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Spectrally and spatially varying ensembles of emitters embedded into waveguides are ever-present in both
well-established and emerging technologies. If control of collective excitations can be attained, a plethora of
coherent quantum dynamics and applications may be realized on-chip in the scalable paradigm of waveguide
quantum electrodynamics (WQED). Here, we investigate inhomogeneously broadened ensembles embedded
with subwavelength spatial extent into waveguides employed as single effective and coherent emitters. We
develop a method permitting the approximate analysis and simulation of such mesoscopic systems featuring
many emitters, and show how collective resonances are observable within the waveguide transmission spectrum
once their linewidth exceeds the inhomogeneous line. In particular, this allows for near-unity and tailorable
non-Lorentzian extinction of waveguide photons overcoming large inhomogeneous broadening present in current
state-of-the-art implementations. As a particular illustration possible in such existing experiments, we consider
the classic emulation of the cavity QED (CQED) paradigm here using ensembles of rare-earth ions as coherent
mirrors and qubits and demonstrate the possibility of strong coupling given existing restrictions on inhomoge-
neous broadening and ensemble spatial extent. This work introduces coherent ensemble dynamics in the solid
state to WQED and extends the realm to spectrally tailorable emitters.
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I. INTRODUCTION

Ensembles of emitters in solid-state media are a valuable
resource for shaping light and processing information as the
matter component of hybrid optical platforms [1]. Possible
long individual coherence times combined with wide spectral
bandwidth [2,3] of the inhomogeneous line permit applica-
tions from quantum memories to atomic frequency combs
[4,5]. When collectively addressed, ensembles enjoy large
collective couplings to light and can be employed on the
mesoscopic scale as single optical elements [3,6–9]. Specif-
ically, ensembles embedded into waveguides benefit from
well-established telecoms technologies [10–13] while allow-
ing for an integrated and scalable optical platform [14,15].
Despite experimental demonstrations such as potential quan-
tum memories [5,16,17] and atomic frequency combs [4,18],
on-chip operation in the framework of waveguide QED [19]
remains relatively unexplored theoretically in the regime
when both spectral variation [20,21] and subwavelength finite
spatial variation [22] are present. The latter feature, recently
feasible experimentally [23–25], is particularly pertinent to
the waveguide quantum electrodynamics (WQED) paradigm.
Here, ordered systems of point-like emitters enjoy unique
dynamics featuring nontrivial excitation profiles [26] and
many-body states [27–29] enabling distinct functionality from
classic emulation of the cavity (CQED), with the promise
for photonic state generation [30] and quantum simulation
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[28]. An analogous realization of WQED taking into account
unavoidable spatial disorder and inhomogeneous broadening
could open the door to a range of applications benefiting
from the unique long coherence times and broadband nature
of solid-state emitters, while exhibiting naturally scalability
when compared with ensemble CQED platforms. Beyond ex-
isting results on single-photon ensemble superradiance [31],
it is also necessary to further understand the spectral response
of disordered but spatially localized ensembles of finite ex-
tent and featuring inhomogeneous broadening in the context
of current solid-state waveguide platforms. In particular, this
includes cases where composite elements comprising multiple
distinct ensembles are considered.

In this work, we study ensembles of spatially localized
waveguide-embedded emitters featuring spectral inhomo-
geneity as candidates for effective and collectively enhanced
optical elements in waveguides. We further investigate the
joint conditions on spectral and positional inhomogeneity for
collective coherence to emerge [32] and dominantly estab-
lish the symmetrically excited polariton as an effective and
coherent emitter excitation. To treat the mescoscopic sys-
tem sizes of 109 emitters, we introduce a method to define
collective spins via bins in both positional space and the
frequency domain, enabling a reduction in computational cost
and allowing us to demonstrate the formation of emitter co-
herence via observations of broad and near-unit extinction in
the transmission statistics of photons through the waveguide.
This method also retains the narrower collective resonances
present within the familiar superradiant line [31] and allows
for an interpretation of loss of coherence as a coupling to
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these darker resonances within the ensemble as the spatial
extent is increased. Interfacing of multiple and sufficiently
spatially localized ensembles then suggests a realization of the
WQED paradigm [19] with spectrally tailorable emitters. As
a proof of principle we demonstrate the emulation of CQED,
including strong coupling, among realistic ensembles of rare-
earth ions in analogy with the single-emitter case [27,33]
and demonstrate coherent operation for appreciable, but the
subwavelength, spatial ensemble extent within the reach of
current state-of-the-art nanophotonic waveguides. We show
how the emitter-density threshold required for strong coupling
may be considerably reduced within existing experimental
capabilities by shaping of the inhomogeneous line using spec-
tral hole burning [34]. Our results suggest that collective
excitations in spatially localized solid-state ensembles can
be exploited as effective emitters in near-term technologies
within the paradigm of WQED, while augmenting this setting
with spectral tailorability to explore new regimes of collective
ensemble interaction beyond CQED.

