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Gaussian boson sampling constitutes a prime candidate for an experimental demonstration of quantum
advantage within reach with current technological capabilities. The original proposal employs photon-number-
resolving detectors, however, these are not widely available. Nevertheless, inexpensive threshold detectors can be
combined into a single click-counting detector to achieve approximate photon-number resolution. We investigate
the problem of sampling from a general multimode Gaussian state using click-counting detectors and show that
the probability of obtaining a given outcome is related to a matrix function which is dubbed as the Kensingtonian.
We show how the Kensingtonian relates to the Torontonian and the Hafnian, thus bridging the gap between
known Gaussian boson sampling variants. We then prove that, under standard complexity-theoretical conjectures,
the model cannot be simulated efficiently.
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I. INTRODUCTION

Boson sampling, a computational problem introduced by
Aaronson and Arkhipov [1] and conjectured to be hard to
simulate on a classical machine [2], constitutes a prime can-
didate for an experimental proof of quantum advantage using
photons. In its original formulation, the task consists of sam-
pling from the output state of a passive linear optical network
(LON) fed with single-photon input states. Several variants
of the task that lie in the same complexity class have been
proposed since. These are usually devised by considering
different classes of input states, such as photon-added coher-
ent states [3], photon-added or photon-subtracted squeezed
vacuum states [4], and, more recently, non-Gaussian input
states involving Kerr-type nonlinearities [5]. Most notably,
Gaussian boson sampling (GBS) [6] avoids the experimental
hurdles of generating indistinguishable single-photon Fock
states by using squeezed states of light as the nonclassical
resource needed to show quantum advantage [7,8]. On top
of being a more experimentally feasible alternative to prove
quantum advantage on photonic platforms, GBS finds appli-
cation in simulating molecular vibronic spectra [9], predicting
molecular docking configurations for drug design [10], and in
graph-related problems such as finding dense subgraphs [11]
and perfect matchings counting [12].

Boson sampling variants may also be designed by con-
sidering different kinds of detection, such as Gaussian
measurements [13] and photocounting detection schemes. Fo-
cusing on the last of these, two classes of GBS experiments
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have been investigated thus far: the initial proposal of GBS
[14] made use of photon-number resolving (PNR) detectors,
and only a couple of years later a GBS implementation uti-
lizing threshold (on-off) detectors was suggested, as a less
experimentally demanding alternative to show quantum ad-
vantage [15]. We remind the reader that on-off detectors can
only detect the presence or absence of quantum light, while
PNR detectors are, in principle, able to perfectly distinguish
between any Fock states. Threshold detectors, such as super-
conducting nanowires or avalanche photodiodes that can be
operated at room temperature [16], are widely available and
inexpensive. Hence, to lessen experimental challenges, most
GBS experiments up to date employed threshold detection
[17,18] and only more recently, a 216-mode Gaussian boson
sampler utilizing PNR detectors was used to claim quantum
computational advantage [19].

However, improved classical algorithms that exploit pho-
ton collisional events to reduce the simulation’s overhead of
GBS experiments employing thresholds detectors [20] as well
as the proposal of new classical spoofing strategies [20–22]
motivated the development of larger-scale experiments of
increasing computational complexity. To this end, the intro-
duction of PNR detectors into the GBS scenario grants access
to detection events with a much larger total photon num-
ber (thus increasing the sample space size exponentially), a
regime which remains unachievable using on-off detectors. As
true PNR detectors are not always accessible, multiple on-off
detectors are routinely combined in a multiplexed fashion to
achieve approximate photon number resolution. The underly-
ing idea of click-counting detection [23] consists in dividing
incoming light into weaker signals that are then measured with
threshold detectors, the final measurement output simply be-
ing the number of on-off detectors that registered the presence
of photons. Hence, click-counting detectors can be seen as
an intermediate case between threshold and PNR detectors.
We also recall that photon-number resolution is often needed
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TABLE I. Matrix functions used to compute the output probabil-
ity distribution obtained from measuring multimode Gaussian states
with on or off, click-counting, and PNR detection. The symbol *
denotes the functions that are introduced in this paper.

Detection Zero-mean Gaussian state Displaced Gaussian state

On/off Torontonian Loop Torontonian
Click Kensingtonian* Loop Kensingtonian*
PNR Hafnian Loop Hafnian

in GBS applications, e.g., to study higher-energy molecular
vibronic transitions [9,24].

In this work, we study the problem of sampling from a
generic multimode Gaussian state using click-counting de-
tectors, bridging the gap between GBS experiments utilizing
PNR and threshold detectors, which can be seen as special
instances of click-counting GBS. In addition to fundamental
interest, Gaussian boson samplers employing click-counting
detectors have a clear experimental appeal, as it provides an
easier way to achieve approximate photon number resolu-
tion. In particular, we provide a closed-form expression for
the probability of observing a given click-pattern outcome
and show that it is related to a new matrix function which
is dubbed as the Kensingtonian. The Kensintonian plays an
analogous role to the Hafnian and Torontonian in GBS vari-
ants employing PNR and on-off detection, respectively. We
show that, when the probability of observing two or more
photons in each output mode is negligible, our model cannot
be efficiently simulated using a classical machine under stan-
dard complexity-theoretic conjectures, thus making the setup
suitable to prove quantum advantage. In Table I we present
the matrix functions needed to compute the output probability
distribution obtained when sampling from a Gaussian state
using photocounting measurements.

This paper is structured as follows. In Sec. II we revise
Gaussian states and their representations through phase-space
quasiprobability distributions. In Sec. III we review the the-
oretical aspects of GBS experiments employing PNR and
threshold detectors. In Sec. IV the click-counting detection
scheme is introduced. Sections V and VI are dedicated to
the main findings of this work: we investigate the problem
of sampling from a Gaussian state using click-counting detec-
tors, we give the definition of the Kensigtonian, and we prove
the computational complexity of the sampling task. Lastly, in
Sec. VII we draw conclusions and give some final remarks.

