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Tuning atom-field interaction via phase shaping
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A coherent electromagnetic field can be described by its amplitude, frequency, and phase. All these properties
can influence the interaction between the field and an atom. Here we demonstrate the phase shaping of
microwaves that are scattered by a superconducting artificial atom coupled to the end of a semi-infinite one-
dimensional transmission line. In particular, we input a weak exponentially rising pulse with phase modulation to
a transmon qubit. We observe that atom-field interaction can be tuned from a nearly full interaction (interaction
efficiency, i.e., amount of the field energy interacting with the atom, of 94.5 %) to effectively no interaction
(interaction efficiency of 3.5 %).

DOI: 10.1103/PhysRevA.109.023705

I. INTRODUCTION

Quantum networks, which consist of quantum nodes and
quantum channels, have become an important and active
research field in recent years [1,2]. To transfer quantum infor-
mation (e.g., encoded in photons) between the quantum nodes
(e.g., atoms), such that it can be processed there, requires
interaction between photons and atoms. In three-dimensional
(3D) free space, interaction between propagating photons
and atoms is very weak, due to spatial mode mismatch [3].
However, there has been much progress in creating strong
interaction between atoms and photons in one-dimensional
(1D) space; this field is known as waveguide quantum elec-
trodynamics (QED) [4–6]. In particular, waveguide QED
with superconducting artificial atoms [5,7,8] and propagating
resonant microwave photons has demonstrated such strong
interaction in many experiments [9–24].

In a recent experiment in the setting of waveguide QED,
deterministic loading of a resonant microwave pulse onto an
artificial atom was achieved [25]. To further control the inter-
action between artificial atoms and photons for applications
such as quantum networking, quantum sensing [26], trans-
duction of single photons [27], etc., a switch for tuning the
strength of the interaction is necessary. Currently, a common
method for turning the interaction on and off is to use a
tunable coupling element [24,28–31]. However, the complex
circuit structure of such a coupling element may introduce
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unwanted modes that cause decoherence for artificial atoms.
We provide an alternative method for tunable coupling in a
quantum network. In this article, we use phase shaping [32] to
continue our previous work [25] and show that the interaction
between the field and the atom can be tuned from being fully
on with the interaction efficiency up to 94.5 % to effectively
being turned off with interaction efficiency down to 3.5 %,
where the interaction efficiency indicates how much of the
field energy interacts with the qubit.

In particular, we send a weak exponentially rising coher-
ent pulse with phase modulation towards a superconducting
artificial atom in a semi-infinite 1D transmission line (TL), as
depicted in Fig. 1. We achieve coherent control of the interac-
tion by manipulating the phase of the coherent input state. By
interleaving segments with phases 0 and θ in the exponentially
rising pulse, as illustrated in Fig. 1(d), the rotational axis of the
qubit state changes during the excitation process. For θ = π

with a large number of segments, N , almost no interaction will
occur. By varying θ , we are thus able to tune the interaction
between the photon and the qubit.

II. MEASUREMENT

We first characterize our sample using reflective spec-
troscopy with a vector network analyzer (VNA) and extract
the necessary parameters (e.g., qubit resonance frequency ω10,
radiative relaxation rate �, and decoherence rate γ ) to be
used in the time-domain measurements and simulations. The
extraction method and the extracted parameters are presented
in Appendix A.
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FIG. 1. Experimental setup. (a) Diagram of the full setup. The qubit (a transmon [33]) is capacitively coupled to the end of the TL. A vector
network analyzer (VNA) for the spectroscopic measurement is connected in parallel to the time-domain measurement system, which consists
of a digitizer, an arbitrary waveform generator (AWG), and radio-frequency (rf) sources. The AWG sends in-phase and quadrature (IQ) signals
to an IQ modulator (rf source) to generate a phase-shaped pulse. The reflected pulse from the fridge is down-converted by the local oscillator (rf
source) and recorded by the digitizer. The recorded data are then sent to a computer for demodulation. (b) Optical microscope image of the chip
layout. The transmon Josephson junctions are located at the top side of the image (red box). (c) A scanning electron microscope (SEM) image
of the transmon Josephson junctions, a superconducting quantum interference device (SQUID), which allows tuning the transmon resonance
frequency by an external magnetic field. The upper patch belongs to the ground plane, while the lower patch belongs to the charge island.
(d) The exponentially rising waveform Vin (t ), with a 50 % duty cycle and 0 − θ phase shaping, as defined in Eqs. (1) and (2), is generated by
the AWG and the IQ modulator.