II. MODEL

In this work we consider N two-level emitters that interact
with a continuum of waveguide modes through the standard
dipolar light-matter coupling. In addition to the rare-earth ions
considered here, the following analysis could be applied to
systems of Doppler-broadened gases [35], quantum dots [36],
and nitrogen-vacancy (NV) centers [7]. Assuming weak driv-
ing, the emitters in the rotating frame experience a distribution
of detunings � j with a full width at half maximum (FWHM)
γinh. For weak emitter-field coupling, the field within the
waveguide may be traced out to yield the Born-Markov master
equation ˙̂ρS = − i

h̄ [Ĥ, ρ̂S] + L̂coll[ρ̂S] + L̂ind[ρ̂S] for emitter
density matrix ρ̂S . The Hamiltonian and Linbladian gener-
ating system dynamics are given through the standard spin
operators for the jth emitter, σ̂±

j and σ̂ ee
j = (σ̂ z

j + 1̂)/2 (with

{Â, B̂} = ÂB̂ + B̂Â the anticommutator, while R[w] = Re[w]
and I[w] = Im[w]):

Ĥ = Ĥem + Ĥdrv + h̄�1D

2

N∑
j,k=1

I[Gj,k]σ̂+
j σ̂−

k ,

L̂coll[ρ̂S] = �1D

2

N∑
j,k=1

R[Gj,k](2σ̂−
k ρ̂Sσ̂

+
j − {σ̂+

j σ̂−
k , ρ̂S}),

L̂ind[ρ̂S] = �′

2

N∑
j=1

(2σ̂−
j ρ̂Sσ̂

+
j − {σ̂+

j σ̂−
j , ρ̂S}). (1)

Here, Ĥem = h̄
∑N

j=1 � j σ̂
ee
j , and the drive reads Ĥdrv =

h̄
∑

j (� j σ̂
+
j + �∗

jσ
−
j ) for � j = �(z j ), with an individual

emitter decay with rate �′ [37]. Crucially, the waveguide-
mediated emitter-emitter interactions are subject to infinite-
range interactions through the one-dimensional (1D) propa-
gator Gj,k = eiβ|z j−zk |, with z j being the position of the jth
emitter along the waveguide. �1D is the single-emitter decay
rate into the waveguide, and β = 2π/λ is the wave number of
the (assumed single) wave-guided mode with wavelength λ.
In the case that the wave-guided mode field profile varies sig-
nificantly over the emitter distribution in the transverse plane,

FIG. 1. Binning and formation of a single effective emitter (large
blue circle, bottom) for a localized ensemble of emitters (small red
circles, top).

it is sufficient to interpret �1D as an average of single-emitter
decay rates into the waveguide (see Appendix A) and continue
to consider positions z j only. Inhomogeneous broadening de-
viating from that of ensembles in bulk media may also be
assumed present in the distribution � j .

III. TREATING INHOMOGENEOUS BROADENING
FOR SINGLE ENSEMBLES

To address mesoscopic sizes of N = 109 and beyond in
the general presence of inhomogeneity, we approximate the
spatial-spectral density in the large-number limit as a decor-
related product of position and frequency densities such that
each individual emitter lies in some designated frequency bin
and position bin (Fig. 1). Assuming n frequency bins and
m positional bins with nm = N and n, m � 1, we relabel
each spin j → (p, q) such that σ̂ ee

p,q and σ̂±
p,q correspond to

the emitter in the pth positional bin (at position zp) and the
qth frequency bin (at detuning �q). The total emitter density
in (z,�) space is determined by the distributions of zp and
�q. We consider the limit of low light intensity [22] for
sufficiently small � where 〈σ̂ α

j σ̂
β

l 〉 ≈ 〈σ̂ α
j 〉〈σ̂ β

l 〉 for j 	= l and
〈σ ee

j 〉 ≈ 0 for all j. This allows us to obtain the equations of
motion for averages • := 〈•̂〉:

