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Simultaneous blockade of two remote magnons induced by an atom
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In this paper, we present a scheme to simultaneously blockade two remote magnons by coupling them to an
odd-number cavity array. In the system, a two-level atom is contained in the middle cavity and two Yttrium iron
garnet (YIG) spheres are placed in the symmetrical cavity to the atom. By eliminating the cavity array, a master
equation with the effective coherent and dissipative couplings among the two magnons and the atom is obtained.
When the frequency of the atom is outside the cavity photon band, the dissipative couplings disappear, and only
coherent couplings survive, but the effective dispersive coupling strength decreases rapidly with the increasing
of the distance between two YIG spheres. When the frequency of the atom is inside band, although the induced
dissipation cannot be eliminated, the dissipative coupling and the coherent coupling between two YIG spheres
can coexist for long distance. We further show that, under the condition of single excitation resonance, the
simultaneous blockade of two remote magnons can be obtained, but the thermal noise of the magnon and atom is
still required to be depressed. Thus, by coupling a local two-level atom to a cavity array, we can simultaneously
blockade two remote magnons, which provides us an effective method to manipulate remote YIG spheres.
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I. INTRODUCTION

Blockade is one of the effective methods to generate a
single excitation source and also an important property of
the quantum system. The mechanisms of photon blockade
can be classified as the single excitation resonant mechanism,
conventional and unconventional mechanisms. The single ex-
citation resonant mechanism of photon blockade results from
the two-level emitter resonantly interacting with the cavity
field [1–5]. The blockade resulting from Kerr nonlinearity
strength is called the conventional photon blockade mecha-
nism, which requires nonlinearity strength to be at least larger
than the cavity linewidth [6–8]. Unconventional photon block-
ade can be generated through destructive interference, which
can overcome the requirement of strong Kerr nonlinearity of
conventional mechanism and has attracted a lot of attention
[9–16].

In recent years, hybrid quantum systems based on
magnons have been developed rapidly such as cavity opto-
magnonics [17–20], cavity magnomechanics [21,22], and hy-
brid ferromagnetic-superconducting systems [23–25]. Since
strong and ultrastrong coupling can be generated between
magnons and microwave photons in a superconducting cavity
[26–30], employing the magnon to manipulate quantum infor-
mation attracted attention, therefore the blockade of magnons
so as to generate a single magnon becomes an important
issue. In analogy to photon blockade, magnon blockade is a
phenomenon in which the first magnon excitation in a magnon
mode blocks the generation of the second magnon excitation.
Much attention has been paid to magnon blockade [31–41].
In [38], a Yttrium iron garnet (YIG) sphere and a transmon
superconducting qubit are installed in a microwave cavity and
magnon blockade is realized by single excitation resonance.
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In [39], the magnon blockade effect was achieved in a non-
linear PT -symmetric-like cavity magnomechanical system.
Through jointing conventional and unconventional mecha-
nisms, magnon blockade can be obtained in a three-level
atomic ensemble and a YIG sphere coupled to a microwave
cavity system [40], simultaneous blockade of the photon-
phonon-magnon can be received in a two-level atom and
YIG sphere coupling to an optomechanical cavity system
[41].

In a closed and conservative system, the interaction be-
tween subsystems described by the Hamiltonian is called
coherent coupling. If an effective coupling between two
subsystems is obtained by coupling them to a common envi-
ronment, the indirect effective coupling is of Lindblad form or
non-Hermitian form and is called dissipative coupling. For ex-
ample, two cavities coupled to the common environment lead
to a dissipative coupling between the two cavities [42]. Dissi-
pative magnon-photon coupling was experimentally proved in
[43]. The traveling wave responsible for magnon-photon dis-
sipative coupling results in the generation of level attraction
[44]. In addition, long-range coherent and dissipative coupling
between two spatially separated magnets was experimentally
and theoretically investigated [45]. Furthermore, it was re-
vealed that the cooperative effect of coherent and dissipative
magnon-photon couplings lead to nonreciprocity [46] and a
unidirectional spin-wave amplifier [47]. Dissipative coupling
in the spin exchange system exhibits exceptional points [48],
and non-Hermitian topological magnonics was summarised in
[49]. More importantly, a coupled-cavity array consisting of
N linearly coupled superconducting transmission line cavities
has been theoretically investigated [50] and was realized in
experiments [51–53]. In addition, the remote magnon-magnon
coherent coupling was observed in the two YIG spheres
coupled to the transmission line system [54], which pushed
the hybrid cavity-magnon system toward constructing a
quantum network further. Whether we can employ the
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FIG. 1. A schematic of the system where two YIG spheres and
one two-level atom are coupled to the cavity array with N coupled
resonators.

cavity-magnon system to manipulate remote magnons by lo-
cal atom deserves our attention.