II. GAUSSIAN STATES

In this section we briefly review the key aspects of Gaus-
sian states and their representation in terms of phase-space
quasiprobability distributions (PQDs) [25]. Let us consider
a continuous variables system made up of M-bosonic modes
described by annihilation operators aj that satisfy the standard
commutation relations [a j, a†

k] = δ jk . We can then intro-
duce quadrature operators for each mode, defined as qj =
(a j + a†

j )/
√

2 and p j = (a j − a†
j )/i

√
2 (where we set h̄ = 1),

and arrange them into the following vector:

r = (q1, p1, . . . , qM , pM )ᵀ. (1)

A Gaussian state ρ is completely characterized by its vector
of first moments (displacement) r and its covariance matrix σ ,
defined, respectively, as

r = Tr{ρr}, (2)

σ = Tr{ρ{r − r, (r − r)ᵀ}}. (3)

One can show that the s-ordered PQD for a generic M-mode
Gaussian state with covariance matrix σ and vector of first
moments α is given by [5]

W (s)
ρ (β) = 2M

πM
√

det{σ − s̃}e−2(β−α)ᵀ(σ−s̃)−1(β−α). (4)

Here s = (s1, . . . , sM )ᵀ is the vector of operator orderings,
where s j ∈ R, and the matrix s̃ is defined as

s̃ =
M⊕

j=1

s jI2. (5)

The conventions used in Eq. (4) are such that for a single-
mode coherent state |γ 〉 the covariance matrix is the identity
matrix σ = I2 and the vector of first moments reads α =
(Re{γ }, Im{γ }). Note that Eq. (4) is well defined iff σ −
s̃ � 0, otherwise the s-PQD becomes more singular than a
delta function. The well-known Husimi Q function, Wigner
function, and Glauber-Sudarshan P function are retrieved,
respectively, for s = −IM , s = 0, and s = IM .

III. GBS WITH PNR AND THRESHOLD DETECTORS

In this section we briefly review the two most widely
studied and experimentally relevant instances of GBS, i.e., the
original proposal, which consists of sampling from a Gaussian
state using PNR detectors, and its variant that employs more
readily available threshold detectors. Both implementations
are thought to have the potential to show quantum advantage
(at least in some regimes), as sampling from their output prob-
ability distribution using classical algorithms can be shown to
be a computationally hard task.

We remind the reader that a quantum measurement can
be described in terms of a positive operator-valued measure
(POVM) whose elements {�x} satisfy the conditions �x �
0 and

∑
x �x = I, where I is the identity operator on the

Hilbert space. The probability p(x) of obtaining a given out-
come x when measuring a state ρ is given by the Born rule,
i.e., p(x) = Tr{ρ�x}.

The POVM elements of PNR detection are the projectors
on Fock states, namely, |k〉〈k| with k nonnegative integer. This
kind of detector provides perfect photon number resolution
and can thus distinguish between any Fock states with no
uncertainty. It was shown [6] that the photon-number statistics
obtained from an M-mode Gaussian state with a null vector of
first moments reads

p(k) = Haf[XO(S)]√
det{�} k1! . . . kM!

, (6)

where k = (k1, . . . , kM )ᵀ are the detected photon numbers
ki � 0, � is the covariance matrix of the state’s Q function,
O(S) is a matrix constructed from O = 1 − �−1 according to
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the detection outcome (see Ref. [14] for more details), and

X =
[

0 I
I 0

]
. (7)

The matrix function appearing in Eq. (6) is called the Hafnian
and is defined as follows:

Haf[A] =
∑

μ∈PMP

n∏
j=1

Aμ(2 j−1),μ(2 j) , (8)

where A is a 2n × 2n complex matrix and PMP is the
set of perfect matching permutations. Equation (6) can be
generalized to the case of an M-mode Gaussian state with
nonzero displacement by introducing the loop Hafnian matrix
function [14].

However, threshold detectors can only distinguish between
the absence or presence of light, without being able to resolve
the photon content of the state. In this case ki ∈ {0, 1} and
the POVM elements are �0 = |0〉〈0| and �1 = I − �0. It
was shown (see Ref. [15] for details) that the probability
distribution obtained from measuring an M-mode Gaussian
state with threshold detectors reads

p(k) = Tor[O(S)]√
det{�} , (9)

where

Tor[A] =
∑

Z∈P([n])

(−1)|Z| 1√
det{I − A(Z )}

(10)

is the Torontonian of a 2n × 2n matrix A, P([n]) is the power
set of [n] = {1, . . . , n}, and A(Z ) denotes a matrix constructed
from A by eliminating the rows and columns according to the
set Z . Once again, it is possible to lift the zero-displacement
constraint and generalize Eq. (9) by introducing the loop
Torontonian matrix function [26].

A relation between the Torontonian and the Hafnian can
be established by noticing that the probability of obtaining
a specific output pattern in a GBS experiment employing
threshold detectors can also be computed by summing the
probabilities of all detection events of a GBS experiment using
PNR detectors that are compatible with that specific click
pattern. In particular, we say a PNR detection pattern k′ is
compatible with a threshold detection pattern k if ki = 0 ⇒
k′

i = 0 and ki = 1 ⇒ k′
i � 1. This observation leads to the

following identity [15]:

Haf[XO] = 1

n!

dn

dηn
Tor[ηO]|η=0, (11)

where O is a 2n × 2n matrix.

IV. CLICK-COUNTING DETECTION

In this section we describe the click-detection scheme
introduced in Ref. [23], where a multiplexing setup and
on-off detectors are employed to achieve approximate photon-
number resolution. The main idea consists in splitting the
incoming state into weaker signals (distributing the intensity
uniformly among the output ports of the interferometer) that
will then be measured using threshold detectors. Note how
we are only interested in the total number of recorded clicks

FIG. 1. Schematics of a click-counting detector made up of N
threshold detectors. The quantum state ρ to be measured enters an N-
mode interferometer [represented by a unitary operation U (N )] that
splits the intensity equally among its output ports. N on-off detectors
then measure the output state and the detection results are summed
into the final signal.

k, and not in the specific output pattern obtained in a given
measurement. In Fig. 1 we display a schematic representation
of a click-counting detector. We remind the reader that the
POVM elements of the on-off detection are

�
(1)
0 = |0〉〈0| =: e−n̂ : �

(1)
1 = I − �

(1)
0 , (12)

where I is the identity operator, n̂ is the number operator, and
: • : denotes the normal ordering of bosonic operators [27].
One can show that the POVM elements corresponding to a
click-detector made up of N on-off detectors are given by

