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Nonperturbative Zou-Wang-Mandel effect
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The Zou-Wang-Mandel (ZWM) effect is a remarkable consequence of photon indistinguishability and
continuous-variable entanglement in which an optical phase shift is imprinted on photonic modes associated
with optical paths that do not pass through the phase-shift source. By bringing the canonical formalism of
continuous-variable Gaussian states to bear on the mode structure of the ZWM experiment, we show that the
physical consequence of implementing optical path identity is a renormalization of quadrature squeezing which
governs the entanglement of four effective optical modes. Nonperturbative expressions for the ZWM interference
patterns and normalized first-order coherence function are derived. Generalizations to H-graph states with more
than four modes directly follow from the general method used to analyze the minimal example. We show that a
ZWM interferometer with a laser-seeded signal mode, which estimates an idler phase shift by detecting photons
that did not propagate through the phase shift, exhibits an optimal sensitivity comparable to that of a laser-seeded
SU(1,1) interferometer if the path identity is implemented with high fidelity.
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I. INTRODUCTION

The Zou-Wang-Mandel (ZWM) experiment demonstrates
that the photocurrent from the signal modes arising from
spontaneous parametric downconversion (SPDC) from two
coherently pumped crystals [1] can depend on parameters
of a quantum channel applied to the first of the partially
aligned idler modes [2–4]. This remarkable consequence of
photon indistinguishability and continuous-variable (CV) en-
tanglement, also known in the literature as quantum-induced
coherence by path identity, has influenced a wide range of
experimental [5,6] and theoretical work in nonlinear quan-
tum optical phenomena [7]. In recent years, this effect has
experienced a revival of interest due to advances in quantum
imaging [8], sensing [9,10], and high-dimensional entangle-
ment generation [11] experiments with undetected photons,
which are all based on the original concept proposed in the
ZWM experiment. While the ZWM experiment was carried
out and analyzed in the setting of low-gain SPDC [12], anal-
yses of analogous ZWM experiments in the high-gain regime
of SPDC are vital for understanding how the maximum vis-
ibility of the interference between the signal modes deviates
from linearity [13–15,25], and how to incorporate quantum-
induced coherence by path identity into advances in SU(1,1)
interferometry [14,16–18] and target detection [19]. Such
advances could improve path-identity-based techniques for
imaging with undetected photons [8,20] toward quantum sens-
ing with undetected photons below the standard quantum limit
[18,21]. Although the multimode squeezed states analyzed in
this work may indeed be interpreted as high-gain SPDC net-
works defined by patterns of quantum-induced coherence by
path identity, we note that CV-entangled states generated by
coupling single-mode squeezed states from optical parametric
oscillators, central to proposals for CV quantum computing
[22,23], can also be combined with path-identity operations
and analyzed with the methods described here.

In the present work, nonperturbative expressions for the
photocurrents and maximum visibility of the signal modes of
the ZWM experiment are derived by bringing the canonical
formalism of CV Gaussian states to bear on the mode struc-
ture of the experiment. The expressions differ from previous
analyses of the ZWM experiment in the high-gain SPDC
regime [13] because we take into account the fact that partial
alignment of squeezed CV modes results in a renormalization
of the effective squeezing strengths. Specifically, the analyses
in Refs. [13,25] treat the ZWM experiment as a sequential
pair production in two downconverters with beamsplitter-
coupled idlers, whereas the present analysis treats the two
downconverters as a coherent four-mode process with par-
tially distinguishable idler modes. The result is a new set of
normal modes for the system, which occur with renormal-
ized squeezing strengths. We make a quantitative comparison
between the result of the present analysis and the result of
Ref. [13] in terms of the first-order coherence function, which
is directly related to the maximal visibility of the interfer-
ence pattern [1,26]. Here we note that a completely general
nonperturbative description of two nondegenerate parametric
downconverters with partially indistinguishable idler modes
would take into account nonclassical properties of the pump
mode. Such a description could be achieved in some param-
eter regimes by analyzing the quantum multiple three-wave
interaction system with nonorthogonal modes using algebraic
Bethe ansatz methods [27–31].

