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Enhancing weak-magnetic-field sensing of a cavity-magnon system with dual frequency modulation
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The crucial limitation of improving the sensitivity of the detection of weak magnetic fields is the unavoidable
measurement noise. In this paper, we propose a scheme to achieve precise sensing robust against additional noise
by employing a dual frequency bias field modulation within a cavity-magnon system. We find that the antirotating
wave term can amplify the signal of the detected magnetic field, but this amplification effect must coexist with
the rotating wave term. In particular, by the bias field modulation, we find the robustness against cavity field
thermal noise is substantially enhanced, quantum noise and cavity field thermal noise is greatly reduced, and
the external magnetic field signal is amplified, thereby improving the weak-magnetic-field sensing system’s
sensitivity. Compared with the previous scheme, our scheme requires neither an ultrastrong- or deep-strong-
coupling mechanism nor the suppression of the additional noise by increasing the electromagnetic cooperativity.
Our scheme could provide a valuable candidate for weak-magnetic-field sensing.
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I. INTRODUCTION

The precise measurement of weak magnetic fields is cur-
rently a major topic of interest in both theory and experiment
[1–7] which is widely applied in geophysics [8], biology
[9,10], and dark matter search [11]. Many magnetometers
with certain operating frequencies and environments, such
as superconducting quantum interference magnetometers
(SQUIDs) [12], atomic magnetometers [13], and nitrogen-
vacancy centers magnetometers [14], have been extensively
studied. How to realize a weak-magnetic-field sensing with
high sensitivity, wide frequency range, and noise immunity is
attracting increasing interest.

Additional noise is the core factor limiting the detection
sensitivity in quantum sensing [15], which, distinguished from
probe noise, includes the quantum noise and thermal noise
of the whole system except the probe. Over the past decade,
many approaches have been proposed to reduce the quantum
noise without thermal noise explicitly taken into account. For
example, quantum noise is reduced in precision measurement
and breaks the standard quantum limit (SQL) in optomechani-
cal force sensing, such as coherent quantum noise cancellation
(CQNC) [16–21], non-Markovian regime [22], squeezed cav-
ity field [23–27], and so on. The mechanical oscillator’s
sensitivity to external forces and the unique optical readout in
the cavity optomechanical system enables it to naturally detect
weak force signals [28,29]. Therefore, if some systems have
highly sensitive probes to measure external magnetic fields
and the corresponding readout device, these systems can also
be used for magnetic field sensing. and the above scheme for
reducing quantum noise is also applicable to weak magnetic
sensing.

*ycs@dlut.edu.cn

Cavity-magnon systems, composed of a microwave cavity
and yttrium iron garnet (YIG) sphere, have recently gained
significant attention in addition to the cavity optomechanical
systems [11,30–35]. The cavity-magnon system can serve
as a feasible platform to investigate quantum magnetic field
sensing in the field of quantum precision measurement. The
reason is, on one hand, the YIG sphere is an excellent fer-
romagnetic material that produces a low-excitation magnon
mode (Kittel mode) [36] with high spin density, low decay
rate [37], and high-frequency tuning [38], which is beneficial
to highly sensitive magnetic field sensing, and the microwave
cavity, on the other hand, facilitates microwave readout and
can achieve strong coupling or even ultrastrong coupling
with the YIG sphere [39–42], making them ideal for var-
ious quantum information processing applications, such as
the preparation of macroscopic Schrödinger cat states [43],
steady-state magnon entanglement [44–48], and blockade of
the magnon [49,50]. However, the sensing of weak magnetic
fields using the cavity-magnon system remains challenged
due to the presence of additional noise, i.e., quantum noise
and microwave cavity field thermal noise. Even though the
ultrastrong or deep-strong coupling allows the interaction of
the antirotating wave, which can effectively suppress quan-
tum noise and cavity field thermal noise below the SQL and
amplify the signal [7], realizing the ultrastrong or deep-strong
coupling per se is also more challenging than the realization of
the strong coupling; additionally, what role the rotating wave
and antirotating wave interactions play in weak-magnetic-
field sensing remains unclear.