�
(N )
k =:

(
N

k

)
e− N−k

N n̂(1 − e− n̂
N )k :, (13)

where k, i.e., the number of recorded clicks, may vary between
0 and N . Note how we always refer to clicks and not to pho-
tons. As expected, for N = 1 we retrieve the POVM elements
of threshold detection, i.e.,

�
(1)
k =: (en̂ − I )ke−n̂ :, (14)

with k = 0, 1. This formalism also allows us to easily in-
troduce imperfections, such as subunit efficiency and finite
dark count rate. To do so, we simply have to consider a click
detector made up of noisy on-off detectors whose POVM is
obtained from Eq. (12) by substitution of the number operator
n̂ with a suitable response function whose functional form de-
pends on the specific noise model considered. In this paper we
consider the simple and widely used substitution n̂ �→ ηn̂ + ν,
where 0 � η � 1 and ν � 0 are the efficiency and the dark
count rate of the threshold detector, respectively, to obtain the
following POVM elements:

�
(1)
0 =: e−(ηn̂+ν) : �

(1)
1 = I − �

(1)
0 . (15)

One can then prove that the POVM elements of noisy click-
counting detection are given by

�
(N )
k = :

(
N

k

)
[e−(η n̂

N +ν)]N−k[1 − e−(η n̂
N +ν)]k : . (16)

We note that these operators can be obtained from Eq. (13)
upon substituting n̂ �→ ηn̂ + Nν. This is intuitively clear: we
expect the click-counting detector to “inherit” the inefficiency
of the threshold detectors, however, the dark count rates from
each on-off detector will add up to the “total” dark count
rate of the click-counting detector. The reason for this is
that dark counts coming from different threshold detectors
can be thought of as independent Poisson variables and it is
then well known that the sum of Poisson random variables is
still a Poisson variable whose mean value is the sum of the
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addends’ mean values. This also means that the performance
of a noisy click-counting detector made up of N threshold
detectors characterized by Eq. (15) should be compared to that
of a PNR detector with subunit efficiency η and dark count
rate Nν whose related POVM elements read

�̃k =:
(ηn̂ + Nν)k

k!
e−(ηn̂+Nν) : . (17)

In Appendix D we show that, as one might intuitively expect,
in the N → ∞ limit and in the absence of noise we retrieve
true PNR detection, i.e.,

lim
N→∞

�
(N )
k = :

n̂k

k!
e−n̂ : ≡ |k〉〈k|. (18)

The noisy case requires some additional attention, as the pres-
ence of nonzero dark count rate ν causes the expression to
diverge if we are to take the formal limit. In practice, typical
values of a threshold detector’s dark count rate are of the order
ν � 10−4, hence in regimes where simultaneously N 
 1 and
Nν � 1 we still expect good convergence of Eqs. (16) to (17).

V. KENSINGTONIAN

In this section we derive the outcome probability distribu-
tion of an M-mode GBS experiment employing click-counting
detectors, each made up of N ideal threshold detectors.
Note that, for N = 1, we are describing GBS with thresh-
old detectors and the probability distribution of outcomes is
given by Eq. (9). However, in the N → ∞ limit we retrieve
photon-number-resolving GBS with PNR detection and the
probability distribution converges to Eq. (6). In this section we
interpolate between these two special cases by deriving a
closed formula valid for general N .

In click-counting GBS, a single detection event is denoted
by k = (k1, . . . , kM ), where 0 � ki � N ∀i. Note that the total
number of clicks n = ∑

i ki is not fixed, as the number of
photons entering the interferometer is not determined in the
first place. We want to compute

p(k) = Tr
{
ρ�

(N )
k

}
, (19)

where ρ is a generic M-mode Gaussian state with covariance
matrix σ and null vector of first moments and �

(N )
k is the

POVM that characterize the M-mode click detection. The
click detection POVM simply reads

�
(N )
k =

M⊗
i=1

�
(N )
ki

, (20)

where �
(N )
ki

is the POVM of a single click-counting detector,
given by Eq. (13). This equation can also be expressed, by
virtue of the binomial theorem, as

�
(N )
ki

=
(

N

ki

) ki∑
�i=0

(
ki

�i

)
(−1)�i : e− N−ki+�i

N n̂ : . (21)

Note that the operator : e− N−ki+�i
N n̂ : corresponds to the vac-

uum element �
(1)
0 of the noisy on-off detection POVM

Eq. (15), with an effective detection inefficiency given by λi ≡
(N − ki + �i )/N ∈ [0, 1]. This observation is crucial, as it im-
plies that all that is needed to obtain p(k) are (noisy) vacuum

statistics of marginal states of ρ. Each of these contributions
can be computed efficiently using the Gaussian formalism,
hence (as we will see) the complexity of the sampling task
arises from the exponential number of terms appearing in the
expression of the probability. We can express the later term as
follows:

p(k) = πM
∫

d2Mβ Qρ (β) P
�

(N )
k

(β), (22)

where Qρ (β) is the Husimi Q function of ρ and P
�

(N )
k

(β) is the
P function of the POVM element. Using Eq. (4) with ordering
parameter s j = −1 ∀ j we obtain

Qρ (β) = 1

πM
√

det {�}e−βᵀ�−1β, (23)

where we introduce the matrix � = (σ + I)/2 for conve-
nience. However, the P function of �

(N )
k is readily obtained

once we know how to compute the P function of : e−λi n̂ :. One
can prove that, for λi �= 1,

P:e−λi n̂:(β1, β2) = 1

π (1 − λi )
e− λi

1−λi
(β2

1 +β2
2 )
, (24)

while for λi = 1 (i.e., for �i = ki) we have

P:e−n̂:(β1, β2) = δ(β1)δ(β2), (25)

where β1 and β2 are the two (real) Cartesian coordinates
of the complex plane. After cumbersome calculations (see
Appendix A for a detailed derivation) it is possible to show
that the probability of observing a given click pattern k reads

p(k) = Ken[O]√
det{�} . (26)

Here O = I − �−1 and

Ken[A] =
∑

0�d�k

M∏
i=1

[(
N

N − ki, ki − di, di

)
(−1)ki−di

]

×
∏
j /∈Z

[
N

dj

]
1√

det{(I − A)(Z ) + DZ} (27)

is the Kensingtonian of a 2M × 2M matrix A. DZ is a diagonal
matrix defined as

DZ =
⊕
i/∈Z

(
N − di

di

)
I2, (28)

and the set Z is defined as follows:

Z = {i|1 � i � M, di = 0}. (29)

In Eq. (27) we use the subscript notation (I − A)(Z ) to de-
note the matrix obtained from (I − A) by eliminating the
corresponding rows and columns according to the set Z .
In particular, if Z = {a, b} we remove the rows(columns)
numbered 2a − 1, 2a, 2b − 1, and 2b. In Appendix C we
generalize Eq. (26) to displaced Gaussian input states by
introducing the loop Kensingtonian matrix function.