II. BACKGROUND: SQUEEZED-STATE NETWORKS

The ZWM experiment in its original form is shown in
Fig. 1(a) with each labeled mode corresponding to an an-
nihilation operator for a fixed momentum, frequency, and
polarization component of the positive frequency part of the
quantum electromagnetic field. To make contact with the mi-
croscopic description in Ref. [4], we consider the lossless
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FIG. 1. (a) The ZWM experiment. The beamsplitter that rotates
the BI and X mode is shown only for modeling the imperfect path
identity and is not part of an actual experiment. (b) Three vertices
contributing to observables of the system of two nondegenerate
parametric downconverters in which the idler modes are partially
indistinguishable. (See Ref. [24] for a perturbative analysis of non-
linear quantum optical systems.) Wavy line is the pump mode. The
middle process is the source of the renormalized effective squeezing
strength.

crystals NL1 and NL2 to be pumped by a monochromatic,
constant amplitude laser and that the frequency and momen-
tum matching conditions are satisfied to remove time and
space dependence. To model the possible imperfect alignment
of the idler modes from NL1 and NL2, we explicitly show a
beamsplitter which couples an auxiliary mode X into the BI

mode, ideally with |T | ≈ 1. Figure 1(b) shows the Feynman
vertices that would occur in a perturbation-theoretic treatment
of the present framework, with the middle diagram indicating
that pumping NL1 induces coupling between the AS signal
mode and the BI idler mode, which is the source of the new
normal modes in our analysis. Other sources of time depen-
dence that can arise due to optical path-length differences or
dephasing between the split pump beams are neglected. We
use the term SPDC broadly to refer to any process of the form
ab†c† + H.c. where the different letters indicate orthogonal
modes, including, e.g., internal degrees of freedom of the
electromagnetic field such as polarization modes, as long as
the symmetries of the system are respected.

We define a squeezed-state network, which contains as a
special case the H-graph states, i.e., networks of SPDC and
single-mode squeezing processes specified by the adjacency
matrix of a graph [32,33]. An overview of the canonical de-
scription of CV Gaussian systems appears in Appendix A. The
squeezed-state network |�L〉 is defined by a Gaussian unitary
U = e

1
2 a†La†ᵀ− H.c. via

|�L〉 := U |VAC〉 = eH|VAC〉,

H = 1

2
a†La†ᵀ − H.c., (1)

where the M × M matrix L appearing in the generator H
is complex symmetric with zeros on the diagonal and a† is

the row vector of creation operators. The M = 2 case given
by L = g(0 1

1 0) with g > 0 is simply a two-mode squeezed

state with energy 2 sinh2 g and perfect positive correlation
between the position quadratures of each mode. The larger M
cases of L are squeezed-state networks, certain cases of which
(viz. H-graph states with full-rank adjacency matrix [32,34])
correspond to CV cluster states after the application of local
Gaussian unitaries. In fact, the present paper only considers
|Li, j | � g for some real, positive squeezing parameter g. This
restriction describes, e.g., a collection of coherently pumped,
identical SPDC elements (the ZWM experiment corresponds
to M = 4).

The most direct route to the covariance matrix �|�L〉 is
the Autonne-Takagi diagonalization of L [35–37] (see Ap-
pendix B for justification). Specifically, L = W DW T with D
the diagonal matrix consisting of singular values {λ j}M

j=1 of
L, and W an M × M unitary. The unitary matrix W is asso-
ciated with a photon number-conserving Gaussian unitary W
defined by its action on the row vector of creation operators as
Wa†W† = a†W †, so that

W|�L〉 = We
1
2 a†La†ᵀ−h.c.|VAC〉

= e
1
2 a†W †LW̄ a†ᵀ−h.c.|VAC〉

= 1∏M
j=1

√
cosh λ j

M⊗
j=1

etanh λ j a
†2
j |0〉 j, (2)

where we use the fact that the vacuum is invariant under
number-conserving unitaries and the last line shows a ten-
sor product of single-mode squeezed vacua (see Ref. [38]
for a similar expression for states of massive bosons). It is
straightforward to verify that �W|�L〉 = 1