For time-domain measurements, we use an arbitrary wave-
form generator (AWG) and a radio-frequency (rf) source
with in-phase and quadrature (IQ) modulation capability [see
Fig. 1(a)] to generate the phase-modulated, exponentially ris-
ing pulse with the envelope voltage

Vin(t ) = V �(t0 − t )e(t−t0 )/τ ei	(t ), (1)

where V is the peak magnitude of the input voltage at the
chip, �(t ) is the Heaviside step function, t0 = 0 is the time
when the pulse reaches its maximum and is turned off, τ is
the characteristic time of the exponentially rising waveform,
and 	(t ) is a 50 % duty-cycle pulse train [here we define the
duty cycle as the ratio of the θ -interval time span and the pulse
period in 	(t )]. The pulse train is responsible for the phase
shaping, which is given by

	(t ) =
{
θ, t0 − j
t � t < t0 − (

j − 1
2

)

t

0, elsewhere,
(2)

where j = 1, 2, . . . , N represents the jth interval, as shown
in Fig. 1(d), θ ∈ [0, 2π ] is the modulated phase, and 
t =
(t0 − tm)/N is the switching period of the modulated phase
determined by the number of intervals, N , the modulation start
time tm, and the end time t0. In order to observe sufficient case
variations for N ∈ [0, 50], tm is set to −2.5 µs.

In our previous work [25], we demonstrated that perfect
atom-photon interaction for an exponentially rising pulse oc-
curs for a weak input field [�(t ) � γ , where �(t ) is the
Rabi frequency with maximum magnitude �] when the char-
acteristic time τ of the pulse equals the decoherence time
T2 = 1/γ , such that the input waveform has the same shape as
the time-reversed qubit emission. Throughout this manuscript,

we set �/2π ≈ 0.154 MHz, which is about 10 times less than
γ , and we also set τ = T2.

The output voltage Vout(t ) is given by input-output theory
[34],

Vout(t ) = Vin(t ) + 2�

k

√
2Z0〈σ̂−(t )〉, (3)

where Z0 = 50 � is the characteristic impedance of the TL
and k is the proportionality constant relating �(t ) and the
square root of the input power, Pin(t ) = |Vin(t )|2/2Z0; �(t ) =
k
√

Pin(t ). In Eq. (3), the coherent output field receives contri-
butions from terms representing the input field and the atomic
emission. The atomic term consists of the expectation value
of the Pauli lowering operator σ̂−, whose time evolution is
described by the optical Bloch equations [25],

∂t 〈σ̂+〉 = (−iδ − γ )〈σ̂+〉 + �∗(t )〈σ̂z〉/2, (4)

∂t 〈σ̂−〉 = (iδ − γ )〈σ̂−〉 + �(t )〈σ̂z〉/2, (5)

∂t 〈σ̂z〉 = −�(1 + 〈σ̂z〉) − �(t )〈σ̂+〉 − �∗(t )〈σ̂−〉, (6)

where σ̂+ and σ̂z are the Pauli raising and Z operators, re-
spectively, and δ represents the detuning between the input
signal frequency ωp and the qubit transition frequency, i.e.,
δ = ωp − ω10. We numerically solve Eqs. (3)–(6) based on
the extracted qubit parameters from the frequency-domain
measurement detailed in Appendix A (see Table I there).

To quantify the effectiveness of the interaction, we define
the input energy Eoffres (measured when the qubit is far de-
tuned), the output energy Eres (measured when the probe is
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TABLE I. Extracted and derived qubit and setup parameters at ω10. �φ,l is calculated using �φ,l = γ − �/2. The subscripts for A and G
are used to distinguish between spectroscopy and time-domain systems.