σ̇−
p,q = i�qσ

−
p,q − �′

2
σ−

p,q − �1D

2

∑
p′,q′

Gp,p′σ−
p′q′ + i�p, (2)

where, from Eq. (1), the only coefficients depending on q are
frequencies �q. As is physically expected, �q is also assumed
independent of position zp along the waveguide. For each
positional bin p we define the symmetric lowering operator
[38] acting on the collective spin (purple emitter, Fig. 1) at zp,

B̂−
p = 1√

n

n∑
q=1

σ̂−
p,q. (3)
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In the steady state we find the self-consistent linear-response
relation for collective-spin coherences B−

p ,

B−
p = i

√
nγ −1

inh χ (�c)

⎡
⎣−

√
n�1D

2

m∑
p′=1

Gp,p′B−
p′ + i�p

⎤
⎦, (4)

whose number of degrees of freedom is reduced from
N to m. Here the ensemble response function is defined
χ (�c) = γinh

∫ d�′ρ(�′ )
�c−�′+i �′

2

as the assumed continuum limit of
1
n

∑
q

1
�c−�q+i �′

2

for n � 1 [39]. Driving detuning �c and

�′ entering the spectral density ρ(�′) are defined as detun-
ings from the inhomogeneous line mean. The interactions in
Eq. (4) correspond to a non-Hermitian Hamiltonian

Ĥnh
eff = −in

h̄�1D

2

m∑
p,p′=1

Gp,p′ B̂+
p B̂−

p′ . (5)

Thus, the system (4) constitutes m identical collective spins
coupled to the waveguide at positions zp and featuring non-
Lorentzian responses χ . We use this representative system in
the reduced state space of size m to study mesocopic steady-
state dynamics approximating that of Eq. (2), and justify its
validity in Appendix B.

A. Transmission statistics

We here consider steady-state transmission through the
waveguide-collective-spin system, defined through Eq. (4).
The transmission coefficient t (�c) describes the phase shift
and attenuation of a wave-guided incident coherent field with
detuning �c and �(z) = �eiβz, where � may be arbitrary
in the linear regime (4). Finding transmission through the
collective-spin system amounts to a substitution of the usual
single-atom response (�c + i�′/2)−1 by the collective spin
response χ (�c)/γinh in the standard expression for transmis-
sion through identical Lorenztian atoms [19,40]

t (�c) =
m−1∏
μ=0

(
γinhχ

−1(�c)

γinhχ−1(�c) + μ

)
. (6)

Here μ = ωμ + i�μ/2 are the complex energy eigenvalues
of [ in�1D

2 Gp,p′ ]pp′ that define collective excitations with decay
rate �μ and resonant frequencies shifted ωμ from the inho-
mogeneous line. Assuming the typical condition �′/γinh � 1
observed in solid-state ensembles, with ρ symmetric, a
large |�c| � γinh expansion yields γinhχ

−1(�c) ∼ �c +
iπ�2

cρ(�c) + i�′/2 + O(γ 2
inh/�c) at first order in �′/γinh

[6,38]. A consequence is that any collective resonance μ with
|ωμ| � γinh � �′ is observed in the transmission spectrum
(6) with an effective linewidth of approximately [�′ + �μ +
2π�2

cρ(�c)]/2. This result, observed in the later section, is
of practical interest as the open-waveguide analog of cavity
protection [6,38]: the effects of broadening on far-shifted
collective resonances can be mitigated by shaping the inho-
mogeneous line so that �2

cρ(�c) → 0 for �c → ∞.

B. Coherent extinction

Similarly to the case of single emitters [33,41], an inho-
mogeneous ensemble of emitters may act as a coherent mirror

FIG. 2. Single-ensemble transmission. (a) Transmission through
an ensemble featuring no positional inhomogeneity as the collective
waveguide coupling efficiency N�1D/γinh is increased for each of
the three prototypical spectral distributions. We take �′ = 10−6γinh.
(b) Transmission profile for an ensemble of N = 109 emitters with
γinh/(2π ) = 50 GHz, �1D/(2π ) = �′/(2π ) = 100 Hz. We consider
m = 103 positional bins in Eq. (4) for one realization of zp ∼
U (0, δz).