2 (e−2D ⊕ e2D). Be-
cause D � 0, this expression states that a subset of the {qj}M

j=1
quadratures are squeezed and the corresponding subset of the
{p j}M

j=1 quadratures are antisqueezed. Using the isomorphism
between the unitary group and the orthogonal symplectic
group U (M ) ∼= O(2M ) ∩ Sp(2M,R) [39], one obtains that
WRW† = R�, with � := ( ReW ImW

−ImW ReW ), so

�|�L〉 = ��W|�L〉�ᵀ (3)

(see Appendix A). Note that the Autonne-Takagi diagonal-
ization of L can be used to compute the Bloch-Messiah
decomposition of the symplectic matrix associated with the
Gaussian unitary U [36]. The Autonne-Takagi diagonalization
(and Bloch-Messiah decomposition) are unique up to permu-
tation of the modes [39].

The exact expression for the expected photon number is
obtained from the covariance matrix of a pure, zero-mean
Gaussian state via

〈a†
j a j〉|�L〉 = 1

2 (�|�L〉) j, j + 1
2 (�|�L〉)M+ j,M+ j − 1

2 . (4)

This expression assumes that the idler mode A1 is actually
created from a vacuum by the first parametric downconverter.
If the idler mode A1 is stimulated by pumping with a laser,
then |�L〉 has a nonzero mean vector, the exact form of which
depends on the temporal relation between the pumping of the
idler mode and the pumping of the parametric downconverter.
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III. ZOU-WANG-MANDEL EXPERIMENT IN THE
HIGH-GAIN REGIME

This general formalism can now be applied to the four-
mode squeezed-state network that occurs in the ZWM
experiment. The ZWM state is given by |�L〉 in (1) with

L = g

⎛
⎜⎜⎝

0
T R
1 0

T 1
R 0

0

⎞
⎟⎟⎠, (5)

where we take T = eiθT |T |, 0 < R < 1, and |T |2 + R2 = 1.
With this parameter domain, L has full rank, but if R = 0
(i.e., the case of perfect path identity between idler modes)
then L has rank 2. Note that L involves only SPDC processes
between the modes. Written out explicitly, the generator is
H = ga†

AS
a†

AI
+ ga†

BS
a†

BI
− H.c., with the mode AI defined by

a†
AI

:= Ta†
BI

+ Ra†
X . We reenumerate the four physical modes

in the experiment by a1 = aAS , a2 = aBS , a3 = aBI , a4 = aX .
Note that the idler mode from the NL1 SPDC is in the
two-dimensional subspace spanned by modes BI and an an-
cillary mode X , indicating a general indistinguishability of
this mode from BI . The mode X also appears in the per-
turbative theory of the ZWM effect; it must be taken into
account because SPDC produces two photons in normalized,
orthogonal modes. Perfect alignment of the idlers from the
parametric downconverters corresponds to taking T = 1. Op-
tical phases associated with the propagation of the signal
beams, which are eventually combined to form the modes
that are measured at the photocounters, can be introduced
at the end of the calculation by acting on the covariance
matrix with appropriate orthogonal symplectic matrices in
O(8) ∩ Sp(8,R). Note that the squeezed-state network |�L〉 is
not defined by a product of SPDC operations at NL1 and NL2
occurring, respectively, before and after a beamsplitter. The
dynamics defined by the generator H therefore necessarily
differs from those in Ref. [13] in a way which we proceed to
describe.