ω10/2π �/2π γ /2π �φ,l/2π Aspec Gspec Atime Gtime

(MHz) (MHz) (MHz) (MHz) (dB) (dB) (dB) (dB)
4766 ± 0.010 2.271 ± 0.013 1.174 ± 0.010 0.038 ± 0.012 −133.66 ± 0.03 60.87 ± 0.03 −154.84 ± 0.03 104.51 ± 0.04

on resonance with the qubit), and the coherent interaction
efficiency η = Eres/Eoffres [25] with

Eoffres = 1

2Z0

∫ t0

ti

[|Voffres(t )|2 − |VN |2]dt, (7)

Eres = 1

2Z0

∫ t f

t0

[|Vres(t )|2 − |VN |2]dt, (8)

where Vres (Voffres) represents the measured Vout at the chip
level when the qubit is tuned on (far off) resonance with the
probe tone, VN denotes the average noise level over the time
interval t ∈ [1 μs, 5 µs] after turning off the input pulse in the
off-resonant case (Voffres), ti is the pulse start time, and t f is
the measurement stop time. A 100 % interaction efficiency
means that the energy of the coherent output field is equal to
the energy of the input field.

There are two driving regimes for the exponentially rising
waveform: weak driving and strong driving. The weak driving
regime, where �(t ) � γ , is the one investigated throughout
this work. In this regime, all of the input field is elastically

scattered, leading to a nearly 100 % efficiency; the qubit is
mostly in the ground state. Using Eqs. (1) and (7) and the
selected V ≈ 2 nV, we see that the exponentially rising wave-
form contains an average photon number Eoffres/(h̄ω10) ≈
0.0011. On the other hand, in the strong driving regime
�(t ) 	 γ , the microwaves are both elastically and inelasti-
cally scattered, leading to missing energy in other frequencies
and therefore a lower η.

From the analytic formula [derived in the limit of a weak
probe, �(t ) � γ ] [25]

η = �2/τ

( �
2 + �φ,l )

(
�
2 + �φ,l + 1/τ

)2 , (9)

we obtain and estimate a maximum interaction efficiency of
ηmax ≈ 93.5 % at τ = T2. From Eq. (9), we see that ηmax is
limited by �φ,l = �φ + �nr/2, where �φ is the qubit’s pure
dephasing rate and �nr its nonradiative relaxation rate [35].
Although our measurement method cannot separate �nr from
�φ , we can use the extracted �φ,l in Table I in Appendix A

(a)

(d)

(b) (c)

(e) (f)

FIG. 2. Scattering of an exponentially rising pulse with N ∈ [0, 50] and fixing θ = π . The measured data are presented as dots and
theoretical simulations as solid curves. The simulations are done by numerically solving Eqs. (3)–(6) with parameters extracted from the
spectroscopy, as indicated in Table I in Appendix A; no free fitting parameter is assigned. (a) Reflected pulse envelope voltage with the qubit
far detuned. (b) Cross sections of (a) for the cases N = 0 (blue), 25 (green), and 50 (red). (c) Simulated occupation probability Pe of the qubit’s
first excited state and corresponding modulated phase (N = 50, θ = π ) as functions of time. (d) Reflected pulse envelope voltage with the
qubit on resonance with the probe. (e) Cross sections of (d) for the cases N = 0 (blue), 25 (green), and 50 (red). (f) η as a function of N .
The maximum η at N = 0 is 94 % ± 1.0 %, which matches well with the value predicted by the analytic formula (93.5 % ). For the N = 50
case, the measured and simulated η are 3.8 % ± 1.0 % and 3.6 %, respectively. In (b) and (e), the dips appearing in the exponentially rising
pulse are caused by the finite bandwidth of the digitizer, which limits the demodulation time to 20 ns (corresponding to 50 MHz demodulation
frequency). The nonzero demodulation time smooths out data points and results in dips. These dips can also be found in (a) and (d) as
near-zero-voltage strips between 0 and θ intervals before t0. Full simulations of (a) and (d) are shown in Fig. 6 in Appendix C.
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FIG. 3. Scattering of an exponentially rising pulse, fixing N = 50 and sweeping θ from 0 to 2π . The measured data are presented as dots
and theoretical simulations as solid curves. (a) Reflected pulse envelope voltage with the qubit far detuned. (b) Cross sections of (a) for the
cases θ = 0 (red), π/2 (green), and π (blue). (c) First-excited-state occupation probability for the qubit and corresponding modulated phase
(N = 50, θ = π/2) as functions of time. Note that Pe is nearly symmetric with respect to t0. (d) Reflected pulse envelope voltage with the
qubit on resonance with the probe. (e) Cross sections of (d) for the cases θ = 0 (red), π/2 (green), and π (blue). (f) η as a function of θ . At
θ = π/2, η is at the middle of its range (50.6 % ± 1.0 % measured, 48.8 % simulated). For θ = 0, the interaction suppression is off and η is at
its maximum (94.5 % ± 1.0 % measured, 94 % simulated). Conversely, η reaches its minimum when θ = π (3.5 % ± 1.0 % measured, 3.6 %
simulated) indicated by the black arrow. Full simulations of (a) and (d) are shown in Fig. 6 in Appendix C.

to estimate the maximum �nr to be 2�φ,l ≈ 77 kHz, which is
3.4 % of �.