For N = 1, Eq. (26) must coincide with the probability
distribution of a GBS experiment employing threshold detec-
tors Eq. (9). In Appendix B we explicitly prove the following
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identity that links the Kensingtonian and the Torontonian:

Ken[A]
N=1= Tor[A(K)]. (30)

The outcome probability distribution of click-counting GBS
Eq. (26) converges to that of PNR GBS Eq. (6) in the N → ∞
limit, as a consequence of the fact that, in that same limit,
the click-counting detection POVM converges to that of true
PNR detection. This, in turn, implies that the Hafnian can be
retrieved as a limiting case of the Kensingtonian. We leave it
as an open question whether this can be exploited to develop
faster algorithms to approximate the Hafnian of a matrix.

One might also be interested in knowing the regimes where
the photon counting statistics coming from a GBS experi-
ment employing click-counting detectors well approximates
Eq. (6). Of course, the convergence of the click-counting
detector’s POVM to that of the PNR detector implies that
we can always increase N to make the total variational dis-
tance (TVD) between the two distributions arbitrarily small.
However, in what follows we want to give a more quantitative
and practical indication of the number of threshold detectors
needed in order to have a good agreement between Eqs. (26)
and (6). This is particularly relevant for GBS experiments
aimed at applications (rather than those aimed at proving
quantum advantage), where the Hafnian’s specific functional
form and properties are crucial to map the sampling task onto
problems in graph theory and chemistry.

We remind the reader that, on average, a Haar-random
LON equally distributes the intensity among its output modes
and denote with n the average photon density per mode.
Most GBS experiments up to date, especially those target-
ing applications, have modest values of photon densities per
output mode, usually n < 1. Furthermore, tracing out all out-
put modes but one leaves us with a Gaussian marginal state
that approximately looks like a thermal state νth(n). We thus
restrict ourselves to this single-mode case and numerically
compute the TVD to give a rough estimate of how many
threshold detectors making up a click-detector are needed
so that the click-detector well approximates an ideal PNR
detector in the energy regime of interest. The two proba-
bility distributions needed to compute this TVD are given
by Eqs. (6) and (26), with M = 1 and σ = (2n + 1)I2. In
Fig. 2 we show how using just N = 8 threshold detectors
(corresponding to three multiplexing steps, if we are using the
simple scheme where intensity is halved at each layer made up
of balanced beamsplitters) already provides a good agreement
between the two distributions.

VI. COMPLEXITY OF CLICK-GBS

In this section we prove that sampling from the output
probability distribution of a Gaussian boson sampler utilizing
click-counting detectors constitutes a hard problem to solve
on a classical computer. Proofs of hardness of the Boson
sampling task and its variants rely on the assumption that the
probability of observing a collision (i.e., two or more photons)
in any of the interferometer’s output modes is negligible. This
is also known as the noncollisional regime. In Ref. [1] the
authors proved that the probability ε of observing at least a
collision at the output of an M-mode Haar-random LON fed

FIG. 2. The total variational distance (TVD) between the proba-
bility distributions coming from a PNR and click-counting detector
made up of N = 8 threshold detectors, as a function of the mean
photon number n of the probe thermal state νth(n). In the energy
regime of interest we considered there is a good agreement, with
TVD smaller than 0.05.

with n single photons can be bounded as follows:

〈ε〉U � 2n2

M
, (31)

where 〈·〉U denotes averaging over M × M Haar-random uni-
tary matrices. In GBS the number of photons is not fixed,
hence the squared number of photons n2 on the right-hand
side of Eq. (31) needs to be further averaged according to the
photon-number probability distribution of the Gaussian state.
This means that it is possible to set the collision probability to
be a small constant by choosing the scaling of the number of
modes appropriately.

Intuitively, in this regime, the statistics coming from PNR,
threshold and click-counting detectors should all behave sim-
ilarly. In the following we rigorously formalize this idea by
adjusting the arguments used in Ref. [15] to prove that sam-
pling from a Gaussian boson sampler with on-off detectors
is a computationally hard problem. Roughly speaking, the
authors proved that, when collision probability is small, an
approximation of threshold GBS would also constitute a good
approximation of GBS with PNR detectors, an event con-
sidered to be unlikely as it would imply the collapse of the
polynomial hierarchy to the third level. Hence, it is concluded
that, under standard complexity-theoretic arguments, thresh-
old GBS is in the same complexity class as the original GBS
proposal.

It thus suffices to show that in the noncollisional regime
the output probability distribution p of click-counting GBS is
arbitrarily close to that of threshold GBS, which we denote
with the symbol p̃. We define the set of collision events of an
M-mode sampling problem as

C = {k = (k1, . . . , kM ) | ki > 1 for some i ∈ {1, . . . , M}}.
(32)

By definition we have that p̃(k ∈ C) = 0, as threshold detec-
tors can either click once or not click at all. The probability of
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observing a collision event for click-counting GBS reads

ε =
∑
k∈C

p(k). (33)

The total variational distance between p and p̃ reads

||p − p̃||1 = 1

2

∑
k

|p(k) − p̃(k)|

= 1

2

∑
k∈C

|p(k) − p̃(k)| + 1

2

∑
k/∈C

|p(k) − p̃(k)|

= 1

2

∑
k∈C

p(k) + 1

2

∑
k/∈C

|p(k) − p̃(k)|

= ε

2
+ 1

2

∑
k/∈C

|p(k) − p̃(k)|. (34)

By close inspection of the click-counting detection POVM
Eq. (13) we notice that �

(N )
0 =: e−n̂ := |0〉〈0| for every value

of N . Using this and the fact that the elements of a POVM
resolve the identity we can write