The characteristic polynomial of LL† is given by (λ2 −
2λ + R2)2 (one can get this from the fact that LL† − λ14 is
a block-diagonal matrix with invertible blocks), with roots
g2(1 ± |T |) having geometric multiplicity 2. The g2(1 + |T |)
subspace [g2(1 − |T |) subspace] is spanned by the first (last)
two columns of

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

eiθT√
2

0 − eiθT√
2

0

1√
2

0 1√
2

0

0 eiθT

√
1+|T |

2 0 −eiθT

√
1−|T |

2

0
√

1−|T |
2 0

√
1+|T |

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

which is evidently unitary. From (3) one obtains the 8 × 8 co-
variance matrix �|�L〉 = �D�ᵀ with D = 1

2 (ν−
+I2 ⊕ ν−

−I2 ⊕
ν+

+I2 ⊕ ν+
−I2), where ν±

+ := e±2g
√

1+|T | and ν±
− := e±2g

√
1−|T |

(see Appendix B).
Note that allowing for path identity results in the parameter

T , which governs the idler indistinguishability, to appear in
the symplectic eigenvalues of the covariance matrix. In other
words, nonzero T implies renormalization of the squeezing

FIG. 2. (Solid lines) Normalized first-order coherence for eg ∈
0.37, 1.28, 4.48, 15.64 for |T | ∈ [0, 1] in the absence of phase shifts.
Increasing concavity of curves indicates higher g. (Dashed lines)
Normalized first-order coherence from Ref. [13] at the same values
of g and absence of phase shifts. Dashed black line is γ = |T |, lower
bounding all curves due to Cauchy-Schwarz inequality.

strengths in CV quadratures defined by �, which occurs due
to the AS and BI mode coupling in H and does not occur if the
NL1 and NL2 downcoversions are assumed to occur sequen-
tially. The final step of the ZWM experiment implements a
beamsplitter UBS on the signal modes AS , BS that incorporates
a phase shift φS due to possible differences in the signal paths.
We model this beamsplitter by UBSa†U †

BS = a†Y where the
unitary Y is given by

Y := 1√
2

(
1 ieiφS

i eiφS

)
⊕ 12. (7)

The images of the modes AS and BS under the transformation
Y are the modes which are detected in Fig. 2. Consistent
with the transformation of the creation operators in (7), which
shows how the phases in the squeezed-state network change
under |�L〉 �→ UBS|�L〉, the transformation of the covariance
matrix �|�L〉 is given by

�|�L〉 �→ �UBS|�L〉 = OT
BS�|�L〉OBS,

OBS :=

⎛
⎜⎜⎜⎜⎝

ReY ᵀ 0 ImY ᵀ 0

0 12 0 0

−ImY ᵀ 0 ReY ᵀ 0

0 0 0 12

⎞
⎟⎟⎟⎟⎠. (8)

Multiplication of the 8×8 matrices in (8) and using
the formula (4) for the expected photon number pro-
duces the following nonperturbative formulas for the
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photocurrents:

〈a†
S1

aS1〉UBS|�L〉 = cosh(2g
√

1 + |T |)
4

[1 − sin(φS + θT )]

+ cosh(2g
√

1 − |T |)
4

× [1 + sin(φS + θT )] − 1

2
g→0= g2[1 − |T | sin(φS + θT )] + o(g2)

〈a†
S2

aS2〉UBS|�L〉 = cosh(2g
√

1 + |T |)
4

[1 + sin(φS + θT )]

+ cosh(2g
√

1 − |T |)
4

× [1 − sin(φS + θT )] − 1

2
g→0= g2[1 + |T | sin(φS + θT )] + o(g2). (9)

These formulas are the main result of the present work. They
can be used to obtain all quantities of interest that are func-
tions of the first moments of the photocurrent signals. As is
clear from (9), when g → 0 they reduce to the perturbative
expressions given by ZWM [7], with the MacLaurin series
starting at O(g2). Note that, for T = 0, the effective SPDC
elements are completely uncoupled and the sum of the ener-
gies of the signal modes is 2 sinh2 g, exactly half of the total
energy.