In this paper, to sense a weak-magnetic-field signal, we
introduce a dual frequency bias magnetic field modulation
to the cavity-magnon system with the YIG sphere coupling
with a microwave cavity through dipole-dipole interaction
[51]. The external magnetic field interacting with the YIG
sphere affects the microwave output spectrum, which can
be measured by the cavity field phase quadrature detection
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FIG. 1. The schematic diagram of a weak-magnetic-field sensing
system. The YIG sphere is placed at the maximum value of the
field generated by the microwave cavity, the time-dependent dual fre-
quency modulation bias magnetic field Bb(t ) is along the x-z direction
to regulate the frequency of the magnon mode, and the cavity field
and magnon mode are driven by two classical pump fields, whose
driving amplitudes are EL and Ed , respectively. Detected magnetic
field Bex is assumed to be along the x direction. The information
of the detected magnetic field is determined by the information of
the output cavity field, and its output is analyzed by a balanced
homodyne detector.

method. It is shown that the dual frequency bias magnetic
field modulation can realize the antirotating wave interaction
through the strong-coupling regime instead of the ultrastrong-
or deep-strong-coupling regime. It can especially control the
proportion of rotating and antirotating wave terms in the sys-
tem which can reveal the roles of each type of interaction, by
which we find that the antirotating wave term can amplify the
detected field signal, but this amplification effect must coexist
with the rotating wave term. We show that in our scheme,
there exists a noise-resistant frequency band tolerating addi-
tional noise if selecting appropriate parameters. In particular,
the sensitivity can be improved and the system’s response

to weak magnetic fields can be amplified in this frequency
band. Compared to the scheme achieving uncontrolled antiro-
tating wave terms under ultrastrong- or deep-strong-coupling
mechanisms [7], we find that our scheme can achieve addi-
tional noise suppression of the same order of magnitude under
ultrastrong- or even deep-strong-coupling mechanisms. This
only requires the cavity magnetic strong-coupling mechanism,
which is of course more conducive to experimental imple-
mentation. Moreover, we can foresee that when our scheme
is in the super-strong-coupling mechanism or deep-strong-
coupling mechanism, the additional noise will be suppressed
to a greater extent. The rest of the paper is organized as
follows. In Sec. II, we introduce the specific model of our
dual frequency modulation magnetic field sensing scheme and
the derivation of the Hamiltonian. In Sec. III, we analyze the
dissipative dynamics of the system and provide an analytical
expression for the phase orthogonal output spectral density
used to measure the sensing performance. In Sec. IV, we
analyze the roles played by the antirotating term and antiro-
tating wave term in weak magnetic sensing, and evaluate the
response performance of our weak magnetic sensing scheme
to external detection magnetic fields and the suppression of
additional noise. In addition, the superiority of this scheme
is demonstrated through comparison with previous schemes.
The discussion and conclusions are given in Sec. V.

II. SENSING SYSTEM AND HAMILTONIAN

Our system consists of a YIG sphere and a microwave
cavity, with the YIG sphere acting as a probe for magnetic
field sensing and the output of the microwave cavity acting
as a readout for external magnetic field information. The
diagrammatic sketch is shown in Fig. 1. In this model, the
coupling between the microwave cavity mode and the magnon
mode is generated by the magnetic dipole-dipole interaction
and the frequency of the magnon mode can be tuned by
the external dual frequency modulated field Bb(t ) = Bb0 +∑

i=1,2 Bbi cos(ωit + φi ), and the two modes are, respectively,
pumped by two different semiclassical coherent pump fields.
Thus the Hamiltonian of the system reads

Ĥ = h̄ωaâ†â + h̄[ωm +
2∑

i=1

λiωi cos(ωit + φi)]m̂
†m̂ + h̄g(â + â†)(m̂ + m̂†) + ih̄Ed (m̂†e−iωd t − m̂eiωd t )

+ih̄EL(â†e−iωLt − âeiωLt ) − h̄εBex(t )(m̂ + m̂†). (1)

The first two terms of the Hamiltonian represent the free
Hamiltonian of the cavity mode and the magnon mode, where
â, m̂ (â†, m̂†) are the bosonic annihilation (creation) operators
of the cavity mode and magnon mode, ωa, ωm are the resonant
frequencies of the cavity field and the magnon mode, ωi,
φi (i = 1, 2) denote the two frequencies and phases of the
dual frequency modulated bias magnetic field, respectively,
and λi (i = 1, 2) is the coupling coefficient between the dual
frequency modulated bias magnetic field and the magnon
mode. Due to the bias field, the frequency of the magnon
mode of the YIG sphere can be modulated, i.e., ωm = γ Bb0,
λi = γ Bbi/ωi. The third to the fifth terms are the dipole-dipole

interaction between the cavity field mode and the magnon
mode, the classical driving of the cavity field, and the driving
of the magnon mode, where g = γ B0