N∑
k=1

�
(N )
k = I − |0〉〈0| = �

(1)
1 . (35)

This implies that the probability of a threshold detector click-
ing is equal to the probability of a click-detector detecting any
number of clicks between 1 and N . Generalizing this to M
modes we obtain

p̃(k) = p(k) +
∑
k′∈Ck

p(k′), (36)

where k /∈ C is a collisionless detection event and Ck is the set
of all possible collision events compatible with k

Ck = {k′ ∈ C | if ki = 0 ⇒ k′
i = 0}. (37)

If we now substitute Eq. (36) into Eq. (34) we obtain

||p − p̃||1 = ε

2
+ 1

2

∑
k/∈C

|p(k) − p̃(k)|

= ε

2
+ 1

2

∑
k/∈C

∑
k′∈Ck

p(k′)

= ε

2
+ 1

2

∑
k′∈C

p(k′)

= ε. (38)

Let us now consider a probability distribution π that approxi-
mates p arbitrarily well, i.e., it satisfies ||p − π ||1 = ε′. Using
the triangle inequality of the L1 norm we can bound || p̃ − π ||1
as follows:

|| p̃ − π ||1 = || p̃ − p + p − π ||1 � || p̃ − p||1 + ||p − π ||1
= ε + ε′. (39)

If we now assume that there exists a polynomial time al-
gorithm that can sample from π , then Eq. (39) tells us that
the same algorithm can sample efficiently from an arbitrarily
good approximation of p̃, thus causing the collapse of the
polynomial hierarchy to the third level and concluding our

proof of hardness for click-counting GBS. In Appendix E we
outline an alternative proof of hardness that does not make
use of the output probability distribution of a Gaussian boson
sampler employing threshold detectors.

We can now discuss the time complexity of computing
the Kensingtonian according to its definition Eq. (27). Let us
first call n = ∑

i ki the total number of clicks. It is clear that,
similarly to the Torontonian, the complexity of computing the
Kensingtonian arises from the number of determinant contri-
butions one needs to evaluate, which is given by

∑
0�d�k

=
M∏

i=1

(ki + 1) ≡ F (k), (40)

where 0 � ki � N . For N = 1 (threshold detectors) we have
ki = 0, 1, hence

∏M
i=1(ki + 1) = 2n. In this special case the

result depends solely on the total number of clicks n, however,
one can easily see that this is not the case for N > 1, as we
would need and increasing number of functions of all the ki to
completely characterize the expression, making it impractical.
An exact, simple, closed formula is thus out of reach, however,
in the following we show that, on average, we still obtain an
exponential scaling in n.

The average value of F (k) at fixed n can be expressed as a
sum of a collisionless term and collision term, namely,

〈F 〉n =
∑
k/∈Cn

p(k)F (k) +
∑
k∈Cn

p(k)F (k). (41)

Here Cn is the set of collision detection events at a fixed total
number of clicks and we use the symbol 〈·〉n to denote aver-
aging at constant n. When there are no collisions we simply
have that F (k) = 2n. We can thus write

〈F 〉n = (1 − ε̃)2n +
∑
k∈Cn

p(k)F (k), (42)

where ε̃ is the probability of observing a collision at fixed n,
namely,

ε̃ =
∑
k∈Cn

p(k). (43)

It can easily be seen that F (k) � (n + 1), hence

〈F 〉n � (1 − ε̃)2n + ε̃(n + 1), (44)

which confirms the exponential scaling of the number of terms
to be evaluated in Eq. (27) with the total number of clicks.
Analogously, we can upper bound F (k) using the inequality
of the arithmetic and geometric means and show that the
following chain of inequalities holds:

(1 − ε̃)2n + ε̃(n + 1) � 〈F 〉n � (1 − ε̃)2n + ε̃en. (45)

We recall that the determinants present in the definition of the
Kensingtonian can be computed efficiently using the standard
algorithm based on the Cholesky decomposition whose time
complexity scales with the cube of the matrix dimension.
Hence it follows that a direct evaluation of Eq. (27), in the
noncollisional regime, leads to a complexity upper bounded
by O(n32n). We emphasize that we do not claim optimality,
and we leave it as an open question the possibility of exploit-
ing the structure of the Kensingtonian to find faster algorithms
for its evaluation.
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VII. CONCLUSION

In this paper we investigated the problem of sampling from
Gaussian states with click-counting detectors and found a
closed-form expression for the probability distribution. This
expression is related to the Kensingtonian, a matrix function
that plays an analogous role to the Hafnian and the Toron-
tonian in GBS experiments employing PNR and threshold
detectors, respectively. We then proved that, in the non-
collisional regime, the problem at study still gives rise to
a computationally hard problem, intractable using classical
sampling algorithms, and showed how the Kensingtonian is
related to known matrix functions in limiting cases of interest.

Our work leaves some open questions. We recall that
Eq. (26) converges to Eq. (6) in the N 
 1 limit, hence it
would be interesting to investigate whether the Kensingto-
nian’s structure could be exploited to design new algorithms
to approximate the Hafnian. Future efforts will also focus
on studying the classical simulability of a GBS experiment
employing noisy click-counting detection, where we envision
the existence of a trade-off relation between N , i.e., the num-
ber of threshold detectors making up a single click-counting
detector, and the noise parameters that characterize each on-
off detector, for the system to enter a regime where achieving
quantum advantage is not ruled out.