It is important to note that we do not consider the two
downconversions as temporally separated dynamics, as was
done in the nonperturbative analyses of Refs. [13,18,25]. The
fact that (i) the modes AI and BI are not perfectly distin-
guishable and (ii) the downcoversion occurs from coherently
pumped emitters, imply that the parameter T renormalizes the
bare squeezing parameter g in the resulting four-mode state.
The maximum visibility of the photocurrent can be described
by the modulus of the normalized first-order coherence func-
tion

γ :=
∣∣〈a†

S1
aS2

〉
UBS|�L〉

∣∣√
〈a†

S1
aS1〉UBS|�L〉〈a†

S2
aS2〉UBS|�L〉

, (10)

where the numerator can be obtained from the covariance
matrix via

4|〈a†
S1

aS2〉UBS|�L〉|2 = ((�UBS|�L〉)1,2 + (�UBS|�L〉)5,6)2

+ ((�UBS|�L〉)1,6 − (�UBS|�L〉)2,5)2.

(11)

Deviation of (10) from linear dependence on |T | is the
hallmark of ZWM setup in the high-gain regime [13,15,25].
Evaluating (10) at θT = 0 and φS = 0 gives the result

γ
∣∣
θT ,φS=0 = cosh(2g

√
1 + |T |) − cosh(2g

√
1 − |T |)

cosh(2g
√

1 + |T |) + cosh(2g
√

1 − |T |) − 2
,

(12)

which is plotted in Fig. 2. The interpolation of the normalized
first-order coherence function between linear dependence on

|T | in the single-photon regime (i.e., the regime where low-
order perturbation theory in g is valid) to independence from
T at a unit value in the high-intensity regime is a known
phenomenon which is described by (12). However, note in
Fig. 2 that the result of Ref. [13] given by

γ (Ref.[12])
∣∣
θT ,φS=0 = |T | cosh g√

1 + |T |2 sinh2 g
, (13)

arising from using factorized dynamics to describe the ZWM
experiment, overestimates the normalized first-order coher-
ence function. This is due to the fact that their analysis does
not treat the renormalization of squeezing that occurs due to
the path indistinguishability, as is evident from the hyperbolic
functions in (13) which depend only on the bare squeezing
parameter g.

As quadrature squeezing levels increase toward 10 dB [40]
for applications ranging from CV one-way quantum comput-
ing [22] to gravitational wave detection [41], it seems natural
that the ZWM effect will be utilized at higher squeezing
levels and downconversion rates, i.e., beyond the setting well
described by dynamics in the single-photon mode occupation
subspace. Squeezed-state networks |�L〉 are Glauber non-
classical [42], which, in turn, implies improved performance
for certain CV quantum sensing tasks [43]. Under a sequen-
tial model of the ZWM effect, it is already known that, by
placing an unknown phase shift θ on the BI mode between
NL1 and NL2 in Fig. 1(a) to form a ZWM interferometer,
the intensity difference of AS and BS provides a method of
moments estimate of θ with error below the standard quantum
limit [18,20]. To determine the phase estimation precision
achievable in the ZWM interferometer under the model of
the present work, we calculate the quantum Fisher informa-
tion (QFI) for a parametrized squeezed-state network |�L(θ )〉
seeded by a coherent state |β〉 in the AS mode with intensity
much greater than the energy due to quadrature noise, i.e.,
|β|2  e2g

√
2 (see Appendix C for a full definition of the

probe state and QFI analysis). This distribution of energy is
relevant to a realistic, high-precision phase estimation sce-
nario. Using F (θ ) = −2∂2

ξ |〈�L(θ )|�L(ξ )〉|2|ξ=θ for the QFI,
we obtain

F (θ ) = β2

2
(cosh g

√
1 + |T | − cosh g

√
1 − |T |)2

× [(e−2g
√

1−|T | + e−2g
√

1+|T |) cos2 θ

+ (e2g
√

1−|T | + e2g
√

1+|T |) sin2 θ ] + o(β2). (14)