2

√
5N is the coupling

coefficient between the cavity mode and the magnon mode,

and B0 is the amplitude of the microwave field. EL =
√

2PLκa
h̄ωL

,

ωL (Ed = γ Bd

4

√
5N , ωd ) [44] are the amplitude and frequency

of the microwave pump field (magnon mode driving field),
PL represents the input power of the microwave cavity field,
and Bd is the magnetic induction intensity of the magnon
driving field. According to the experiment, the gyromagnetic
ratio γ /2π = 28 GHz/T [32]. The last term represents the
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coupling of the probed magnetic field to the YIG sphere,
which can be obtained from the Holstein-Primakkoff trans-
formations [52], where ε = γ

2

√
5N is the coupling coefficient

between the detected magnetic field and the YIG sphere. It is
worth noting that ωi represents the frequency of the external
driving field, and its magnitude is in the range of 101 GHz; the
value of λi depends on the ratio of the product of the external
modulation field Bbi and the rotational magnetic ratio γ to

the frequency of the modulation field. According to existing
experimental conditions, the magnitude of B is 100 T, so it is
reasonable for λi to range from 10−1 to 100.

Considering a special unitary transforma-
tion operation Û (t ) = exp [−i(ωLâ†â + ωd m̂†m̂)]t
exp [−i

∑2
i=1 λi sin(ωit + φi )m̂†m̂] and the Jacobi-Anger

expansions eiλ sin x = ∑∞
m=−∞ Jm(λ)eimx [53,54], the

Hamiltonian becomes

Ĥ ′ = h̄	aâ†â+h̄	mm̂†m̂ − h̄εBex(t )(m̂e−iωd t+m̂†eiωd t )+h̄(g1m̂+g2m̂†)â+h̄(g1m̂†+g2m̂)â†+ih̄EL(â† − â)+ih̄Ed (m̂† − m̂),

(2)

where 	a = ωa − ωL and 	m = ωm − ωd are the detunings of the cavity mode and the magnon mode relative to their respective
driving field frequencies, and the time-dependent coupling strength g1 and g2 can be explicitly given as

g1

g
= ∑∞

m1,2=−∞ Jm1 (λ1)Jm2 (λ2)e−i(ωL+ωd +m1ω1+m2ω2 )t−i(m1φ1+m2φ2 ),

g2

g
= ∑∞

n1,2=−∞ Jn1 (λ1)Jn2 (λ2)e−i(ωL−ωd −n1ω1−n2ω2 )t+i(n1φ1+n2φ2 ). (3)

Let us focus on the strong-coupling regime [30], i.e., κa, κm < g � ωa, ωm, and let ω1 = ωd − ωL, ω2 = ωL + ωd . If |(1 − m1 +
m2)ωa + (1 + m1 + m2)ωd | � g, |(1 + n1 − n2)ωa − (1 + n1 + n2)ωd | � g, the high-frequency oscillation term can be safely
neglected, so we can only consider m1 = 0, m2 = −1, n1 = −1, and n2 = 0. Thus one can arrive at the final Hamiltonian as

Ĥf = h̄	aâ†â + h̄	mm̂†m̂ + h̄(g1m̂eiφ2 + g2m̂†e−iφ1 )â + h̄(g1m̂†e−iφ2 + g2m̂eiφ1 )â† + ih̄EL(â† − â)

+ih̄Ed (m̂† − m̂) − h̄εBex(t )(m̂e−iωd t + m̂†eiωd t ), (4)

where the cavity magnetic coupling strength can be simplified
as

g1 = gJ0(λ1)J−1(λ2), g2 = gJ0(λ2)J−1(λ1). (5)

Equation (5) indicates that g1 and g2 can be adjusted by λ1

and λ2. Since g1 reflects the dual mode squeezing interaction
corresponding to the antirotating wave term, and g2 reflects
the beam-splitter-type interaction corresponding to the rotat-
ing wave term, one can freely adjust the ratio of the rotating
wave term and the antirotating wave term, which is of great
advantage to quantum information processing. In addition,
we do not need ultrastrong-coupling or deep-strong-coupling
mechanisms for the antirotational wave term, which is also
easier to achieve in experiments [42,55].