[23,42] for wave-guided photons when the collective decay
process exceeds the (effective) single-emitter linewidth. Here,
the effective single-emitter linewidth is approximately set
by the inhomogeneous linewidth. For a completely localized
ensemble with identical zp, the only nonzero eigenvalue is
0 = in�1D

2 , while μ = 0 otherwise. As could be seen from
Eq. (6), the condition

N�1D � γinh � �′, (7)

then yields the appreciable, single broad resonance within
the transmission in Fig. 2(a) for the prototypical spectral dis-
tributions of FWHM γinh defined in Appendix C. This also
coincides with the condition for the response in the right-
hand side in Eq. (4) to become appreciable and establish
significant coherence in the collective spin. When Eq. (7)
holds, collective emission dominates and the observed extinc-
tion approximately corresponds to reflection [33]. In addition,
establishing of the resonance is accompanied by an apprecia-
ble phase shift of the transmitted photon [43]. The onset of
high-quality reflectance can be further seen in Fig. 2(a) to be
advanced by shaping the spectral distribution using spectral
hole burning. This effect can greatly relax density require-
ments for observing collective coherence and holds up in the
presence of appreciable subwavelength positional spread.

C. Inclusion of finite spatial extent

The positional spread of emitters on the order δz � 0.1λ

can be achieved in a variety of optical platforms [24,44,45]
and via ion-implantation specifically in the case of rare-earth
ions [24]. In addition, well-below subwavelength confine-
ment is available to microwave-based platforms [7] and so
from here we restrict our analytical analysis to the pertur-
bative regime δz � λ. While in a spectrally homogeneous
ensemble this single-photon superradiance condition is well
established [31], we here provide further analysis including
the narrower resonances and in the presence of inhomoge-
neous broadening. From here we additionally assume a typical
uniform distribution zp ∼ U (0, δz), for positional bins. To
maintain coherent mirror-like operation, we require the broad
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resonance observed in Fig. 2(a) to persist under the effect
of small δz > 0, with the effects limited to relatively narrow
central transparency windows and an small overall shift of of
the broad line [19,46]. Driving around the broadest resonances
excites slowly varying polarizations profiles over the length
of the ensemble, which remain relatively unperturbed with
respect to small positional fluctuations observed for large m.

As such, the eigenvalues μ with largest linewidth can be
approximated by those obtained assuming uniform spatial
separation zp = pδz/m for p = 1, . . . , m. The latter are de-
rived in Appendix D to order O(ν2) for ν = βδz � 1,

0 = N�1D

2

(
−ν

3
+ i

[
1 − 4ν2

45

])
, (8)

μ = N�1D

2

(
2ν

μ2π2
+ i

8ν2

μ4π4

)
(1 � μ � m), (9)

such that a small, finite δz introduces m − 1 narrow reso-
nances within the center of the broad line [47]. The 1/μ4

scaling of linewidths means that resonances can be neglected
in practice already for, say, m � μ � 10 when compared to
the scale of γinh. Retaining the first few broadest lines is then
the reason for assuming m � 1. The condition on linewidths,
I[1] � I[0], to essentially maintain the single resonance
is then obtained,

δz � 2λ/5, (10)

which is consistent with the standard single-photon superradi-
ance condition δz � λ. Equation (10) is already well satisfied
for δz = 0.1λ, preserving the central broad line in Fig. 2(b).
In the joint presence of inhomogeneous broadening, we then
see from Eq. (6) that I[μ] � γinh is required more generally
for the resonance μ of an ensemble to be visible in the trans-
mission spectrum, so that increasing spatial extent demands a
narrower inhomogeneous line to observe the broad resonance.
Although beyond the scope of this work, the eigenvalues for
ν � 1 can be computed numerically using Eqs. (D5) and (D4)
(see discussion in Appendix D) and substituted in Eq. (6) to
obtain transmission through a spatially extended and inhomo-
geneously broadened sample. Presently, for a single spatially
localized ensemble satisfying Eqs. (10) and (7), one may
form the single collective spin (blue emitter, Fig. 1) operator
B̂− = 1√

m

∑m
p=1 B̂−

p , to be treated as a single optical element.
As detailed in Appendix E, a total approximate rate of loss of
the coherence B̂− via coupling to narrow resonances within
the ensemble is given by η(N ) = N�1D

2 ( δz
λ

). For δz considered
here, this rate is at least an order of magnitude smaller than
that of the dominant collective decay and interactions through
the waveguide at rate O(N�1D/2).