In this paper, we present a scheme to simultaneously block-
ade two remote magnons by coupling them to an odd number
of cavity arrays where an atom is contained in the middle
cavity and two YIG spheres are placed symmetrically to the
atom. By eliminating the cavity array, the effective coherent
and dissipative couplings among the two magnons and the
atom are obtained. When the frequency of the atom is outside
the cavity photon band, the dissipative couplings disappear,
and only coherent couplings survive, thus putting an atom
in the middle of two magnons is equivalent to coupling a
giant atom to them, but the effective dispersive couplings
decrease rapidly with the increasing of the distance between
two YIG spheres. Fortunately, when the frequency of the atom
is inside the band, although the induced dissipation cannot be
eliminated, the dissipative coupling and the coherent coupling
can coexist for remote two YIG spheres. We further show that,
under the condition of single excitation resonance, the simul-
taneous blockade of two remote magnons can be reached, but
the magnetic and atomic thermal noise is still required to be
depressed.

II. SYSTEM AND THE MASTER EQUATION

As shown in Fig. 1, we consider an odd-number cavity
array. A two-level atom is contained in the central cavity,
two YIG spheres are placed in the left-side cavity “−l” and
the right-side cavity “l”, respectively, such that the two YIG
spheres are symmetry to the atom. The total Hamiltonian is

H = ωc

∑
n

a†
nan + ωm

∑
i=−l,l

m†
i mi + ωaσ+σ−

− J
∑

n

(a†
nan+1 + a†

n+1an) + [gm(m†
−l a−l + m†

l al )

+ gσ−a†
0 + �σ−eiωpt + H.c.], (1)

where an is the annihilation operator of the cavity at site n
with frequency ωc, and J is the hopping strength between the
nearest cavities. For simplicity, we consider that the two YIG
spheres with equal frequency ωm coupled to the cavity array
with the same coupling strength gm. The atom couples to the
cavity “0” with strength g and is pumped by a classical field
with frequency ωp.

Then we perform the Fourier transform ak =
1√
N

∑
n e−iknan with k∈[−π, π ], the Hamiltonian in the

momentum representation is

H1 =
∑

k

ωka†
kak + ωm

∑
i=−l,l

m†
i mi + ωaσ+σ−

+ [gm(m†
−lE−l + m†

l El ) + gσ−E†
0

+�σ−eiωpt + H.c.], (2)

where ωk = ωc − 2J cos(k) is the dispersion relation, which
indicates ωk centered at ωc with bandwidth 4J , i.e., ωk is
within ωc ± 2J . En = 1√

N

∑
k eiknak is the field operator at site

n. In the frame rotating with the Hamiltonian
∑

k ωka†
kak +

ωp
∑

i=−l,l m†
i mi + ωpσ+σ−, we have H ′ = H0 + Hdrive +

Hint with

H0 =
∑

i=−l,l

�mm†
i mi + �aσ+σ−, (3)

Hdrive = �(σ− + σ+), (4)

Hint = gm[m†
−lE

′
−l (t )eiωpt + m†

l E ′
l (t )eiωpt ]

+gσ−E ′†
0 (t )e−iωpt + H.c., (5)

where E ′
n(t ) = 1√

N

∑
k eikne−iωkt ak , � j = ω j − ωp

( j = m, a).
We would like to derive a master equation of the atom

and the magnons by tracing over the cavities [55–58]. In
the process of eliminating the cavity fields, we temporarily
ignore the free Hamiltonian H0 as well as the classical weak
pumping Hdrive because these terms have no relation with the
cavity fields. The propagation of photons inside the waveguide
is characterized by the group velocity υg(ω j ) = ∂ωk

∂k |ωk=ω j
=√

4J2 − (δ j )2 [55], where δ j = ω j − ωc and j = a, m. When
the relaxation time of the waveguide 1

|υg(ω j )| is much smaller
than the interaction timescales of the cavity array and atom
(magnons) 1

g ( 1
gm

), i.e., {g, gm}�|υg(ω j )|, the Born-Markov
approximation is valid [55–58]. Thus, when the resonance
frequency of the atom and the magnon is close to the edge of
the cavity photon band, i.e., δ j ≈ 2J , the group velocity of the
excited cavity photons is close to zero, the Born-Markov ap-
proximation is invalid. Beyond this region, the Born-Markov
approximation is still trustable. We will choose parameters far
away from the edge of the cavity band. With the Born-Markov
approximation, the master equation is formally written as