Note that the QFI depends on θ because, unlike Mach-
Zehnder or SU(1,1) interferometry, the parameter is not
imprinted by e−iθA|ψ〉 for unparametrized |ψ〉 and A = A†.
Unlike previous analyses, one can now clearly see from (14)
that the quality of the path identity operation, i.e., the close-
ness of |T | to 1, determines the sensitivity that is possible
using undetected photons, which is consistent with the phys-
ical demand that the sensitivity must vanish for |T | = 0. For
|T | = 1, one sees that, at the optimal angle θ = π/2, the QFI
scales as the product of the seed laser intensity O(β2) with
a factor scaling as the square of the downconverted photon
intensity O(e4

√
2g). This scaling shows that the phase sensitiv-

ity achievable in an SU(1,1) interferometer [44] with coherent
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state seed port [45–47] or an SPDC-beamsplitter combined
interferometer with coherent state seed port [16,48] is also
achievable in a ZWM interferometer, where the photons being
detected never propagate through the phase shift θ . Formula
(14) therefore indicates a tradeoff between the optimal sensi-
tivity and the quality of path-identity implementation.

IV. DISCUSSION

For future directions, we expect that, by combining several
pulsed SPDC and optical parametric oscillator sources with
varying pulse delays, a fiber-based, time-multiplexed demon-
stration of the nonperturbative ZWM effect is possible, with
potential applications including linear optical circuit char-
acterization, quantum computation, and distributed quantum
sensing. Finally, we note that states of the form (1) also appear
as effective descriptions as ground states of homogeneous
systems of massive interacting bosons. Microscopically, a
Bose-Einstein condensed zero-momentum mode serves as the
analog of the continuous-wave optical pump and the two-body
interaction implements the downconversion into opposite mo-
mentum modes. For example, the Bogoliubov ground state
of the weakly interacting Bose gas [49] and the Valatin-
Butler wave function describing strongly interacting boson
systems [50] have this form. Number-conserving versions of
these squeezed-state networks have also been studied [51–53].
Therefore, advances in methods for controlling the interaction
strength could lead to a variety of ZWM effect analogues in
the bosonic matter-wave setting.
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APPENDIX A: GAUSSIAN STATES

We provide some background on the canonical formalism
of CV Gaussian states which closely follows the notational
conventions of Ref. [54], except we use “qp order” of the
row vector of canonical quadrature operators on M CV modes,
which is also used in Refs. [55,56]

R = (q1 . . . qM p1 . . . pM ), (A1)

where for any column vectors z, z′ ∈ R2M , [Rz,Rz′] =
i�(z, z′) with � the symplectic form on R2M . We conflate
the symbol � with its matrix and use � = ( 0 1M

−1M 0 ) where
1M is the M × M identity. We use † for the adjoint involution
(Hermitian conjugate), ᵀ for matrix transpose, and a bar for
complex conjugation.

The M-mode vacuum is |VAC〉 := |0〉⊗M . The row vector
a = (a1 . . . aM ) of annihilation operators, along with its
corresponding creation operators, are obtained from a linear

transformation of the canonical quadrature operators

A := (a, a†) = R 1√
2

(
1M 1M

i1M −i1M

)
. (A2)

We will call a unitary U generated by a (self-adjoint) homoge-
neous polynomial of order two in the creation and annihilation
operators a Gaussian unitary. A Gaussian unitary acts on the
canonical variables as

U †RU = RTU , (A3)

where TU is a 2M × 2M symplectic matrix with respect to
�. Any pure, zero-mean Gaussian state has the form U |VAC〉
for Gaussian unitary U , and is completely specified by its
covariance matrix

�U |VAC〉 := 〈Rᵀ ◦ R〉U |VAC〉 = 1
2 T ᵀ

U TU , (A4)

where for operators A, B the Jordan product is A ◦ B :=
1
2 AB + 1

2 BA. A general pure Gaussian state |ψ〉 is specified
by its mean vector m|ψ〉 := 〈R〉|ψ〉 and its covariance matrix,
the definition of the latter now being 〈(R − m|ψ〉)ᵀ ◦ (R −
m|ψ〉)〉|ψ〉. A general pure Gaussian state can be obtained from
a vacuum by applying a Gaussian unitary U acting on R as in
(A3) to the Fock vacuum, followed by a displacement unitary
D(z) := eiRz for z ∈ R2M .