It is worth emphasizing that the selection of frequencies is
essential for achieving the desired interactions and behaviors
in this system. The conditions (ω1 = ωd − ωL) and (ω2 =
ωL + ωd ) are important for eliminating time dependency in
the coupling strengths (g1) and (g2). These conditions facil-
itate the use of a special unitary transformation employing
the Jacobi-Anger expansion, transforming a time-dependent
problem into a time-independent one. By setting (ω1 = ωd −
ωL) and (ω2 = ωL + ωd ), time-dependent terms in the Hamil-
tonian are negated, resulting in a time-independent effective
Hamiltonian. This simplification is vital for the analytical
tractability and comprehension of the system’s quantum dy-
namics. Deviation from these conditions could reintroduce
time dependency, complicating the analysis and possibly lead-
ing to less efficient mode coupling. This could diminish the ef-
fectiveness of the sensing. In practical applications, these con-
ditions dictate the experimental setup, influencing the choice

of frequencies for the applied fields and the design of the
cavity and magnon systems to fulfill the required conditions.

III. DYNAMICS OF THE SENSING SYSTEM

For simplicity, in the following, we set φi = 0 (i = 1, 2).
Considering the fluctuations and dissipations, the quantum
Langevin equation [56] of the weak-magnetic-field sensing
system can be written as

˙̂a = −i	aâ − κa

2
â − ig1m̂† − ig2m̂ + EL + √

κaâin(t ),

˙̂m = −i	mm̂ − κm

2
m̂ − ig1â† − ig2â + Ed + √

κmm̂in(t )

+iεBex(t )eiωd t , (6)

where κa and κm are the dissipations of the cavity field and
the magnon mode, respectively, and âin(t ) and m̂in(t ) are the
input noise operators of the vacuum field cavity mode and the
magnetic mode, respectively. These operators are responsible
for the stochastic behaviors of the system due to the coupling
of the system to its environment. These noise operators satisfy
the commutation relationship of bosonic operators and have
zero mean values, i.e.,

〈âin(t )â†
in(t ′)〉 = (n̄a + 1)δ(t − t ′),

〈â†
in(t )âin(t ′)〉 = n̄aδ(t − t ′),

〈m̂in(t )m̂†
in(t ′)〉 = (n̄m + 1)δ(t − t ′),

〈m̂†
in(t )m̂in(t ′)〉 = n̄mδ(t − t ′), (7)

where n̄a = [exp(h̄ωa/kBT ) − 1]−1 (n̄m = [exp(h̄ωm/kBT ) −
1]−1) is the thermal occupancy number of the cavity field
mode (magnon mode). Based on the strong classical coherent
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driving of the system, we can write â = ā + δâ, m̂ = m̄ + δm̂,
and ignore high-order fluctuations. So the Langevin equa-
tions for the fluctuation operators read

δ ˙̂a = −i	aδâ − κa

2
δâ − ig1δm̂† − ig2δm̂ + √

κaâin(t ),

δ ˙̂m = −i	mδm̂ − κm

2
δm̂ − ig1δâ† − ig2δâ + √

κmm̂in(t )

+iεBex(t )eiωd t . (8)

To better calculate the phase quadrature component sens-
ing, we rearrange the above equations (8) in the ma-
trix form with the corresponding orthogonal fluctuation
operators as

˙̂V = CV̂ + V̂in, (9)

where V̂ = [δX̂a(t ), δP̂a, δX̂m, δP̂m]T , V̂in =
[
√

κax̂in
a ,

√
κa p̂in

a ,
√

κmx̂′in
m ,

√
κm p̂′in

m ]T , and

C =

⎛
⎜⎜⎝

−κa
2 	a 0 g2 − g1

−	a − κa
2 −(g1 + g2) 0

0 g2 − g1 − κm
2 	m

−(g1 + g2) 0 −	m − κm
2

⎞
⎟⎟⎠, (10)

