
PHYSICAL REVIEW A 109, 023703 (2024)

Resonant Schrödinger cat states in circuit quantum electrodynamics
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We propose a fast scheme to generate Schrödinger cat states in a superconducting resonator using a con-
tinuously driven qubit without resorting to the dispersive regime, two-photon drives, or engineered two-photon
dissipation. We provide analysis for when the qubit is on and off resonance from the drive. We extend our analysis
to account for a third level in a weakly anharmonic qutrit. We also discuss the case of a strongly anharmonic
qutrit. Throughout the paper, we corroborate our analytical results with numerical simulations in the presence of
energy relaxation and dephasing of the qubit and resonator using realistic experimental parameters.
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I. INTRODUCTION

Quantum theory is driving an innovative transformation
that extends beyond the realms of physics, profoundly impact-
ing diverse fields such as information processing, metrology,
and communication. Notably, quantum information process-
ing and computing exhibit capabilities that far exceed those of
classical devices. This advantage stems from the unique, non-
classical characteristics inherent in quantum systems, which
cannot be emulated by devices operating solely on classical
principles.

Nonclassical states, such as cat states, have played a sig-
nificant role in quantum theory due to their incorporation of
two main properties: superposition and entanglement. These
states are valuable resources for information processing and
computing. Cat states, specifically, are a quantum superposi-
tion of two well-defined macroscopic states and are inspired
by Schrödinger’s famous thought experiment involving a
classical macroscopic system entangled with a quantum mi-
croscopic system [1].

In the field of quantum optics, cat states refer to a
phenomenon in which an electromagnetic field mode exists in
a superposition of two diametrically opposed states. Typically,
the superposed states are well-separated coherent states. Here,
we specify cat states as the superposition of opposite-phase
coherent states. These states have experienced a recent
resurgence in interest for two main reasons. First, cat states
provide a valuable resource for investigating fundamental
aspects of quantum mechanics and pushing the boundaries of
quantum coherence. As the size of the cat state grows, moving
from mesoscopic or microscopic to macroscopic physics, it
allows for the exploration of foundational questions. This
growth in size, measured by the relative separation of the
two coherent states, enables researchers to study the limits
of quantum coherence [2]. Second, cat states have generated
interest in the development of error correction codes for

*mmayyash@uwaterloo.ca
†matteo.mariantoni@uwaterloo.ca

quantum computation. They can be used to encode logical
qubits, making amplitude damping or photon loss errors more
easily correctable [3].

Circuit quantum electrodynamics (QED) has emerged as
a valuable test bed for investigating intriguing light-matter
interaction phenomena that are othwerwise inaccessible to
researchers relying on natural atoms and light sources [4].
By exploring the interaction between qubits and quantized
microwave photons, circuit QED offers a versatile platform
for generating cat states within superconducting resonators.

The generation of cat states has been extensively stud-
ied theoretically [5–13] and has seen numerous experimental
demonstrations in various platforms [14–24]. These experi-
mental demonstrations encompass the realization of cat states
in microwave fields [25], the manipulation of motional de-
grees of freedom in trapped ions [22], and the creation of
phononic cats in a mechanical resonator [26].

In the context of circuit QED, the most pertinent methods
for generating cat states are listed here. A Kerr-nonlinear res-
onator can be initialized in a coherent state, then time-evolved
and measured at specific times to create a cat state [27]. A
cat state can be synthesized one Fock state at the time by
using an excited ancillary qubit, which loads the resonator
by performing resonant Rabi swaps [28]. An ancillary qubit
can also be used in the strong dispersive regime along with
resonator-dependent qubit pulses and qubit-dependent res-
onator displacements [29,30]. A dissipation-based approach
can yield cat states as the steady state of a system driven by
a two-photon process along with an engineered two-photon
loss [31–33]. Lastly, cat states can be generated and stabilized
using a Kerr-nonlinear resonator driven with a parametric two-
photon drive [34,35]. However, in order to fully realize the
potential of a bosonic cat code [36], it is necessary to establish
a reliable technique for generating cat states on timescales
shorter than those required in all the aforementioned methods.

In this paper, we propose an approach for producing cat
states in a superconducting resonator building upon a previ-
ous cavity QED proposal [37]. We significantly extend the
analysis offered in that proposal, clarify a few pitfalls in-
herent to that proposal, and examine examples with realistic
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parameters based on a circuit QED implementation. Our
method involves a driven qubit-resonator system, with the
driving focused exclusively on the ancillary qubit. This driv-
ing can be either resonant or detuned, although we find that
resonant driving yields larger cat states. By implementing our
method, the photon number, which coincides with the size of
the cat state, grows quadratically over time when the drive
and resonator are perfectly resonant. This quadratic growth
allows for a major speed-up compared with alternative meth-
ods using identical setup parameters to generate a cat state.
Furthermore, our method reliably produces cat states with the
parity depending on the qubit state. It is important to note that
the parity (even or odd) of the cat state is contingent upon the
state of the qubit. Overall, our approach offers a promising
avenue for generating cat states in superconducting resonators
efficiently and reliably.