ρ̇1 = −
∫ ∞

0
dτTra{[Hint (t ), [Hint (t − τ ), μ ⊗ ρ1]]}, (6)

where μ is the density operator of the coupled-cavity array
and ρ1 is the density operator of the hybrid system after
eliminating the coupled-cavity array. After complicated cal-
culations, we have

ρ̇1 =
∑

i, j=−l,l

−iyi j[m
†
i m j, ρ1]

− iq00[σ+σ−, ρ1] − iw0i[m
†
i σ− + σ+mi, ρ1]

+ xi j (2miρ1m†
j − m†

j miρ1 − ρ1m†
j mi )

+ s0i(2σ−ρ1m†
i − m†

i σ−ρ1 − ρ1m†
i σ− + H.c.)

+ r00(2σ−ρ1σ+ − σ+σ−ρ1 − ρ1σ+σ−), (7)
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where

xi j = Re(Ai j ), yi j = Im(Ai j ),

s0i = Re(B0i ), w0i = Im(B0i ),

r00 = Re(C00), q00 = Im(C00), (8)

with Ai j = g2
meiK|ni−n j |√

4J2−�2
p

, B0i = ggmeiK|n0−ni |√
4J2−�2

p

, C00 = g2√
4J2−�2

p

, i, j =
±l , K = π − arccos( �p

2J ), and �p = ωp − ωc describing the
detuning between the driving field and the array. If |�p| = 2J ,
the expressions Ai j , B0i, and C00 are infinite. |�p| 	= 2J is
the requirement for Eq. (7). However, �p can be smaller or
larger than 2J and is called the inside or outside band. In
our choice of parameters, the inside band |�p| < 2J and the
outside band |�p| > 2J also mean the frequency of the atom
and the magnon falling inside and outside the band. Therefore,
the condition |�p| 	= 2J avoids the frequency of the atom and
the magnon in the edge of the cavity photon band, indicat-
ing that the Markov approximation is valid except at the edge
of the band. Because arccos( �p

2J ) can be multivalues, therefore,
in the numerical calculation, we should choose the values that
satisfy the positivity of the master equation. From Eq. (7),
we can see that yl−l (y−ll ) with the Hamiltonian form stands
for the coherent coupling between the two YIG spheres, xl−l

(x−ll ) with the Lindblad form describing the dissipative cou-
pling induced by the common array. Meanwhile, the atom
simultaneously interacts with the two YIG spheres in giant-
atom form with the coherent coupling strength w0l (w0−l )
and the dissipative coupling strength s0l (s0−l ). The two-level
atom is of anharmonic energy levels, if the frequency of the
two-level is resonant with only a single photon, the absorption
of a second photon is blocked because the energy of the two
photons is detuning far from resonance. Therefore, single-
excitation resonance induced by a two-level atom can offer
us a blockade [1–5,59]. In the current system, the atom si-
multaneously interacts with two YIG spheres in coherent and
dissipative coupling form, which can offer us simultaneous
blockade of the two YIG modes, we will discuss it in Sec. III.
In addition, if we would like to account for the dissipation of
the cavity array, we can replace ωc with ωc − iκc

2 .
We now discuss the effective coupling coefficients in (8)

under two cases, i.e., the detuning �p outside the band and
inside the band. For the case of the detuning �p outside the
band (�p > 2J or �p < −2J), we plot the coefficients in
Fig. 2, where �p = −2150κm and 2J = 1000κm, satisfying
|�p| 
 2J . See Fig. 2(a), if κc = 0, the induced dissipation
rates xll = r00 = 0. For nonzero κc, xll and r00 are all
not zero. That is to say, the nonzero-induced dissipation
rates result from the decay of the cavity array. The on-site
frequency shifts yll and q00 are plotted in Fig. 2(b), which
show that the values of yll and q00 have no relation with
κc. The induced effective dissipation coupling coefficient
x−ll does relate with κc, shown in Fig. 2(c), x−ll = 0 for
κc = 0, but the coherent coupling y−ll has no relation with
κc shown in Fig. 2(d); and the maximum possible nonzero
dissipation coupling |x−ll | and the coherent coupling |y−ll |
for integer n′ decrease with the increasing of the distance n′
(n′ = |n−l − nl |) between the two YIG spheres. The nonzero
dissipative coupling between the atom and one of the YIG
sphere s0l also results from the decay of the cavity array, see

FIG. 2. (a) The effective magnetic dissipation xll and atomic
dissipation r00 versus the detuning �p. (b) The magnetic frequency
shift yll and atomic frequency shift q00 versus the detuning �p. The
effective dissipative coupling (c) x−ll and (e) s0l varying with the
distance n′ = |n−l − nl | and n′′ = |n0 − nl |. The effective coherent
coupling (d) y−ll and (f) w0l as functions of the distance n′ and n′′. For
(c)–(f), ωc = 11.4×103κm, ωp = 9.25×103κm, thus �p = −2150κm.
For all of the plots, κm = 1, g = 300κm, gm = 330κm, and J = 500κm.