with δX̂a = (â† + â)/
√

2, δP̂a = (â − â†)/
√

2i, δX̂m = (â + â†)/
√

2i, δP̂m = (â − â†)/
√

2i, x̂in
a = (â†

in + âin )/
√

2, and p̂in
a =

(âin − â†
in )/

√
2i. It is worth noting that the definition of the quadrature component of the magnon mode has been modified

as

x̂′in
m (t ) = x̂in

m −
√

2

κm
εBex(t ) sin(ωdt ),

p̂′in
m (t ) = p̂in

m +
√

2

κm
εBex(t ) cos(ωdt ), (11)

where x̂in
m = (m̂†

in + m̂in )/
√

2 and p̂in
m = (m̂in − m̂†

in )/
√

2i are the quadrature component operators of the magnon mode before
correction.

The stability of the system can be guaranteed by the Routh-Hurwitz stability criterion [57], which requires the matrix C
satisfying

H3 > 0, H3H2 − H1 > 0,

H3H2H1 − (
H2

1 + H2
3 H0

)
> 0, (12)

with

H3 = κa + κm, H2 = 2
(
g2

2 − g2
1

) + 	2
a + 	2

m + κ2
a

4
+ κ2

m

4
+ κaκm,

H1 = −g2
1κa + g2

2κa + 	2
mκa − g2

1κm + g2
2κm + 	2

aκm + 1

4
κ2

a κm + 1

4
κaκ

2
m,

H0 = g4
1 − 2 g2

1 g2
2 + g4

2 − 2 g2
1	a	m − 2 g2

2	a	m + 	2
a	

2
m + 1

4
	2

mκ2
a − 1

2
g2

1κaκm + 1

2
g2

2κaκm + 1

4
	2

aκ
2
m + 1

16
κ2

a κ2
m. (13)

Based on the Fourier transform for the operator Ô(ω) = 1
2π

∫ ∞
−∞ dtO(t )eiωt , the fluctuation operator in the time domain can

be transferred to the frequency domain; hence, from the input-output relationship δP̂out
a = √

κaδP̂a − p̂in
a , one can obtain the

quadrature component of the phase as

δP̂out
a (ω) =M1(ω)x̂′in

m (ω) + M2(ω) p̂′in
m (ω) + M3(ω)x̂in

a (ω) + M4(ω) p̂in
a (ω), (14)

where x̂′in
m (ω) = x̂in

m (ω) + ε
√

1
2κm

i[Bex(ω + ωd ) − Bex(ω − ωd )] and p̂′in
m (ω) = p̂in

m(ω) + ε
√

1
2κm

[Bex(ω + ωd ) + Bex(ω − ωd )]

are the magnon orthogonal fluctuation operator including the external detected magnetic field, and

M1(ω) = χaχ
′
m
√

κaκm
{
(g1 + g2) + χaχm(g1 − g2)[	a	m − (g1 + g2)2]

}
1 + 2χaχ ′

m

(
g2

2 − g2
1

) + χ2
a

{
	2

a + χmχ ′
m

[(
g2

1 − g2
2

)2 − 2
(
g2

1 + g2
2

)]} ,

M2(ω) = χaχ
′
m
√

κaκm[χm(g1 + g2)	m − χa(g1 − g2)	a]

1 + 2χaχ ′
m

(
g2

2 − g2
1

) + χ2
a

{
	2

a + χmχ ′
m

[(
g2

1 − g2
2

)2 − 2
(
g2

1 + g2
2

)]} ,

M3(ω) = χ2
a [	a − χmχ ′

m(g1 + g2)2	m]

1 + 2χaχ ′
m

(
g2

2 − g2
1

) + χ2
a

{
	2

a + χmχ ′
m

[(
g2

1 − g2
2

)2 − 2
(
g2

1 + g2
2

)]} ,
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M4(ω) =1 − χa
[
2χ ′

m

(
g2

1 − g2
2

) + κa
] + x2

a

{
	2

a + χ ′
mχm

(
g2

1 − g2
2

) − χ ′
m

[
2χm

(
g2

1 + g2
2

)
	a	m + (

g2
2 − g2

1

)
κa

]}
1 + 2χaχ ′

m

(
g2

2 − g2
1

) + χ2
a

{
	2

a + χmχ ′
m

[(
g2

1 − g2
2

)2 − 2
(
g2

1 + g2
2

)]} , (15)

with χa(ω) = 1
κa/2−iω and χm(ω) = 1

κm/2−iω being the susceptibility of the cavity field and the magnon mode, and χ ′
m = 1

1/χm+	2
m

denoting the effective susceptibility of the magnon mode.