Note added. Recently, we became aware of a recent exper-
iment [28] reporting an implementation of a Gaussian boson
sampling device employing unbalanced click-counting detec-
tors, i.e., the intensity of the incoming light is split unevenly
among the threshold detectors that make up a single click-
counting detector. Our theoretical modeling and that presented
in Ref. [28] are consistent with each other, as they originate
from the same POVM describing a click-counting detector.
In this paper, we exploited the structure of the POVM to
obtain a closed analytical formula for the outcome probability
distribution, that can be readily applied to an M-mode GBS
task employing balanced click-counting detectors. In partic-
ular, we showed that the probability of a particular detection
outcome may be obtained by computing the Kensingtonian
of a 2M × 2M matrix. However, the authors of Ref. [28]
modeled their experimental setup as larger instance of an
MN-mode GBS experiment employing on-off detectors. As a
result, they summed over the probabilities of (combinatorially
many) threshold-detection outcomes that give rise to the same
click-detection pattern. Each of these probabilities required
the evaluation of the Torontonian of matrices that are up to
2MN × 2MN in dimension, and may therefore lead to a less
efficient computation of a click-detection outcome probability
with respect to the approach presented in this paper.
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APPENDIX A: CLICK-COUNTING PROBABILITY

In this Appendix we derive the probability of observing a
given click-counting pattern k = (k1, . . . , kM ) when a generic
M-mode Gaussian state ρ with covariance matrix σ and null
vector of first moments is sampled using M click-counting
detectors, each composed of N threshold detectors. We remind
the reader that each click-detector can measure at most N
clicks. The probability reads

p(k) = Tr
{
ρ�

(N )
k

}
, (A1)

where �
(N )
k is the POVM element that characterize the M-

mode click detection

�
(N )
k =

M⊗
i=1

�
(N )
ki

. (A2)

Here �
(N )
ki

is the POVM of a single click-counting detector
and is given by

�
(N )
ki

=:

(
N

ki

)
e− N−ki

N n̂(1 − e− n̂
N )ki

:=
(

N

ki

) ki∑
�i=0

(
ki

�i

)
(−1)�i : e− N−ki+�i

N n̂ : . (A3)

Note that the operator : e− N−ki+�i
N n̂ : corresponds to the vacuum

element �
(1)
0 of the POVM associated with noisy threshold

detection with effective detection inefficiency given by λi ≡
(N − ki + �i )/N ∈ [0, 1]. In particular, : e−λi n̂ : represents an
unnormalized thermal state for λi ∈ (0, 1), the vacuum state
for λi = 1 and the identity operator for λi = 0, respectively.
The probability can be expressed as

p(k) = πM
∫

d2Mβ Qρ (β) P
�

(N )
k

(β), (A4)

where Qρ (β) is the Husimi Q function of ρ and P
�

(N )
k

(β) is the

P function of �
(N )
k . Using Eq. (4) with ordering parameters

s j = −1 ∀ j we obtain

Qρ (β) = 1

πM
√

det {�}e−βᵀ�−1β, (A5)

where we introduced the matrix � = (σ + I)/2.
To compute the P function of �

(N )
k we just need the P

function of the unnormalized thermal state : e−λi n̂ :. Using
Eq. (4) one can prove that for λi �= 1

P:e−λi n̂:(β1, β2) = 1

π (1 − λi )
e− λi

1−λi
(β2

1 +β2
2 )

= N

π (ki − �i )
e− N−ki+�i

ki−�i
(β2

1 +β2
2 )
. (A6)

For λi = 1 (i.e., for �i = ki) we have P:e−n̂:(β1, β2) = δ

(β1)δ(β2). In particular, in the following we will always un-
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derstand the term
N

π (ki − �i )
e− N−ki+�i

ki−�i
(β2

1 +β2
2 ) (A7)

to be the delta function δ(β1)δ(β2) whenever �i = ki. In fact,
recall that

lim
ε→0

1

πε2
e−(x2+y2 )/ε2 = δ(x)δ(y). (A8)

Note that throughout this work we will use Cartesian coordi-
nates of the complex plane, meaning that β1 and β2 are real
variables. Now recall that the P function of a tensor product is
simply the product of the P functions, i.e.,

P(N )
�k

(β) =
M∏

i=1

P(N )
�ki

(β2i−1, β2i ). (A9)

After some calculations, one obtains

P
�

(N )
ki

(β2i−1, β2i ) =
(

N

ki

) ki∑
�i=0

(
ki

�i

)
(−1)�i

N

π (ki − �i )

× e− N−ki+�i
ki−�i

(β2
2i−1+β2

2i ), (A10)

i.e., a linear combination of Gaussians. Note that, in the previ-
ous expression, for �i = ki we obtain a delta function, which
we will need to take care of separately. Consequently, the
probability reads

p(k) =
∫

d2Mβ
e−βᵀ�−1β

√
det {�}

M∏
i=1

(
N

ki

) ki∑
�i=0

(
ki

�i

)
N (−1)�i

π (ki − �i )

× e− N−ki+�i
ki−�i

(β2
2i−1+β2

2i ). (A11)

First, we want to invert the product and the sum that appear
in the previous expression. This is easily done by using the
following property

M∏
i=1

ki∑
�i=0

f (�i, ki ) =
∑

0��1�k1

· · ·
∑

0��M�kM

M∏
i=1

f (�i, ki )

≡
∑

0���k

M∏
i=1

f (�i, ki ), (A12)

where f (�i, ki ) is a generic function of �i and ki. The proba-
bility then reads

p(k) =
∑

0���k

∫
d2Mβ

e−βᵀ�−1β

√
det {�}

M∏
i=1

[(
N

ki

)(
ki

�i

)
N (−1)�i

π (ki − �i )
e− N−ki+�i

ki−�i
(β2

2i−1+β2
2i )

]

=
∑

0���k

M∏
i=1

[(
N

ki

)(
ki

�i

)
N (−1)�i

π (ki − �i )

] ∫
d2Mβ

e−βᵀ�−1β

√
det {�}e

∑M
i=1 − N−ki+�i

ki−�i
(β2

2i−1+β2
2i ). (A13)

To further ease the notation we introduce the multinomial
coefficient

(
N

�i

)(
�i

ki

)
= N!