Fig. 2(e), while w0l is not affected by κc, and the nonzero
maximum possible value |s0l | and |w0l | also decrease with
the increasing of n′′ (n′′ = |n0 − nl |). One can notice that the
induced coherent coupling y−ll and w0l can be larger than
κm although they decrease with the increasing of distance n′
and n′′. We can summarize that if κc = 0, dissipation (xll ,
r00) and dissipative coupling (x−ll , s0l ) are all zero, only
the frequency shift and coherent coupling survive. We can
understand it from their mathematical expressions. If κc = 0,

Ai j = ±i g2
mei(π−arccos(

�p
2J ))|ni−n j |√

−4J2+�2
p

, B0i = ±i ggmei(π−arccos(
�p
2J ))|n0−ni |√

−4J2+�2
p

,

C00 = ±i g2√
−4J2+�2

p

. Because arccos( �p

2J ) for �p > 2J is

purely imaginary, Ai j , B0i, and C00 are pure imaginary
numbers. When �p < −2J , π − arccos( �p

2J ) is a pure
imaginary number, then Ai j , B0i, and C00 are also pure
imaginary numbers. Therefore, the real parts of Ai j , B0i,
and C00 are all zero, i.e., x−ll , s0l , xll , and r00 are all zero,
and only the imaginary parts y−ll , w0l , yll , and q00 survive,
that is to say, the common cavity array induces coherent
coupling coefficients y−ll and w0l without the dissipation
rates. Physically, when |�p| 
 2J , due to the frequency of
the atom being very close to that of the classical pumping
field (which will be analyzed in the next section), the atom
actually is far from center frequency ωc, under this case only
dispersively interacts with the cavity array. Therefore, the
dispersive interaction does not lead to dissipation as well
as dissipative coupling and only induces coherent coupling
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FIG. 3. (a) The effective magnetic dissipation xll and atomic
dissipation r00 versus the detuning �p. (b) The magnetic frequency
shift yll and atomic frequency shift q00 versus the detuning �p. The
effective dissipative coupling (c) x−ll and (e) s0l varying with the
distance n′ and n′′. The effective coherent coupling (d) y−ll and (f)
w0l as functions of the distance n′ and n′′. The marked point in
(c)–(f) is the case where n′ and n′′ take all integers. For (c)–(f),
ωc = 11.4×103κm, ωp = 10.6×103κm, thus �p = −800κm. For all
of the plots, the other parameters are the same as in Fig. 2.

between the atom and the two YIG spheres. Under this
condition (κc = 0 and |�p| 
 2J), from (7) we can write the
effective interaction in the form of the effective Hamiltonian
as

Heff =
∑

i=−l,l

yll m
†
i mi + q00σ+σ−

+ y−ll (m
†
−lml + m†

l m−l ) + w0l (miσ+ + σ−m†
i ). (9)

Under this condition, employing the adiabatic elimination
method, we can directly derive the same effective Hamiltonian
(9), which means that the master equation method equals the
adiabatic elimination method for the detuning outside band,
and the above derivation and analysis are trustable. Even if
the cavity decay is not negligible, the effective coherent cou-
plings are not affected. Therefore, we can safely infer that the
triple interaction mediated by the cavity array can finish some
quantum processes.

See Figs. 3(a), 3(c), and 3(e), for the detuning inside band
(the bandwidth −2J<�p<2J), different from the case of the
outside band, both dissipation xll (r00) and the dissipative
coupling x−ll (s0l ) are not zero even with κc = 0. It is rea-
sonable that the resonant or near-resonant interacting with the
common environment results in dissipation and the dissipative
coupling even without κc. The energy shift yll (q00) and the
coherent coupling y−ll (w0l ), shown in Figs. 3(b), 3(d), and
3(f), are also affected by κc. As shown by the red solid line