IV. EMULATION OF CQED

In this case, coherent interactions between spatially distinct
and localized ensembles are possible. The combined use of
localized emitter ensembles satisfying the collective thresh-
old condition (7) and the single-resonance condition (10) can
emulate two mirrors and a qubit placed along the waveguide,
forming an in situ optical cavity [27]. However, the narrow
polariton lines are, in general, sensitive to small positional
fluctuations. We here extend this analysis to both qubit and

mirror ensembles featuring inhomogeneous broadening and
finite spatial extent. Assume NQ emitters in a designated qubit
ensemble with coherence B−

Q , and NC emitters each in two
designated cavity mirror ensembles with coherences B−

Cl (l =
1, 2), with δz = 0 within each for the moment. When the mir-
ror ensembles are spaced λ/2 + rλ (integer r) with the qubit
ensemble at their midpoint, the qubit interaction with the pho-
tonic component of the eigenstates formed by the mirrors is
Hamiltonian. Assuming Lorentzian broadening for illustration
and forming the cavity coherence B−

C = 1√
2
(B−

C1 − B−
C2), the

equations of motion describing CQED are obtained as initially
proposed in [33]

Ḃ−
Q =

[
i�c −

(
NQ�1D + γinh

2

)]
B−

Q + i
√

2NQNC
�1D

2
B−

C ,

Ḃ−
C =

(
i�c − γinh

2

)
B−

C + i
√

2NQNC
�1D

2
B−

Q . (11)

The analogy to CQED is made with qubit decay rate γ , cavity
decay rate κ , and coupling g, respectively,

γ = NQ�1D + γinh κ = γinh, g =
√

NQNC

2
�1D.

Notably, for Nq ∼ Nc ∼ N we additionally have g ∼ N�1D,
a square root enhancement in N over conventional cavities
[38]. In the strong-coupling regime, the two eigenvalues of
the linear system (11)

± = ±�1D

2

√
8NQNC − N2

Q − i

(
NQ�1D

4
+ γinh

2

)
, (12)

are found. For finite-variance mirror-symmetric inho-
mogeneous lines the cavity protection effect γinh →
πR[±]2ρ(R[±]) + �′/2, is observed, limiting γ and κ to
NQ�1D + �′ and �′, respectively. While for �′ � γinh, N�1D

the generic conditions to be well within the strong-coupling
regime approximately read

√
NCNQ � γinh

�1D
, 2NC � NQ, there

is significant variation in the onset of peak visibility for
differing spectral distributions. Applying a side-illumination
scheme to avoid exciting the broad mirror resonance [27],
this effect can be observed in Fig. 3(a), first considering the
case of δz = 0 in each ensemble. For parameters γinh/(2π ) =
10 GHz, and �1D/(2π ) = �′/(2π ) = 100 Hz corresponding
to, say, the optical Erbium transition Y1 → Z1 implanted into
YSO [3] or grown in rare-earth oxides [4,24], the peaks are
established in the Gaussian and uniform case for individual
ensemble numbers as low as N = 108, which, for the emit-
ters localized in a region of size δz×λ2 = 0.1λ×λ2 = 0.1λ3,
corresponds to doping concentrations below the achievable
1022 cm−3 [48]. When reintroducing positional inhomogene-
ity within the qubit and mirror ensembles, one must be careful
to choose NQ, Nc so that η(2Nc), η(Nq ) � g, which bounds
Nc, Nq from below. That is, the coupling between symmetric
qubit and mirror ensemble excitations should exceed the en-
semble decoherence of qubit and mirrors due to finite spatial
extent. Choosing 2Nq = Nc to satisfy this condition, we see
in Fig. 3(b) for δz = 0.1λ that high visibility peaks are still
retained and the effect of the finite spatial extent is limited
to narrow central resonances. The corresponding Rabi oscil-
lations of the qubit ensemble in Fig. 3(c) are preserved for
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FIG. 3. Strong coupling in the emitter-based cavity system. (a) Development of the peak splitting for side-illumination with increasing
emitter number NC = 2NQ in the cavity ensembles. We take γinh/(2π ) = 10 GHz, �1D/(2π ) = �′/(2π ) = 100 Hz, and δz = 0 within each
ensemble. (b) Transmission spectrum for the side-illumination scheme [27]. We consider m = 103 positional bins for each spatially localized
ensemble and show for one realization of positions uniformly distributed over a width δz = 0.1λ within each ensemble. Parameters are
γinh/(2π ) = 10 GHz, 2NQ = NC = 4×108. The shaded regions give the bounds of transmission obtained over 100 realizations of positions. The
qubit ensemble is additionally detuned (in practice using, e.g., surface acoustic waves [3,49]) to counter the mirror-qubit detuning that arises
according to according to Eq. (8). (c) Rabi oscillations of the qubit population P = |B−

Q |2 with m = 103 positional bins sampled from uniform
distributions of width δz. A single realization of positions is chosen in each case. Parameters are identical to (b), except 2NQ = NC = 1×109.