(N − �i )!(�i − ki )!ki!
≡

(
N

N − �i, �i − ki, ki

)

(A14)

and make the variable change di = ki − �i.

p(k) =
∑

0�d�k

M∏
i=1

[(
N

N − ki, ki − di, di

)
N (−1)ki−di

πdi

]

×
∫

d2Mβ
e−βᵀ�−1β

√
det {�}e

∑M
i=1 − N−di

di
(β2

2i−1+β2
2i ). (A15)

Let us also define the set

Z = {i|1 � i � M, di = 0}, (A16)

which identifies the presence of delta functions in the inte-
grand. Integrating over δ(β2i−1)δ(β2i ) has the effect of setting

β2i−1 = β2i = 0 which, in turn, is equivalent to deleting the
corresponding rows and columns from the matrix �−1. We
will denote this new matrix with (�−1)(i). In general, we
will use the notation (�−1)(Z ) to denote the matrix obtained
from �−1 by eliminating the corresponding rows and columns
according to the set Z . In particular, if Z = {a, b} we will
eliminate the rows (columns) numbered 2a − 1, 2a, 2b − 1,
and 2b. Note that if we delete all the 2M rows and columns
from �−1 we are left with 1 by definition. After integrating
over all the delta functions we are left with

p(k) =
∑

0�d�k

M∏
i=1

[(
N

N − ki, ki − di, di

)
(−1)ki−di

]

×
∏
i/∈Z

[
N

πdi

] ∫
d2(M−|Z|)β

1√
det{�}e−βᵀ[(�−1 )(Z )+DZ ]β,

(A17)

where |Z| is the cardinality of Z and DZ is a diagonal matrix
defined as

DZ =
⊕
i/∈Z

(
N − di

di

)
I2. (A18)
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The remaining integrals in Eq. (A17) are multidimensional
Gaussian integrals that we can evaluate straightforwardly

∫
d2(M−|Z|)β e−βᵀ[(�−1 )(Z )+D(Z )]β = πM−|Z|√

det{(�−1)(Z ) + D(Z )}
.

(A19)

Putting everything together we obtain

p(k) = 1√
det{�}

∑
0�d�k

M∏
i=1

[(
N

N − ki, ki − di, di

)
(−1)ki−di

]

×
∏
i/∈Z

[
N

di

]
1√

det{(�−1)(Z ) + DZ} . (A20)

To conclude the derivation we define the Kensingtonian, a new
matrix function whose action is specified once N and k have
been fixed. This allows us to express the probability as

p(k) = Ken[O]√
det{�} , (A21)

where O = I − �−1 and

Ken[A] =
∑

0�d�k

M∏
i=1

[(
N

N − ki, ki − di, di

)
(−1)ki−di

]

×
∏
j /∈Z

[
N

dj

]
1√

det{(I − A)(Z ) + DZ} . (A22)

APPENDIX B: RELATION BETWEEN THE KENSINGTON
AND THE TORONTONIAN

In this Appendix we show that, starting from the expres-
sion for the click-counting probability distribution for a GBS
experiment Eq. (26), we can retrieve the results of Ref. [15]
by setting N = 1. In this scenario, there are only two possible
measurement outcomes for each detector, namely, ki = 0, 1.
This, in turn, implies that the summation variable di can ei-
ther be equal to 0 or 1 and consequently that the matrix DZ

vanishes, as can readily be seen from its definition Eq. (28).
Equation (27) then simplifies to

Ken[A] =
∑

0�d�k

M∏
i=1

[(−1)ki−di ]
1√

det{(I − A)(Z )}

=
∑

0�d�k

(−1)n−∑
i di

1√
det{(I − A)(Z )}

, (B1)

where n = ∑
i ki is the total number of clicks. Let us also

define two new sets for future convenience

K = {i|1 � i � M, ki = 0}, (B2)

X = {i|1 � i � M, di = 0 and ki = 1}. (B3)

By noticing that n − ∑
i di corresponds to the cardinality of

X and that Z = X ∪ K we can rewrite Eq. (B1) as

Ken[A] =
∑

0�d�k

(−1)|X | 1√
det{(I − A)(K∪X )}

=
∑

Y ∈P([n])

(−1)|Y| 1√
det{(I − A(K) )(Y )}

≡ Tor[A(K)],

(B4)

where P([n]) is the power set of [n] = {1, . . . , n} and Tor
is the Torontonian of a matrix. Note how, strictly speaking,
the Torontonian is defined slightly differently in Ref. [15].
The reason lies in the fact that the authors used a different
quadrature operators ordering and this choice is reflected in
different rules for deleting rows and column from the matrix
A. Consequently, we should more accurately say that we found
an equivalent expression of the Torontonian valid for the op-
erator ordering set by Eq. (1).

We have thus shown that for N = 1 we correctly retrieve
the probability distribution obtained in Ref. [15]

p(k) = Ken[O]√
det{�} = Tor[O(K)]√

det{�} . (B5)

Lastly, note that the � matrix used in Ref. [15] differs from
the one used in this paper by a unitary transformation. This
transformation, however, does not affect the determinants
contained in the probability formula, leaving the formula un-
changed.

APPENDIX C: LOOP-KENSINGTONIAN

In this Appendix we generalize the formula for the click-
counting detection probability distribution of an M-mode
Gaussian state Eq. (26), when we lift the zero-displacement
constraint. This is achieved by introducing a matrix function
that we name the loop Kensingtonian. This function plays an
analogous role to the loop Torontonian Ref. [26] and the loop
Hafnian Ref. [14] functions in GBS setups employing thresh-
old detection and PNR detection, respectively. Apart from
fundamental interest, this generalization is also motivated by
the fact that some of the applications of GBS, like computing
molecular vibronic spectra, require displacement to encode
the problem into a Gaussian boson sampler.

The derivation proceeds similarly to what we have seen in
the zero-displacement case, the only difference being that the
Q function of the Gaussian state ρ to be substituted in Eq. (A4)
now reads

Qρ (β) = 1

πM
√

det {�}e−(β−α)ᵀ�−1(β−α), (C1)

where α is the displacement of ρ. Recall that our conventions
are such that a single mode coherent state |γ 〉 has displace-
ment vector equal to α = (Re{γ }, Im{γ })ᵀ. Following the
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same steps of Appendix A we get to

p(k) =
∑

0�d�k

M∏
i=1

[(
N

N − ki, ki − di, di

)
N (−1)ki−di

πdi

] ∫
d2Mβ

e−(β−α)ᵀ�−1(β−α)

√
det {�} e

∑M
i=1 − N−di

di
(β2

2i−1+β2
2i )