To achieve weak-magnetic-field sensing, we need to use a
homodyne detection device to detect the phase output sym-
metrical spectrum density, defined as [58]

Yout (ω) =1

2

∫
dω′ei(ω+ω′ )t 〈δPout

a (ω)δPout
a (ω′)

+ δPout
a (ω′)δPout

a (ω)〉. (16)

According to Eq. (7), the cavity field phase output spectrum
density of the system can be written as

Yout (ω) = (
n̄a + 1

2

)
[|M4(ω)|2]

+ |M1(ω)|2[(n̄m + 1
2

) + SBex (ω)(ω)
]
, (17)

where SBex is the signal spectral density of the external mag-
netic field corresponding to the magnon mode amplitude
orthogonal component, respectively. From the expression of
the output spectrum, it can be seen that the first term rep-
resents the contribution of the microwave cavity field, while
the second term represent the contribution of the YIG probe
and the detected magnetic field signal. Next, in order to better
measure the performance of weak-magnetic-field sensing, we
define

RB(ω) = ∂Yout (ω)/∂SBex (ω)(ω) = |M1(ω)|2, (18)

Nad(ω) =
(

n̄a + 1

2

)
[|M4(ω)|2]

∂Yout (ω)/∂SBex (ω)(ω)

=
(

n̄a + 1

2

)
[|M4(ω)|2]

|M1(ω)|2 , (19)

which represent the response to external magnetic signals and
the additional noise including cavity field thermal noise and
quantum noise in weak-magnetic-field sensing, respectively.
From Eq. (17), one can see that RB(ω) > 1 indicates the signal
amplification, and the smaller the additional noise Nad(ω)
of the system is, the easier it is to detect the signal of the
external magnetic field. In addition, when Nad(ω) < 1/2, we
say that additional noise is below the SQL [58]. Therefore,
reducing the additional noise below the SQL will improve the
sensitivity of weak magnetic sensing. In this sense, we will not
consider the specific expression of the detected magnetic field
signal spectrum, but focus on reducing the additional noise
and enhancing the response.

IV. WEAK-MAGNETIC-FIELD SENSING

In this section, we provide numerical results of the per-
formance of our weak magnetic sensing scheme. Our scheme
can greatly relax the requirements for cavity magnetic cou-
pling strength and achieve additional noise suppression of the
same order of magnitude without dual frequency modulation
under the super-strong-coupling mechanism or deep-strong-
coupling mechanism. The scheme without dual frequency

modulation was recently proposed by Ebrahimi et al. [7].
Therefore, we reproduced some of their results and com-
pared them with our scheme. In addition, we have set the
following feasible experimental parameters [30]: ωm/2π =
37.5 GHz, g = 10−2ωm, 	a = 	m = 0, κm/2π = 15 MHz,
κa/2π = 33 MHz.

First, we would like to study how the rotating wave
interaction and antirotating wave interaction affect weak-
magnetic-field sensing. We set 	a = 	m = 0, which can
be achieved by adjusting the bias field and the frequency
of the external driving microwave field. This setting can
decouple the two orthogonal components of the magnon mode
and the orthogonal components of the cavity field, thereby
improving the sensitivity of the measurement. We plot the
additional noise of weak-magnetic-field sensing and the re-
sponse to external magnetic signals versus the frequency in
Fig. 2. The red solid line corresponds to the presence of the
only rotating wave term, and the blue dashed line indicates the
only antirotating wave term that is present. Figure 2(a) shows
that neither type of interaction alone can increase the system’s
response to external magnetic field signals since the curves are
below 100. Figure 2(b) shows that under resonance conditions
(ω ≈ 0), the additional noise suppression level of the rotating
wave term is greater than that of the nonrotating wave term,
and it also has great noise suppression performance in the
nonresonant region. This result indicates that the interaction
of rotating wave terms is beneficial for improving the sensi-
tivity of detection, which can be understood as the result of
a beam-splitter-type interaction between the magnon and the
cavity photon. That is, when the external magnetic field affects
the magnon, coherent energy exchange occurs between the
magnon and the photon, which is more conducive to optical
field readout and thus improves sensitivity.