in Figs. 3(c)–3(f), for κc = 0, −2J<�p<2J , arccos( �p

2J ) is a
pure real number (K is a real number), the coherent coupling
y−ll (w0l ) and the dissipative coupling x−ll (s0l ) oscillate as
functions of n′ and n′′ rather than pure exponential decreasing
like that in Figs. 2(c) to 2(f). Including the dissipation of
the cavity array, see the blue dashed lines in Figs. 3(c)–3(f),
the maximum values of the coherent and dissipative coupling
slightly decrease with n′ and n′′. Under this case, �p is substi-
tuted by �p + iκc/2, then K is a complex number whose real
part offer us oscillation functions of n′ and n′′ and imaginary
part still results in exponential decreasing as function of n′
and n′′. Only if the loss of the cavity array is not overlarge
({g, gm} > κc), the coherent coupling y−ll (w0l ) and the dis-
sipative coupling x−ll (s0l ) oscillating as functions of n′ and
n′′ maybe applicable to long-distance quantum manipulation.
The difference in behavior of the coherent coupling y−ll (w0l )
and the dissipative coupling x−ll (s0l ) between the inside and
outside bands is because under near-resonant conditions the
excitation transmits along the cavity array so that it can travel
long distances, while under dispersion conditions the excita-
tion may not enter into the array so that the induced effective
interaction is within a short distance.

III. SIMULTANEOUSLY BLOCKADE THE TWO
REMOTE MAGNONS

We are now in the position to discuss the potential ap-
plication of the current system. See the master equation (7),
the system can generate triple entanglement among the two
magnon modes and the atom and also can transfer information
from the atom into the two remote YIG spheres. Here, we
would like to investigate the simultaneous blockade of two
remote magnons by an atom for the two cases discussed
above. Including the thermal environment of the atom as well
as the two YIG spheres, we can write the master equation of
the reduced subsystem as

ρ̇ = −i[�mm†
i mi + �aσ+σ− + �(σ− + σ+), ρ]

+
∑

i, j=−l,l

−iyi j[m
†
i m j, ρ]

− iw0i[m
†
i σ− + σ+mi, ρ] − iq00[σ+σ−, ρ]

+ xi j (2miρm†
j − m†

j miρ − ρm†
j mi )

+ s0i(2σ−ρm†
i − m†

i σ−ρ − ρm†
i σ− + H.c.)

+ r00(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−)

+
∑

i=−l,l

nmκm(2m†
i ρmi − mim

†
i ρ − ρmim

†
i )

+
∑

i=−l,l

(nm + 1)κm(2miρm†
i − m†

i miρ − ρm†
i mi )

+ naκa(2σ+ρσ− − σ−σ+ρ − ρσ−σ+)

+ (na + 1)κa(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−), (10)

where the free Hamiltonian H0 as well as the classical weak
pumping Hdrive are included, κm and κa are the decay rates for
the magnon modes and for the atom, respectively. nm and na

are the thermal mean particle numbers of the magnon modes
and atom, respectively. Employing the master equation (10),
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we can numerically calculate the equal-time second-order cor-

relation function g2
i (0) = Tr(m†

i m†
i mimiρ)

[Tr(m†
i miρ)]2 (i = −l, l ) to describe

the nonclassical statistics of magnons. The correlation func-
tion g2

i (0) > 1 is referred to as super-Poissonian, g2
i (0) = 1

is referred to as Poissonian, and g2
i (0) < 1 indicates sub-

Poissonian (also means antibunching), and the limit g2
i (0)→0

corresponds to the complete blockade.
To make clear the mechanism of magnon blockade, we

take the case of outside band (�p > 2J or �p < −2J) as
an example to derive the analytical expression of g2

i (0), and
consider κc = 0, nm = na = 0, from (10) we can rewrite the
effective Hamiltonian under no count condition [ignoring the
jump term miρm†

i , (i = −l, l ) and σ−ρσ+] as

H ′
eff =

∑
i=−l,l

�1m†
i mi + �2σ+σ− + �(σ− + σ+)

+ E (m†
−lml + m†

l m−l ) + F (miσ+ + σ−m†
i ), (11)

where �1 = �m + yll − iκm, �2 = �a + q00 − iκa, for sim-
plicity, we write E = y−ll and F = w0l , which is a non-
Hermitian Hamiltonian, the eigenvalues and eigenstates of
Eq. (11) are shown in Appendix A. Its eigenvalues are com-
plex numbers, the real parts present the effective frequencies,
and the imaginary parts indicate the dissipation of the energy
levels so that the bandwidth of the energy levels is extended.
Thus, for the case, we can employ the wave function and the
eigenvalues to illustrate the mechanism of the blockade of
magnons.