APPENDIX B: NECESSITY OF AUTONNE-TAKAGI
DIAGONIZATION; EXPLICIT COVARIANCE MATRIX �|�L〉

It would be desirable to obtain the covariance matrix
�|�L〉 by straightforwardly computing the adjoint action of the
squeezing operator on the creation and annihilation operators

A′ := e− 1
2 a†La†ᵀ+h.c.Ae

1
2 a†La†ᵀ−H.c. (B1)

using the Baker-Campbell-Hausdorff formula. Although a
closed form is readily obtained in special cases in which L
is periodic with small period, in general one must be satisfied
with the series

A′ =
(

cosh(L) − sinh(L)

− sinh(L) cosh(L)

)
A. (B2)

The most direct route to �|�L〉, then, is the Autonne-Takagi
diagonalization of the squeezing matrix L [35].

From (3) and (5) of the main text, one can write explic-
itly the 8 × 8 covariance matrix �|�L〉 = �D�ᵀ with D =
1
2 (ν−

+I2 ⊕ ν−
−I2 ⊕ ν+

+I2 ⊕ ν+
−I2), where ν±

+ := e±2g
√

1+|T | and

ν±
− := e±2g

√
1−|T |. Calling Cj the jth column of �|�L〉, one
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finds that

C1 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ν+
− + ν+

+ ) sin2 θT + (ν−
+ + ν−

− ) cos2 θT

(ν−
+ − ν−

− ) cos θT

0

0
1
2 (ν+

− + ν+
+ − ν−

+ − ν−
− ) sin 2θT

(ν+
+ − ν+

− ) sin θT

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C2 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{}
ν−

+ + ν−
−

0

0

(ν−
− − ν−

+ ) sin θT

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{}
{}

(1 − |T |)(ν+
− sin2 θT + ν−

− cos2 θT ) + (1 + |T |)(ν+
+ sin2 θT + ν−

+ cos2 θT )√
1 − |T |2(ν−

+ − ν−
− ) cos θT

0

0
1−|T |

2 (ν+
− − ν−

− ) sin 2θT + 1+|T |
2 (ν+

+ − ν−
+ ) sin 2θT√

1 − |T |2(ν+
+ − ν+

− ) sin θT

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{}
{}
{}

(1 − |T |)ν−
+ + (1 + |T |)ν−

−
0

0√
1 − |T |2(ν−

− − ν−
+ ) sin θT

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{}
{}
{}
{}

(ν+
+ + ν+

− ) cos2 θT + (ν−
+ + ν−

− ) sin2 θT

(ν+
+ − ν+

− ) cos θT

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{}
{}
{}
{}
{}

ν+
− + ν+

+
0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{}
{}
{}
{}
{}
{}

(1 − |T |)(ν+
− cos2 θT + ν−

− sin2 θT ) + (1 + |T |)(ν+
+ cos2 θT + ν−

+ sin2 θT )√
1 − |T |2(ν+

+ − ν+
− ) cos θT

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{}
{}
{}
{}
{}
{}
{}

(1 − |T |)ν+
+ + (1 + |T |)ν+

−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B3)

where the blank entries are specified by previous columns because �
ᵀ
|�L〉 = �|�L〉.
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APPENDIX C: QUANTUM FISHER INFORMATION
FOR |�L(θ)〉 PROBE

Due to the fact that a phase shift θ on the BI mode is
equivalent to taking a complex transmissivity parameter T ,
the probe state is

|�L(θ )〉 := eH|β〉AS
|0〉BS

|0〉BI
|0〉X , (C1)

where we take β ∈ R and H := 1
2 a†La†ᵀ − H.c. where L is

the same as in the main text except with θT �→ θ . We de-
fine the characteristic function of an M-mode CV quantum
state ρ by