Losses are defined as energy that is not reflected coher-
ently; this includes incoherent scattering and nonradiative
relaxations. Due to energy conservation, the sum of these
power losses is given by Ploss = Pin(1 − |r|2) [36], where the
reflection coefficient r is given in Eq. (A1) in Appendix A.
In the steady state of constant wave excitation at �/2π ≈
0.154 MHz, Ploss is 15.8 % of Pin.

III. RESULTS FROM SWEEPING THE NUMBER
OF INTERVALS

As shown in Fig. 2, we sweep N from 0 to 50 (fixing
θ = π ) and observe that increasing N leads to increasing
suppression of the interaction efficiency. We use Eqs. (7)
and (8) and the data in Figs. 2(a) and 2(d) to calculate
the result for the efficiency as a function of N , shown in
Fig. 2(f) [25].

The principle behind the interaction suppression via phase
shaping can be understood from Fig. 2(c). The accumulated
occupation probability Pe for the excited state of the qubit
during the θ = 0 period is canceled by the adjacent θ = π

period, which inverts the rotational axis of the Bloch vector.
This makes the Bloch vector swing back and forth around the
ground state (〈σ̂z〉 = −1) during the pulse. With the increase
of N , the time for the qubit excitation is shortened and thus the
interaction is suppressed, as shown in Fig. 2(f). However, to
reach total interaction suppression, one may need a very large
N . It can be seen in Fig. 2(f) that the slope of η gradually
decreases as N increases. This makes complete interaction

suppression hard to be achieved with a 50 % duty cycle since
the maximum possible N is limited by the AWG sampling rate
and the IQ modulator’s input bandwidth. The use of linear
phase modulation to accommodate equipment bandwidth is
discussed in Appendix D.

Theoretically, it is however possible to achieve zero η

for our experimental parameters by tuning the duty cycle to
59.1 %, as calculated in Appendix B. This optimum comes
from considering both that the 50 % duty cycle introduces a
difference in the total areas of the 0 and π intervals, and the
effect of decoherence.

IV. RESULTS FROM SWEEPING THE MODULATION
PHASE

In Fig. 3, we sweep θ from 0 to 2π to tune the interaction
suppression while fixing N = 50 and the duty cycle to 50 %.
This sweep effectively rotates the direction of the rotational
axis on the equatorial plane of the Bloch sphere by θ and
allows us to steer the direction of the Bloch-vector evolution
during input.

Zero (maximum) interaction suppression is achieved when
θ = 0 (π ). For 0 < θ < π/2, the θ interval provides partial
boosting of Pe and results in an η between 50 % and 100 %.
In contrast, π/2 < θ < π partially suppresses the interaction
such that η is between 0 % and 50 %. As a balance point
between these two intervals, the case θ = π/2 has nearly (due
to finite N) 50 % interaction efficiency, as shown in Fig. 3(f).
The corresponding Pe as a function of time is depicted in
Fig. 3(c). The remaining π < θ < 2π cases are the mirror
images of 0 < θ < π . From the results in Fig. 3(f), we see that
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(a) (b)

FIG. 4. Spectroscopy results. (a) Reflection-coefficient IQ plot at −163 dBm (� � γ ). (b) On-resonance (δ = 0) power-dependent
reflection magnitude. In both plots, the red dots are the measured data points and the solid curves (black) are the theory fitting according
to Eq. (A1).

we can easily tune the atom-field interaction to any desired
η value between the maximum and minimum on demand by
setting θ .