In the weak driving limit, the state of the system can be
truncated in a few exciting subspaces, which is approximately
expressed as

|ψ〉 = Cg00|g00〉 + Ce00|e00〉 + Cg10|g10〉
+Cg01|g01〉 + Ce10|e10〉 + Ce01|e01〉
+Cg11|g11〉 + Cg02|g02〉 + Cg20|g20〉. (12)

The probability amplitude can be obtained by solving the
Schrödinger equation i ∂

∂t |ψ〉 = H ′
eff|ψ〉. Thus the second-

order correlation function of magnons is derived as

g2
−l (0) = g2

l (0)

= 2|Cg20|2
[|Cg10|2 + |Ce10|2 + |Cg11|2 + 2|Cg20|2]2

. (13)

The expressions of the probability amplitude are given in
Appendix B. The solution (13) is a steady-state result and
has no relevance to the initial state of the system. Because
g2

−l (0) is always equal to g2
l (0), under a certain group of

parameters, g2
−l (0) and g2

l (0) can be both much less than one
even approach to zero, we call it a simultaneous blockade.

In Fig. 4, for the case of the outside band, we employ
(10) numerically to plot log10 g2

−l as functions of detuning
�a with nm = na = 0. Figure 4(a) shows that the analytical
result of log10 g2

−l using (13) well coincides with that of the
numerical result of employing (10), which means that we can
use the analytical expression to illustrate the behavior of the
second-order correlation function of the magnon. At point
A in Fig. 4(a), �a = 44.6κm, we can calculate Re[λ1+] = 0
using the expression (A1) with the parameters in Fig. 4, which
means that single-excitation state |1+〉 is easily populated, and

FIG. 4. log10 g2
−l varying with �a for several values of (a) g as

well as (b) gm. For (a), gm = 330κm, for (b), g = 300κm, for all of the
plots, n′ = 4, n′′ = 2, κm = κa = 1, � = 0.1κm, κc = 0, nm = na =
0, ωm = 9.3×103κm, the other parameters are the same as in Fig. 2.

the higher magnon excitation states |20〉, |21±〉, and |21±〉 are
hindered by the dressed state of the atom and the magnon
modes, thus the magnon modes exhibit blockade. As Eq. (13)
shows, the statistics of magnon −l and magnon l are the same,
so log10 g2

−l = log10 g2
l , a simultaneous blockade of the two

magnons at point A can be produced. In addition, with the
increasing of g, the detuning �a for g2

−l (0) to achieve an
optimal blockade increases. This is because the coupling g
directly relates to the frequency shift, see Eqs. (7) and (8).
Although a large value of g also means the large effective
coupling between the atom and the YIG sphere (see the ex-
pression w0i), the effect of the increasing g on reducing g2

−l (0)
is depressed due to the frequency shift, it slightly affects the
value of g2

−l (0). At point B with �a = 52.9κm, we can derive
Re[λ21+] = 0, then the magnon modes exhibit a bunching
effect, this is due to the two-magnon state |21+〉 populated.
Fig. 4(b) shows the log10 g2

−l as functions of detuning �a

for several values of gm. Different from the function of the
g on affecting g2

−l (0), although a large value of gm shifts the
frequency of magnon mode, it only slightly shifts the detuning
�a but improves the blockade of the magnon mode greatly.
This property offers us a method to enhance the blockade
of the magnons by improving the coupling between the YIG
sphere and the cavity field.

We also would like to point out that the value of the
detuning �a for g2

−l (0) to achieve optimal blockade is
within the region 44.6κm–50.7κm in Fig. 4, comparing
with the ωp = 9.25×103κm, the frequency of the atom
ωa = 9294.6κm–9300.7κm is near to the frequency
of the classical pumping, that is to say, |ωa − ωc| =
2105.4κm–2099.3κm 
 2J = 1000κm, which means the
frequency of the atom is far from the center frequency of
the band ωc. So we can infer that the two cases outside
and inside band correspond to the frequency of the atom
outside and inside the band, respectively. In addition, �a =
|ωa − ωc| = 2105.4κm–2099.3κm 
 2J = 1000κm, �m =
|ωm − ωc| = 2100κm 
 2J , and {g, gm}�|υg(ω j )|, which
means the frequency of the atom (magnon) is far from
the edge of the cavity photon band and the Born-Markov
approximation is valid under the group of parameters.