regimes of smaller spatial extent even in the lowest-fidelity
Lorentzian case and illustrate coherent population transfer
between the qubit and cavity modes. Note that by using,
e.g., photonic crystal waveguides [50,51] or plasmonics [52]
to enhance �1D, the density requirements for constant peak
visibility can be reduced by one to two orders of magnitude or
peak visibility enhanced for constant N . With optical wave-
lengths on the order of μm and possible waveguide lengths
on the order of mm, the local density within a single ensemble
can be reduced even further orders of magnitude by employing
commensurate ensembles along the waveguide as a single unit
[33]. For microwave transitions the long wavelength allows
orders of magnitude more emitters in a given wavelength and
also offers a promising platform for observing strong coupling
exclusively amongst solid-state emitters.

V. CONCLUSION

In this work we quantitatively investigated when collective
spins formed from spatially localized and inhomogeneously
broadened rare-earth ions can be employed as coherent and
spectrally tailorable emitters in the paradigm of waveguide
QED and in currently accessible and near-term experimen-
tal platforms. When the linewidth of a collective resonance,
dependent on ensemble spatial extent, exceeds that of inho-
mogeneous broadening, the single broad collective resonance
becomes accessible in the spectrum for spatial extents ob-
served in existing platforms based on rare-earth ions, allowing
for the formation of coherent optical elements. As such, when
localized ensembles are combined, the strong coupling regime
of CQED can be readily accessed despite positional disor-
der and with relatively low emitter concentrations if spectral
hole burning is additionally employed. These results suggest
the potential of the inhomogeneous ensembles for coherent
interactions in optical waveguides beyond extended bulk ap-
plications and advance the theory of mesoscopic systems of
optical emitters.
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APPENDIX A: CONSIDERATION
OF TRANSVERSE POSITIONS

To take into account freedom in the transverse position we
bins the emitters according to frequency, longitudinal position
along the waveguide, and also transverse position in the cross
section of the waveguide, so that emitter j is now indexed via
j → (p, q, r) for m longitudinal positional bins, n′ frequency
bins, and l transverse positional bins indexed by p, q, r,
respectively, with lmn′ = N and l, m, n′ � 1. Assuming a
single, common dipole transition coupling equally to forwards
and backwards traveling fields, each emitter (p, q, r) then ex-
periences a coupling strength to the single wave-guided mode
that is proportional to

√
�r . Waveguide-mediated coupling

element between two emitters is now proportional to
√

�r�r′ .

The coupling of emitters to the wave-guided driving will
also depend on this waveguide coupling strength, and so we

factor the coherent driving as � j → �p,r =
√

l
√

�r√
�1D

�p. Here,

we identify �1D = 1
l

∑
r �r as the average of the waveguide

decay rates experienced by the emitters distributed in the
transverse plane. Similarly to the main text, the huge emitter
number suggests a decorrelation of bins to create now a three-
dimensional (3D) grid. We obtain the equations of motion for
the spins

σ̇−
p,q,r = i�qσ

−
p,q,r − �′

2
σ−

p,q,r −
√

�r

2

∑
p′,q′,r′

Gp,p′
√

�r′σ−
p′q′r′

+ i
√

l

√
�r√
�1D

�p, . (A1)
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where the typical assumption is made that the emitters’
frequency distribution and individual decay rate do not signif-
icantly depend on the emitter position within the waveguide,
i.e., that the bulk properties of the emitters can be largely pre-
served [54]. The overall inhomogeneous line may, however,
differ from that of bulk media [55] and so we assume its effect
to be included in the distribution �q. We form the collective
spin σ̂p,q = 1√∑

r �r

∑
r

√
�r σ̂p,q,r from all the spins in a given

transverse plane with a fixed position-frequency index pair
(p, q). We then obtain the result analogous to the main text

σ̇−
p,q = i�qσ

−
p,q − �′

2
σ−

p,q − l�1D

2

∑
p′,q′

Gp,p′σ−
p′q′ + i

√
l�p.

(A2)

We can further obtain the linear-response relation upon form-
ing the collective spin via a sum over q as in the main text:

B−
p = i

√
n′lγ −1

inh χ (�c)

⎡
⎣−

√
n′l�1D

2

m∑
p′=1

Gp,p′B−
p′ + i�p

⎤
⎦,

(A3)

which depends on the product
√

n′l . Setting n = n′l then
reproduces the result (4). It is thus appropriate to assume in
the single-excitation subspace that each “emitter” in the main
text already accounts the effects of individual emitter variation
in the transverse plane, keeping in mind that �1D represents an
average of waveguide decay rates over the transverse plane.