V. CONCLUSION

We demonstrated phase shaping of microwaves being scat-
tered by a superconducting artificial atom in a semi-infinite
1D transmission line in time domain. In particular, we sent
in a weak exponentially rising pulse with phase modulation
towards the atom and observed that the atom-field interac-
tion can be tuned from nearly full interaction to effectively
no interaction, as measured by the amount of energy trans-
ferred from the field to the atom (the interaction efficiency).
The maximum interaction efficiency can be increased by im-
proving the fabrication process (lowering pure dephasing and
nonradiative relaxation rates). To improve interaction cancel-
lation, there are two routes to take, which also can be used
in combination: tuning the duty cycle of the pulse and tuning
the number of phase-switching intervals N . Our results may
enable promising applications, through tunable interaction, in
quantum networks based on waveguide quantum electrody-
namics.
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APPENDIX A: CALIBRATIONS

As depicted in Fig. 1(a), we can generalize both frequency-
and time-domain setups into a simplified scheme: an rf source

launches a pulse with power Psrc = V 2
src/2Z0 (the subscript

“src” refers to the source) towards the qubit via an effective
attenuator with power attenuation A. The qubit has a reflection
coefficient r(δ,�) = Vout (∞)/Vin(∞), which can be found
from the stationary solution of Eqs. (3)–(6),

r(δ,�) = 1 − �

γ

1 − i δ
γ

1 +
(

δ
γ

)2
+ �2

γ�

, (A1)

where � is the continuous-wave (cw) Rabi frequency and γ =
�/2 + �φ,l .

The reflected signal passes through the amplifier chain
(with effective power gain G) and finally reaches the receiver
with voltage

Vrec =
√

Gr(δ,�)
√

AVsrc. (A2)

Here we assume no multiple reflections occur in our trans-
mission so that Eq. (A2) applies. The measured reflection
coefficient is defined as

rall = Vrec

Vsrc
. (A3)

We first sweep the probe frequency near the qubit reso-
nance frequency with sufficiently low power (� � γ ) such
that r(δ,� ≈ 0) is nearly a Lorentzian. It is straightforward to
extract r(δ,�) by dividing Eq. (A2) with the far-detuned case
(i.e., background) where r(δ → ∞,�) ≈ 1 and thus rall,bg =√

GA. The extracted r(δ,� ≈ 0) is shown in Fig. 4(a). For
the Lorentzian function, we use the circle-fit method [36,37]
to extract � and γ and ω10, which are summarized in Table I.

The next step is to calibrate the constants k, A, and G.
By tuning the probe on resonance with the qubit (δ = 0) and
sweeping �, we obtain the power-dependent reflection coeffi-
cient r(δ = 0,�) [Fig. 4(b)] after the background is removed.
We define another proportionality constant ksrc for Psrc,

� = ksrc

√
Psrc. (A4)

This constant can be obtained by fitting r(δ = 0,�) with√
Psrc via Eq. (A1). Comparing to the definition of k used in

the main text,

�(t ) = k
√

Pin(t ), (A5)
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FIG. 5. Simulated results for changing duty cycle when N = 50
and θ = π . The red (blue) line is the total angular area swept by the 0
(π )-degree part of the time-varying Rabi frequency. The green curve
is η as a function of duty cycle. The sum of the two areas (black line)
is 0 when the duty cycle reaches 54.5 % (black arrow). However,
due to the presence of relaxation and decoherence, the actual zero
efficiency occurs at 59.1 % (green arrow).

and due to the fact that Pin(t ) = APsrc, the two constants are
related by

ksrc =
√

Ak. (A6)

To extract A, an algebraic identity between �, Psrc, and �,
proven in the Supplemental Material of Ref. [14], is used:

� =
√

8π�

h̄ωr

√
APsrc, (A7)

where h̄ is the reduced Planck’s constant and ωr is the qubit’s
resonance frequency. From Eqs. (A4) and (A7), we arrive at

A = k2
srch̄ωr/8π�. (A8)

(a)

(d)

(b)

(e)

(c)

(f)

FIG. 6. Simulated reflected voltages Vout (t ) and qubit population Pe(t ). The corresponding experimental results are shown in Fig. 2 and
Fig. 3. (a) Varying N and fixing θ = π as the qubit is far detuned. (b),(c) Varying N and fixing θ = π as the probe tone is on resonance with
the qubit. (d) Varying θ and fixing N = 50 as the qubit is far detuned. (e),(f) Varying θ and fixing N = 50 as the probe tone is on resonance
with the qubit.