χρ (z) := trρeiRz, (C2)

which fully specifies the state ρ via the inverse relation

ρ = 1

(2π )M

∫
d2Mz χρ (z)e−iRz. (C3)

Using this relation and the quantum Fisher information
on the pure-state manifold {|�L(θ )〉 : θ ∈ [0, 2π )} given by
F (θ ) = −2∂2

ξ |〈�L(θ )|�L(ξ )〉|2|ξ=θ gives the explicit formula

for F (θ ) in terms of mean vector and covariance [57,58]

F (θ ) = dm|�L (θ )〉
dθ

�−1
|�L (θ )〉

(
dm|�L (θ )〉

dθ

)ᵀ

+ 1

4
tr

[(
�−1

|�L (θ )〉
d�|�L (θ )〉

dθ

)2
]
. (C4)

When the AS mode is seeded by a coherent state |β〉 with
energy |β|2 much larger than the energy due to quadrature
noise from SPDC, it is only necessary to keep track of
the first term in (C4) because it scales as O(β2) whereas
the second term does not depend on β. From the diagonal-
ization �|�L (θ )〉 = �D�ᵀ, it is straightforward to compute
�−1

|�L (θ )〉. The mean vector m|�L (θ )〉 can be obtained by
again appealing to the Autonne-Takagi diagonalization. Note

that |β〉AS
= e− β2

2 eβa†
AS |0〉AS

, so to determine the equivalent
displacement D(z) satisfying D(z)eH|0〉AS

|0〉BS
|0〉BI

|0〉X =
eH|β〉AS

|0〉BS
|0〉BI

|0〉X , one computes [with our convention
(a1, a2, a3, a4) := (aAS , aBS , aBI , aX )]

eHa†
1e−H = W†e

1
2

∑4
j=1

[
λ j a

†2
j − H.c.

]
Wa†

1W†e− 1
2

∑4
j=1

[
λ j a

†2
j − H.c.

]
W

= W†e
1
2

∑4
j=1

[
λ j a

†2
j − H.c.

]
(a†W †)1e− 1

2

∑4
j=1

[
λ j a

†2
j − H.c.

]
W

= W†e
1
2

∑4
j=1

[
λ j a

†2
j − H.c.

](a†
AS

e−iθ − a†
BI

e−iθ

√
2

)
e− 1

2

∑4
j=1

[
λ j a

†2
j − H.c.

]
W

= e−iθ

√
2
W†(cosh g

√
1 + |T |a†

AS
− sinh g

√
1 + |T |aAS − cosh g

√
1 − |T |a†

BI
+ sinh g

√
1 − |T |aBI )W

= 1

2
(cosh g

√
1 + |T |(a†

AS
+ e−iθ a†

BS
) − sinh g

√
1 + |T |(aAS − aBI )

− cosh g
√

1 − |T |(e−iθ a†
BS

− a†
AS

) + sinh g
√

1 − |T |(
√

1 + |T |aBS −
√

1 − |T |aX )), (C5)

where the fourth line uses the adjoint action of the unitary squeezing operator on the creation operator, which follows from
e

1
2 (ra†2−ra2 )qe− 1

2 (ra†2−ra2 ) = e−rq. The fifth line uses W†a†W = a†W . By calculating also eHa1e−H, one can determine the
displacement D(z) such that the probe state can be written D(z)eH|VAC〉ASBSBI X and, thereby, the mean vector m|�L (θ )〉. One
finds that

dm|�L (θ )〉
dθ

= − β√
2

(cosh g
√

1 + |T | − cosh g
√

1 − |T |)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
sin θ

0
0
0

cos θ

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C6)

The first term of (C4) is

dm|�L (θ )〉
dθ

�D−1�ᵀ dm|�L (θ )〉
dθ

= β2

2
(cosh g

√
1 + |T | − cosh g

√
1 − |T |)2[(e−2g

√
1−|T | + e−2g

√
1+|T |) cos2 θ

+ (e2g
√

1−|T | + e2g
√

1+|T |) sin2 θ ], (C7)

and the second term of (C4) is o(β2).
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