APPENDIX B: CONSIDERATIONS
FOR THE BINNING PROCEDURE

Given the n×m binning procedure of N emitters, both n
and m must be chosen large enough to allow for their re-
spective continuum approximations to be valid so that spin
dynamics of the original system of size N may be well approx-
imated by the dynamics of the m non-Lorentzian collective
spins. In particular, we wish to well approximate the system
dynamics over the fastest timescale ∼Min[(N�1D)−1, γ −1

inh ],
and the n×m binning procedure can be expected to intro-
duce discrepancies on the much slower timescales O(nγ −1

inh )
and O[m(N�inh)−1] for m, n � 1. These correspond to dis-
crepancies in the spectrum with widths orders of magnitude
narrower than the broadest features typically of interest. After
the renormalization over frequency is additionally made, the
resulting system matrix for steady-state dynamics is m×m,
which should be small enough to allow numerical compu-
tation of eigenvalues (i.e., m ∼ 104 for a standard desktop).
For positional fluctuations much smaller than a wavelength,
n = 106 and m = 103 produce satisfactory results in the main
text with small fluctuations over individual realisations [as in
Fig. 3(b)] and little variation as n, m are locally varied with
constant nm = N . The results are expected to remain satisfac-
tory for smaller N such that n � 103. For smaller system sizes
than this exact numerical computation should be then feasible.
While verification is not possible for N ∼ 109, good agree-
ment between the exact transmission through an ensemble
of size N = 1000 and the approximate system with m = 50
bins is shown in Fig. 4 for varying positional ensemble extent

FIG. 4. Transmission through an ensemble of size N = 1000
using the exact expression [40] (blue line), and using the binning
procedure with m = 50 (orange dots) for �′ = �1D and varying
γinh, δz. For the exact calculation we sample each emitter position
z j ∼ U (0, δz) and each detuning � j ∼ N(0, γinh/

√
ln2) from the

Gaussian distribution N giving a FWHM γinh. For the approximation,
the binning procedure is applied according to the main text wiith
zp ∼ U (0, δz).

and Gaussian inhomogeneous broadening. Taking the con-
tinuum approximation χ of the response function precludes
the presence of narrow spectral features of width ∼�′ in
the approximate spectrum, but the broad features of practical
interest are well captured.

APPENDIX C: RESPONSE FUNCTIONS

We here list the well-known results [38] of (unnormalized)
response functions Ws(�c) = ∫ d�′ρs (�′ )

�c−�′+i�′/2 for Gaussian (s =
g), Uniform (s = u), and Lorentzian (s = l) distributions with
a FWHM γinh, respectively, as follows:

Wg(�c) =
√

π

iγinh/2

√
ln2

2
erfcx

(√
ln2

2

�c + i�′/2

iγinh/2

)
, (C1)

Wu(�c) = 1

iγinh/2
arctan

(
iγinh/2

�c + i�′/2

)
, (C2)

Wl (�c) = 1

�c + i(�′ + γinh)/2
, (C3)

where the densities read

ρg(�c) = 1

(γinh/
√

ln2)
√

π
e−�2

c/(γinh/
√

ln2)2
, (C4)

ρu(�c) = χ[−γinh/2,γinh/2]

γinh
, (C5)

ρl (�c) = (γinh/2)

π

1

(γinh/2)2 + �2
c

, (C6)

with the indicator function χ[a,b] taking value 1 in [a, b] and 0
otherwise.
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APPENDIX D: EIGENVALUES VIA CONTINUUM LIMIT

To obtain the analytical expressions for system eigenvalues
we consider the distributions of atoms uniform on [0, δz] and
with equal spacing δz/m. At the expense of neglecting to treat
states with smaller decay rates, the eigenvalues of the pseudo-
random, equally spaced system can well reproduce behavior
on the shorter timescales associated with broad resonances
of the collective spin even in the fully random system. This
is due to the fact that the broadest resonances are associated
with slowly varying polarization profiles across the ensemble,
which are negligibly perturbed by the positional fluctuations
on much shorter lengthscales. Assuming the emitter density is
high (i.e., many emitters in a given wavelength), we move to
the continuum limit of the eigenvalue problem for μ:

iN�1D

2

∫ δz

0

dz′

δz
exp(iβ|z − z′|)σμ(z′) = μσμ(z), (D1)

which can be transformed to the unit interval

iN�1D

2

∫ 1

0
dZ ′ exp(iν|Z − Z ′|)σ̃μ(Z ′) = μσ̃μ(Z ), (D2)

where Z = z/(δz) and σ (z) is the spin profile at continuum
position z, and σ̃μ(Z ) = σμ(z). While the uniform distribution
is considered here, the corresponding expression for general
distribution immediately shows that, in the high density limit,
the existing eigenvalues of the system are unchanging up
to a scaling with m, regardless of the underlying positional
distribution. Similarly to the discrete case [47], the spin profile