Then, using Eq. (A6), we obtain the expression

k =
√

8π�/h̄ωr . (A9)

At last, the gain G is obtained immediately,

G = ∣∣rall,bg

∣∣2
/A. (A10)

Here only the magnitude of rall,bg is used because the round-
trip phase due to TL and microwave components can be
removed by dividing reflection coefficients in the first step.
With extracted �, γ , k, A, and G, we can simulate the time-
domain results using Eqs. (3)–(6) without the use of any free
parameter.

APPENDIX B: SIMULATED ZERO INTERACTION
EFFICIENCY BY DUTY-CYCLE TUNING

To further suppress η beyond what was achieved in
Fig. 2(f), we can optimize the waveform by changing the duty
cycle of 	(t ) and cancel the Bloch-vector rotation induced by
the nonuniform Rabi frequency. Our simulation (Fig. 5) shows
that the optimal duty cycle is 59.1 %.

There are two reasons for the optimal duty cycle not being
50 % . First, the difference in total areas between the 0 and π

intervals [see Fig. 1(d)] leads to an additional rotation angle,
which corresponds to a residual excited-state population. For
our exponentially rising pulse, a duty cycle of 54.5 % would
cancel all 0 and π areas perfectly. However, second, the qubit
decoherence appears as a force dragging the qubit towards the
ground state, creating additional overshoots for the rotating
Bloch vector and pushing the optimum point to 59.1 %.

APPENDIX C: SIMULATED REFLECTED SIGNALS

In Fig. 6, we show simulation results corresponding to
Figs. 2(a) and 2(d), and Figs. 3(a) and 3(d). The simulations
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(a)

(d)(b)

(e)(c)

FIG. 7. Simulated reflected voltages Vout (t ) and qubit population Pe with sawtooth phase modulation. (a) Modulation phase as a function
of time. (b) Reflected voltage as a function of fm and time when the qubit is far detuned. (c) Reflected voltage as a function of modulation
frequency fm and time t when the probe tone is on resonance with the qubit. (d) η as a function of fm. (e) Population Pe as a function of time
and modulation frequency.

are done by numerically solving Eqs. (3)–(6) with parameters
extracted from the spectroscopy (see Appendix A); no free
fitting parameter is assigned. We also show simulation results
for the qubit population.

APPENDIX D: LINEAR PHASE MODULATION

There is a larger family of pulses that can exhibit the
kind of cancellation that we use in this work. In general, the
phase modulation function 	(t ) multiplying the exponentially
rising pulse should have the following two properties. First,
	(t ) must encompass both positive and negative amplitude
cycles to effectively counterbalance each other. Second, the
period of 	(t ) should be short enough to cancel similar pulse
amplitudes adjacent in time. If the period is limited by the
instrument bandwidth, an optimization on duty cycle, as dis-
cussed in Appendix B, is also an option.

The periodicity mentioned in the second property leads us
to expand 	(t ) in a Fourier series. Taking the square wave in
Eq. (2) (N = 50 and θ = π ) as an example, the harmonics
in the series occur at integer multiples of a frequency of
20 MHz, which is the repetition rate of the square wave. These
harmonics generate sideband modulations that detune the car-
rier signal beyond the qubit linewidth, effectively disabling

absorption. In this sense, a simpler alternative to the square
wave is to use a pair of sine and cosine waves on the IQ ports
of an IQ modulator. In terms of phase, this is effectively a
linear phase modulation (or sawtooth modulation, if 	(t ) is
limited to being within [−π, π ]), expressed as

	(t ) = fmt, (D1)

where fm is the modulation frequency of the sine and cosine
waves. The generated waveform is shown in Fig. 7(a). In a
Bloch-sphere picture, this rotates the Bloch vector in the x-y
plane at a constant rate fm. Through this modulation, the car-
rier signal can be detuned, allowing control over efficiency by
adjusting fm as demonstrated in Fig. 7(d), similar to Fig. 2(f).
The simulated output voltages and excited-state population for
sawtooth pulses are also shown in Fig. 7.

To ensure compliance with the equipment bandwidth, it is
crucial to minimize discontinuities in 	(t ) during the onset
of the rising pulse. Discontinuities such as 0 − θ − 0 − θ

generate higher-order harmonics in IQ voltages that may be
filtered out by the equipment bandwidth. In linear modulation
[Eq. (D1)], 	(t ) remains continuous, and the spectrum of the
rising pulse is centered at fm within the equipment bandwidth,
effectively avoiding filtering.
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