=
∑

0�d�k

M∏
i=1

[(
N

N − ki, ki − di, di

)
N (−1)ki−di

πdi

]
e−αᵀ�−1α

√
det{�}

∫
d2Mβ e−βᵀ�−1β+2αᵀ�−1βe

∑M
i=1 − N−di

di
(β2

2i−1+β2
2i ), (C2)

where we use the fact that �−1 is a symmetric matrix. Integrating over the delta function contributions (i.e., di = 0) we obtain

p(k) =
∑

0�d�k

M∏
i=1

[(
N

N − ki, ki − di, di

)
(−1)ki−di

]∏
i/∈Z

[
N

πdi

]
e−αᵀ�−1α

√
det{�}

∫
d2(M−|Z|)β e−βᵀ[(�−1 )(Z )+DZ ]β+βᵀ(2�−1α)(Z ) , (C3)

where Z and DZ are defined by Eqs. (A16) and (28), respectively. Note that the subscript notation (2�−1α)(Z ) applied to a vector
denotes the elimination of its elements according to the set Z . We can now easily evaluate the remaining Gaussian integrals in
the previous expression∫

d2(M−|Z|)β e−βᵀ[(�−1 )(Z )+DZ ]β+βᵀ(2�−1α)(Z ) = πM−|Z|√
det{(�−1)(Z ) + DZ}e(�−1α)ᵀ(Z )[(�

−1 )(Z )+DZ ]−1(�−1α)(Z ) . (C4)

Putting everything together we obtain

p(k) = e−αᵀ�−1α

√
det{�}

∑
0�d�k

M∏
i=1

[(
N

N − ki, ki − di, di

)
(−1)ki−di

] ∏
j /∈Z

[
N

dj

]
e(�−1α)ᵀ(Z )[(�

−1 )(Z )+DZ ]−1(�−1α)(Z )√
det{(�−1)(Z ) + DZ} . (C5)

Finally, we can rewrite the previous expression as

p(k) = p(0)lken[O,α], (C6)

where p(0) = e−αᵀ�−1α/
√

det{�}, O = I − �−1 and

lken[A,α] =
∑

0�d�k

M∏
i=1

[(
N

N − ki, ki − di, di

)
(−1)ki−di

]∏
j /∈Z

[
N

dj

]
e((I−A)α)ᵀ(Z )[(I−A)(Z )+DZ ]−1((I−A)α)(Z )√

det{(I − A)(Z ) + DZ} (C7)

is the loop Kensingtonian of a matrix 2M × 2M matrix A.

APPENDIX D: CLICK-COUNTING DETECTION POVM IN THE N → ∞ LIMIT

In this section we prove that in the N → ∞ limit, ideal click-counting detection converges PNR detection. To do so, we
simply Taylor-expand the POVM element Eq. (13)

�
(N )
k = :

(
N

k

)
e−n̂(e

n̂
N − 1)k := :

N!

k!(N − k)!

(
n̂

N

)k

e−n̂ : + O

(
1

N

)

= N (N − 1) · · · (N − k + 1)

Nk
:

n̂k

k!
e−n̂ : + O

(
1

N

)
N→∞→ :

n̂k

k!
e−n̂ : ≡ |k〉〈k|. (D1)

APPENDIX E: COMPLEXITY OF CLICK-GBS (ALTERNATIVE PROOF)

In what follows we present an alternative proof of hardness for click-counting GBS that does not rely on using the output
probability distribution of a GBS task employing threshold detectors. For simplicity of exposition, we consider a single-mode
scenario and let ρ be the output state of the LON. We show that, in the noncollisional regime, the output probability distribution
p of click-counting GBS is arbitrarily close (in total variational distance) to that of a Gaussian boson sampler employing PNR
detectors, which we denote with p̃. This term reads p̃(k) = Tr{ρ�̃k} for k ∈ {0, 1, . . . }, and the POVM element is a projector
on a Fock state, i.e., �̃k = |k〉〈k|. For click-counting detection we have p(k) = Tr{ρ�

(N )
k } with k ∈ {0, . . . , N}, and the POVM

element �
(N )
k is given by Eq. (13). This equation may be alternatively expressed as [23]

�
(N )
k =

(
N

k

) ∞∑
n=k

1

Nn
∂n

x [ex − 1]k|x=0|n〉〈n| ≡
∞∑

n=k

ck (n)|n〉〈n| = ck (k)|k〉〈k| +
∞∑

n=k+1

ck (n)|n〉〈n|, (E1)
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where

ck (n) =
(

N

k

)
1

Nn
∂n

x [ex − 1]k|x=0. (E2)

Notice how for k > N we can set �
(N )
k = 0 without loss of generality. The total variational distance between p and p̃ reads

|| p̃ − p||1 = 1

2

∞∑
k=0

| p̃(k) − p(k)| = 1

2

∞∑
k=0

∣∣Tr
{
ρ
(
�̃k − �

(N )
k

)}∣∣. (E3)

We can then write �̃k − �
(N )
k = Ak − Bk , where

Ak =
{

[1 − ck (k)]|k〉〈k| 0 � k � N,

|k〉〈k| k > N,
Bk =

{∑∞
n=k+1 ck (n)|n〉〈n| 0 � k � N,

0 k > N,
(E4)

and

ck (k) = N!

(N − k)!Nk
. (E5)

Since the POVM elements sum to the identity
∑∞

k=0 �̃k = ∑∞
k=0 �

(N )
k = I, we have that

∞∑
k=0

(
�̃k − �

(N )
k

) =
∞∑

k=0

(Ak − Bk ) = 0, (E6)

which, in turn, implies that
∑∞

k=0 Ak = ∑∞
k=0 Bk . Using this and the fact that both Ak and Bk are positive-semi-definite operators,

we can write

|| p̃ − p||1 = 1

2

∞∑
k=0

|Tr{ρAk} − Tr{ρBk}| � 1

2

∞∑
k=0

(Tr{ρAk} + Tr{ρBk}) =
∞∑

k=0

Tr{ρAk}

=
N∑

k=0

(1 − ck (k)) 〈k| ρ |k〉 +
∞∑

k=N+1

〈k| ρ |k〉 =
N∑

k=0

(1 − ck (k)) p̃(k) +
∞∑

k=N+1

p̃(k). (E7)

Notice how the k = 0 and k = 1 terms are actually null, since Eq. (E5) implies that c0(0) = c1(1) = 1. In the noncollisional
regime, the probability ε of observing two or more photons

ε =
∞∑

k=2

p̃(k) (E8)

becomes negligible. Hence, we can finally write

|| p̃ − p||1 � ε, (E9)

and use the same arguments presented in the main text to claim the computational complexity of click-counting GBS. The
generalization to the m mode, although cumbersome, may be easily obtained following the steps outlined above.
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