n, k) =
k∑

p=0

(
k

p

)
(n + k − p − 1)!(n + p − 1)! cos[(2p − k)θ1],

J (n, k) = (
√

3)

(√
δ2

1 + δ1δ2 + δ2
2

δ2 − δ1

)n
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×
k∑

p=0

(
k

p

)
(−1)p(n + k − p − 1)!(n + p − 1)!

(√
δ2

1 + δ1δ2 + δ2
2

δ2 − δ1

)p

cos

(
δ2 − δ1

2

√
3βT + φnkp

)
,

θ1 = arctan

(
1√
3

δ2 − δ1

δ2 + δ1

)
, φnkp = θ1(n + k − p) − (n + p)

π

2
. (A20)

Like Eq. (A14), in general, this must be evaluated numerically. For n = 1 and �/β = 1, the expressions for w1(T ) and P1(T )
[using w1(T ) in Eq. (A13)] simplify. These are given by Eqs. (53) and (54), respectively.
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