σ̃μ(Z ) = Nμ(eikμZ + eiφμe−ikμZ ), (D3)

for kμ 	= 0 (when ν 	= 0) yields the eigenvalue

μ = iN�1D

2

2iν

ν2 − k2
μ

(D4)

subject to the transcendental equation for kμ(
kμ + ν

kμ − ν

)2

= e2ikμ = e2iφμ, (D5)

for normalization factor Nμ, which holds for arbitrary ensem-
ble extent in the high density limit. The limit ν = 0 yields
kμ = μπ,μ = 0, 1, . . ., corresponding to m − 1 states with
zero decay rate and the single broad resonance (for which a
more careful limiting argument is required). Assuming ν �
π, one may perturbatively solve Eq. (D5) for μ � 1 to yield
the approximate spin wave numbers

kμ = μπ − 2i

μπ
ν + 4

μ3π3
ν2 + O(ν3), (D6)

while for μ = 0, kμ scales as
√

ν. One can carry out the per-
turbation analysis or just note the trace property

∑∞
μ=0 μ =

iN�1D
2 . Inserting kμ into the eigenvalue and using this relation

(and standard identities for
∑∞

s=1
1
s2 , etc.) gives the eigen-

values presented in the main text. Note that the discussion
up to and including Eq. (6) remains valid for even a spa-
tially extended ensemble when using the general eigenvalue

FIG. 5. (a) First eight wave vectors kμ of the spin-wave eigen-
modes calculated using Eq. (D5) for spatially extended ensembles.
The colorbar denotes decay rate of the collective mode [calculated
using Eq. (D4)] normalized to the collective decay rate of a point-like
ensemble. The dashed line denotes kμ = ν, and highlights that the
eigenmode with maximal decay rate has a wave vector approximately
lying on this line (i.e., the eigenmode wavelength is approximately
the length of the ensemble sample). For large ν � 1 the eigenmode
with maximal decay observes a local maximum of its decay rate at
kμ ∼ ν ∼ (n + 1/2)π. However, this maximum is decreasing with
increasing ν. (b) Normalized eigenvalues in the complex plane as a
function of ν. Away from ν ≈ 0, there is, in general, more than one
eigenmode with appreciable (normalized) decay rate.

(D4), so that transmission through a spatially extended and
spectrally inhomogeneous ensemble may also be, in princi-
ple, calculated numerically. For instance, the eigenvalues and
wave vectors of the system (D1) are calculated in this way
and presented in Fig. 5. While a detailed analysis of the
extended ensembles lies outside of the scope of this work,
we chiefly note that the limit ν → 0 maximizes the decay
of a single (symmetric) excitation into the waveguide, while
minimizing coupling to of all other collective excitations.
Indeed, once ν becomes appreciably greater than zero then
multiple eigenmodes will be, in general, appreciably excited
by a waveguide driving. In this sense, spatially localized en-
sembles are preferred over extended ensembles when aiming
to coherently interface with single collective excitations only
for the purposes of, e.g., a cavity QED implementation. As
such, ensembles are additionally both simpler to address the-
oretically and relevant experimentally [23,24] they are our
focus in the main text.

APPENDIX E: PERTURBATIVE COUPLING
TO NARROWER RESONANCES

In the limit ν → 0, the spin profiles tend to σ̃μ(Z ) =
(1/Nμ) cos(μπZ ) for μ = 0, 1, . . . . The coupling between
the state with μ = 0 and other states μ 	= 0 via the
non-Hermitian Hamiltonian is approximated at leading
order by i

√
2mn�1D

2

∫
[0,1]2 dZdZ ′ cos(μπZ ) exp(iν|Z − Z ′|) =

mn�1D

2
√

2μ2π2 ν, for even μ and 0 for odd μ. A rudimentary rate of

loss of coherence in the μ = 0 state (i.e., of B− for the single
localized ensemble in the main text) is then given as the sum
of these rates for μ = 1, . . .. The sum is evaluated as N�1D

12
√

2
ν,

which yields the result of the main text upon replacement of ν

and approximation π/(3
√

2) ≈ 1.
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