In Fig. 3(a), we plot the response of the system with addi-
tional noise under different λ2/λ1 with both the rotating and
nonrotating wave terms present. The red curve corresponds
to λ2 = λ1, namely, the rotating wave term and the nonro-
tating wave term have the same weight in the Hamiltonian.
One can find that with the relative weight (λ2/λ1) of the
nonrotating wave term increasing, the response of the system
is correspondingly improved in the resonance region. This
result indicates that a single parametric amplification interac-
tion (nonrotating wave term) cannot amplify the signal to be
detected, and it must coexist with the beam-splitter-type inter-
action (rotating wave term). Figure 3(b) shows the additional
noise of the system with different λ2/λ1. At the low environ-
ment temperature of 50 mK, implying the low-environment
thermal noise, it can be found that under resonance condition
(ω ≈ 0), the best suppression of additional noise is not under
the condition of λ2 = λ1, but at λ2 = 0.95λ1. At ω ≈ 0.33κm,
there is a valley region where the additional noise suppression
effect is one order of magnitude stronger than the case of
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FIG. 2. (a) The response RB of the system as a function of
the normalized frequency ω/κm. (b) The additional noise Nad as
a function of normalized frequency ω/κm. The red solid line rep-
resents the case of only rotating wave term interaction, while the
blue dashed line represents the case of only antirotating wave
term interaction. The experimental parameters related to (a) and
(b) are ωm/2π = 37.5 GHz, g = 10−2ωm, 	a = 	m = 0, κm/2π =
15 MHz, and κa/2π = 33 MHz. In addition, we set the environment
temperature to 50 mK, which is unaffected by thermal noise.

λ2 = λ1. In addition, for λ2/λ1 = 0.3, 0.6, the suppression
effect is not apparent, even though both have a suppression
valley.

To emphasize the performance of this sensor in the pres-
ence of environmental thermal noise, in Fig. 4(a), we study
the additional noise of the system versus the normalized fre-
quency at room temperature (T = 300 K). One can find that
at λ2 = 0.95λ1, the additional noise can still be suppressed
below the SQL [Nad(ω) < 1

2 ] in the ω ≈ 0. Especially in
Fig. 4(b), we plot the curves of the additional noise with
temperature, which indicates that in a wide temperature range,
the additional noise can be suppressed below the SQL. In
particular, our scheme can extremely strongly suppress the
additional noise under the strong-coupling regime instead of
the ultrastrong or deep-strong coupling required for the antiro-
tating wave term interaction.

Next, we compared the additional noise suppression per-
formance of our scheme with the scheme without dual
frequency bias field modulation. In Fig. 5(a), the red
solid line represents the scheme without dual frequency
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FIG. 3. (a) The response RB of the system as a function of the
normalized frequency ω/κm, with logarithmic scale on the x axis.
(b) The additional noise Nad as a function of normalized frequency
ω/κm,with logarithmic scale on the x axis. λ2 is set to 0, 0.3λ1,
0.6λ1, and 0.95λ1. Other parameters are ωm/2π = 37.5 GHz, g =
10−2ωm, λ1 = 0.16, 	a = 	m = 0, κm/2π = 15 MHz, and κa/2π =
33 MHz. In addition, we set the environment temperature to 50 mK,
which is almost unaffected by thermal noise.

modulation, and the blue dashed line represents the addi-
tional noise suppression result of our scheme. It can be
seen that the red solid line does not have a good additional
noise suppression effect, which is the same as the result of
Ref. [7]. However, our scheme can achieve the additional
noise suppression effect in the resonance region that exceeds
the scheme without dual frequency modulation by nearly five
orders of magnitude.

Before the end, we would like to emphasize that dual fre-
quency bias field driving is a key to our scheme. Next, we will
pay attention to the case of the ultrastrong- or deep-strong-
coupling scheme. The zero-detuning conditions (	m = 	a =
0) for the ultrastrong-coupling scheme are given as [7]

RB2(ω) = 4κ2
a κ2

mC

∣∣∣∣ χm1(ω)

2iω + κa

∣∣∣∣
2

, (20)