For the case of the frequency of the atom inside band
(−2J<�p<2J), log10 g2

−l as functions of detuning �a is plot-
ted numerically by employing (10) in Fig. 5. The mechanism
of the magnon blockade in the current scheme is single exci-
tation resonant no matter if it is the outside or inside band,
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FIG. 5. log10 g2
−l varying with �a for several values of (a) g,

(b) gm, (c) κc, and (d) (nm, na). For (a), gm = 330κm, for (b), g =
300κm, for (c) and (d), g = 300κm, gm = 330κm, for (a)–(c), nm =
na = 0, for (a)–(d), κc = 5κm, for all of the plots, n′ = 100, n′′ = 50,
κm = κa = 1, � = 0.1κm, ωm = 11.2×103κm, the other parameters
are the same as in Fig. 3.

therefore, the points at which log10 g2
−l achieve minimum

values still satisfy the single excitation resonant. However,
comparing Fig. 5(a) with Fig. 4(a), the increasing of g on
affecting minimum values log10 g2

−l is changed from mainly
shifting frequencies into the extended energy level bandwidth
(which means increasing the dissipation of the atom). Al-
though gm also results in a dissipation of the magnon, the
increasing of gm also means the enlargement of the effec-
tive coupling between the atom and the YIG sphere, thus, a
large value of gm still benefits the blockade of magnon, see
Fig. 5(b), similar to that in Fig. 4(b). The different behavior of
increasing g and gm on affecting log10 g2

−l , comparing Fig. 5(a)
with Fig. 5(b), is because the dissipation of atom is harmful to
the magnon blockade while the dissipation of magnon mode
is in favor of the magnon blockade due to the easy population
in low level with dissipation. Figure 5(c) shows that the dissi-
pation of the cavity array is harmful to the magnon blockade
effect because the dissipation κc decreases the coherent and
dissipative coupling, see Fig. 3. The thermal noise of the
atom as well as the magnon modes, as shown in Fig. 5(d),
can break the magnetic blockade. The thermal excitation still
needs to be depressed so as to achieve a good blockade for
magnon modes. Most importantly, when the detuning is inside
the band, the simultaneous blockade of the two magnons can
reach a large distance, for example, n′ = 100 shown in Fig. 5,
therefore, the current scheme can simultaneously blockade the
two remote magnon modes.

IV. DISCUSSION AND CONCLUSION

The coupled-cavity array is experimentally [51–53] re-
alized to consist of N linearly coupled superconducting
transmission line cavities. In [52], the coupled-cavity array
was composed of 21 high-impedance microwave resonators.
Each resonator consisted of an array of ten Josephson junc-
tions, producing the hopping strength between the nearest
cavities J/2π = 249 MHz. In addition, two artificial atoms
are implemented as superconducting flux tunable transmons

capacitively coupled to the array with strength g1/2π =
338 MHz and g2/2π = 311 MHz, the dissipation of two
qubits is κa/2π≈50 kHz, thus J = 4980κa, g1 = 6760κa,
g2 = 6220κa, which are much larger than what we use in
Figs. 2–5. In [54], the coherent coupling between two remote
magnons mediated by a superconducting circuit was realized,
where the magnon-photon couping gm = 130κm, and in [30],
the magnon-photon coupling gm = 50.05κm; these are still
less than what we use in Figs. 2–5. The requirement of the cur-
rent scheme for the coupling between microwave photons and
magnons may be satisfied in the near future. In addition, the
coupled-cavity array can also be formed by photonic crystal
cavities [60,61], in [60], the resonant coupling interaction in a
coupled-cavity photonic crystal molecule can be controlled by
using a local and reversible photochromic tuning technique.
In [61], two atoms were coupled to the photonic crystals
with the strength of g = 2000κa, which was much larger than
what we used in Figs. 2–5. For magnons and optical photons
coupling [62,63], it is a three-wave optomagnetic interaction,
which can be linearized [64] because one of the modes is
driven by a classical field, thus the optomagnetic coupling is
adjustable. Therefore, our model may be realized in a cavity
array composed of photonic crystal cavities.

In this paper, we present a scheme to simultaneously block-
ade two remote magnons by coupling them to an odd-number
cavity array where an atom is contained in the middle cavity,
and two YIG spheres are placed symmetrically to the atom.
By eliminating the cavity array, the effective coherent and
dissipative couplings among the two magnons and the atom
are obtained. In the case of the frequency of the atom outside
the band, the dissipative couplings disappear, and only coher-
ent couplings survive, thus putting an atom in the middle of
two magnons is equivalent to coupling a giant atom to them.
However, the effective dispersive couplings decrease rapidly
with the increasing of the distance between two YIG spheres.
However, in the case of the frequency of the atom inside band,
although the induced dissipation cannot be eliminated, the
dissipative coupling and the coherent coupling can coexist
for remote two YIG spheres. We further show that, under
the condition of single excitation resonance, the simultaneous
blockade of two remote magnons can be realized, but the mag-
netic and atomic thermal noise is still required to be depressed.
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APPENDIX A: EIGENVALUES AND EIGENSTATES
OF THE EQ. (11)