Nad2(ω) =
∣∣1 + 2κa

2iω+κa

∣∣2(
n̄a + 1

2

)
4κ2

a κ2
mC

∣∣ χm1(ω)
2iω+κa

∣∣2 , (21)
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FIG. 4. (a) The additional noise Nad as a function of normalized
frequency ω/κm. Unlike Fig. 3(b), we set the temperature to room
temperature, i.e., T = 300 K. (b) The additional noise Nad(ω = 0)
as a function of temperature T . The purple solid line represents
the SQL. The other experimental parameters related to (a) and
(b) are ωm/2π = 37.5 GHz, g = 10−2ωm, λ1 = 0.16, 	a = 	m = 0,
κm/2π = 15 MHz, and κa/2π = 33 MHz.

where χm1(ω) = 1
κm/2+iω is the susceptibility, and C is the

electromagnetic cooperativity, with a range of 1–1000. In
Fig. 5(b), we compare our scheme with the scheme under
the super-strong-coupling mechanism. It can be seen that our
ability to suppress additional noise can even reach the level of
the ultrastrong-coupling scheme with extremely high electro-
magnetic cooperativity. Specifically, in Fig. 5(b), one can find
that the noise suppression effect of our scheme near ω ≈ 0
is significantly stronger than that of C = 10, 100. Moreover,
our scheme can achieve noise suppression of the same order
of magnitude under the condition of C = 1000, as shown
in the inset in Fig. 5(b). When ω ≈ 0, the additional noise
corresponding to the green dashed line is 0.0002, and our
scheme can achieve 0.0004. This demonstrates the potential of
our scheme to achieve similar noise suppression capabilities
as the ultrastrong-coupling scheme under a strong-coupling
mechanism without any parameter adjustments. The com-
parison in Fig. 5(b) indicates that our scheme can achieve
high sensitivity without the necessity of experimental condi-
tions associated with an ultrastrong-coupling mechanism. Of
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FIG. 5. (a) The additional noise Nad of the system is taken as
a function of the normalized frequency ω/κm. The blue dashed
line represents the presence of a dual frequency modulated mag-
netic field; the red solid line represents the absence of a dual
frequency modulated magnetic field. (b) The additional noise Nad

as a function of normalized frequency ω/κm under different elec-
tromagnetic cooperativity C. Specifically, the red, green, and blue
dashes represent the corresponding cases of C = 10, C = 100, and
C = 1000 in the ultrastrong-coupling mechanism scheme. The pur-
ple dashed line represents our dual frequency modulation bias field
scheme. The other experimental parameters related to (a) and (b) are
ωm/2π = 37.5 GHz, g = 10−2ωm, λ1 = 0.16, λ2 = 0.95λ1, 	a =
	m = 0, κm/2π = 15 MHz, κa/2π = 33 MHz, and T = 50 mK.

course, suppose our scheme can be implemented for magnetic
field sensing under the ultrastrong-coupling mechanism. In
that case, it is natural that the sensitivity and the ability of
signal amplification will be further enhanced. This sufficiently
demonstrates the superiority of our scheme.

V. DISCUSSION AND CONCLUSIONS

In summary, we proposed a scheme for weak-magnetic-
field sensing using dual frequency bias field modulation. The
introduction of the dual bias field modulation can adjust the
proportion of the rotating and the antirotating wave-type in-
teraction in the weak-magnetic-field sensing system, which
help to reveal the crucial roles of the two types of interactions
played in the weak-magnetic-field sensing. It is found that
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the antirotating wave term can amplify the magnon mode
signal, but this amplification effect must coexist with the ro-
tating wave term. In addition, the distinct advantage is that
our scheme can achieve a more sensitive and temperature-
robust weak-magnetic-field sensing with additional noise, but
it does not require an ultrastrong- or a deep-strong-coupling
mechanism. In this sense, it reduces the difficulty of experi-
mental implementation. In addition, we compared our scheme
with previous schemes that required ultrastrong-coupling or
deep-strong-coupling mechanisms and found that in terms
of additional noise suppression, our scheme can achieve the
additional noise suppression of the same order of magni-
tude as the previous scheme. This indicates that we can
not only relax the experimental conditions, but also have
no decrease in sensitivity. Therefore, it can be said that

our scheme achieves highly sensitive weak-magnetic-field
sensing. Moreover, although we have achieved the temper-
ature robustness of the additional noise, the thermal noise
of the magnon mode is a significant problem and we will
study how to reduce the thermal noise of the magnon in the
future.
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