The H ′
eff has nine eigenvalues, which are

λ0 = 0,

λ10 = �1 − E ,

λ20 = 2(�1 − E ),

λ1+ = �1 + �2 + E

2
+ P1

2
,
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λ1− = �1 + �2 + E

2
− P1

2
,

λ21+ = 3�1 + �2 − E

2
+ P1

2
,

λ21− = 3�1 + �2 − E

2
− P1

2
,

λ22+ = 3�1 + �2 + 3E

2
+ P2

2
,

λ22− = 3�1 + �2 + 3E

2
− P2

2
, (A1)

where P1 =
√

Q2 + 8F 2, P2 =
√

Q2 + 16F 2 with Q = �1 −
�2 + E .

In addition, the corresponding eigenstates are

|0〉 =|g00〉,

|10〉 = − 1√
2
|g10〉 + 1√

2
|g01〉,

|20〉 = − 1√
2
|g11〉 + 1

2
|g02〉 + 1

2
|g20〉

]
,

|1+〉 = 1

T1

[
(P1 − Q)2F |e00〉 + 4F 2|g10〉 + 4F 2|g01〉

]
,

|1−〉 = 1

T2

[
− (P1 + Q)2F |e00〉 + 4F 2|g10〉 + 4F 2|g01〉

]
,

|21+〉 = 1

T3
[2

√
2F (P1 − Q)|e10〉

− 2
√

2F (P1 − Q)|e01〉 − 8F 2|g02〉 + 8F 2|g20〉],

|21−〉 = 1

T4
[−2

√
2F (P1 + Q)|e10〉

+ 2
√

2F (P1 + Q)|e01〉 − 8F 2|g02〉 + 8F 2|g20〉],

|22+〉 = 1

T5
[2

√
2F (P2 − Q)|e10〉 + 2

√
2F (P2 − Q1)|e01〉

+ 8
√

2F 2|g11〉 + 8F 2|g02〉 + 8F 2|g20〉],

|22−〉 = 1

T6
[−2

√
2F (P2 − Q)|e10〉 − 2

√
2F (P2 + Q)|e01〉

+ 8
√

2F 2|g11〉 + 8F 2|g02〉 + 8F 2|g20〉, (A2)

where T1 = (P1 − Q)2 + 8F 2, T2 = (P1 + Q)2 + 8F 2, T3 =
2(P1 − Q)2 + 16F 2, T4 = 2(P1 + Q)2 + 16F 2, T5 = 2(P2 −
Q)2 + 32F 2, T6 = 2(P2 + Q)2 + 32F 2.

APPENDIX B: STEADY-STATE SOLUTION
OF PROBABILITY AMPLITUDE

By solving the Schrödinger equation i ∂
∂t |ψ〉 = H ′

eff|ψ〉, the
dynamic evolution of the probability amplitude is obtained

i ˙Cg00 =0,

i ˙Ce00 =�2Ce00 + FCg10 + FCg01 + �Cg00,

i ˙Cg10 =�1Cg10 + ECg01 + FCe00,

i ˙Cg01 =�1Cg01 + ECg10 + FCe00,

i ˙Ce10 =�1Ce10 + �2Ce10 + ECe01 +
√

2FCg20

+ FCg11 + �Cg10,

i ˙Ce01 =�1Ce01 + �2Ce01 + ECe10 +
√

2FCg02

+ FCg11 + �Cg01,

i ˙Cg11 =2�1Cg11 +
√

2ECg02 +
√

2ECg20

+ FCe01 + FCe10,

i ˙Cg02 =2�1Cg02 +
√

2ECg11 +
√

2FCe01,

i ˙Cg20 =2�1Cg20 +
√

2ECg11 +
√

2FCe10, (B1)

where the jumping from high level to low level is ignored, as
was done in [65]. The steady-state solution of Eq. (B1) is

Cg11 = F 2�2

Z1
,

Cg20 = Cg02 = F 2�2

√
2Z1

,

Ce01 = Ce10 = −F (�1 + E )�2

Z1
,

Ce00 = −(�1 + E )�

�2(�1 + E ) − 2F 2
,

Cg01 = Cg10 = F�

�2(�1 + E ) − 2F 2
, (B2)

where Z1 = �2(�1 + E )2(�1 + �2 + E ) − 2(�1 + E )(�1 +
2�2 + E )F 2 + 4F 4.
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