The paper outline is as follows: In Sec. II, we present
the theoretical framework for a resonant and detuned driven
qubit-resonator system. We derive the precise conditions nec-
essary to achieve a cat state in the resonator. In Sec. III, we
extend the theory to account for a three-level system (qutrit) of
varying anharmonicity. We discover a dark state in the weakly
anharmonic regime, resulting in another nonclassical state in
the resonator: a superposition of a vacuum state and a cat state.
We also discuss the use of the qubit vs qutrit analysis depend-
ing on the anharmonicity of the implementation scheme, i.e.,
whether a circuit is closer to a qubit or qutrit (e.g., charge qubit
vs transmon qubit). Additional experimental considerations,
such as decoherence and spurious driving of the resonator, are
discussed in Appendixes A and C, respectively. In Sec. IV,
we discuss our method in comparison with other widespread
methods. We provide a summary and concluding remarks
in Sec. V.

II. DRIVEN QUBIT-RESONATOR SYSTEM

The interaction between a qubit and a resonator can be ef-
fectively described by the quantum Rabi model (QRM), which
operates under the electric dipole and single mode approx-
imations. In our study, we specifically investigate the QRM
in the presence of a continuous qubit drive. It is important
to note that we choose to operate our system in a parameter
regime where the usual rotating wave approximation (RWA),
which is commonly used to obtain the Jaynes-Cummings
model (JCM), cannot be employed. This approach allows us
to explore a different aspect of the qubit-resonator interaction
and gain further insights into its behavior. By adding a drive to
the qubit, we arrive at the driven QRM. The drive dresses the
qubit frequency and, as a result, it affects its interaction with
the resonator. The drive parameters now play a crucial role in
determining the regimes where an RWA is applicable.

In Sec. II A, we begin by stating the system Hamiltonian
and establishing the necessary conditions for implementing
an RWA within the framework of qubit-drive resonant con-
ditions. In Sec. II B, we delve into the RWA Hamiltonian
and explore how a second, distinct RWA can be imposed
under strong driving conditions. Furthermore, we explore the
application of this approach in generating a cat state and
encoding a qubit state in the resonator. We discuss the ef-
fect of the neglected counter-rotating driving and interaction

terms manifesting in the Bloch-Siegert shifts. In Sec. II C,
we expand the theory to cover arbitrary detuning scenarios.
We discover that it remains feasible to generate a cat state,
similar to the resonant case, albeit with a reduced number
of photons. Throughout the section, we corroborate the ro-
bustness of our predictions by numerically solving a master
equation that accounts for qubit relaxation, dephasing, and
resonator relaxation described in Appendix A.

A. Rotating wave approximation Hamiltonian

We start by considering the Hamiltonian associated with
the driven QRM that reads

Ĥ = h̄ωq

2
σ̂z + h̄ωrâ

†â + h̄g(σ̂+ + σ̂−)(â† + â)

+ h̄� cos (ωdt )(σ̂+ + σ̂−), (1)

where σ̂z = |e〉〈e| − |g〉〈g| describes the population difference
between the excited energy state |e〉 and the ground state |g〉
of the qubit, σ̂+ = |e〉〈g| and σ̂− = σ̂

†
+ are the raising and

lowering operators of the qubit, â and â† are the annihilation
and creation operators of the resonator, ωq is the transition
(angular) frequency of the qubit, ωr is the resonance (angular)
frequency of the resonator, g is the coupling strength between
the qubit and resonator, � is the strength of the classical field,
ωd is the classical field driving frequency, and t is time.

The Hamiltonian of Eq. (1) can be written in the frame
of the driving field by means of the unitary transformation
Û = exp[−iωdt (σ̂z/2 + â†â)],

Ĥd = Û †ĤÛ + ih̄ ˙̂U †Û = h̄�

2
σ̂z + h̄δâ†â

+ h̄g(σ̂+â + σ̂−â† + e+i2ωdt σ̂+â† + e−i2ωdt σ̂−â)

+ h̄�

2
(σ̂+ + σ̂− + e+i2ωdt σ̂+ + e−2iωdt σ̂−), (2)

where � = ωq − ωd, δ = ωr − ωd, and we use the exponential
definition of cos(x) = (eix + e−ix )/2.

The Hamiltonian of Eq. (2) can be simplified by imposing
a set of RWA conditions that read

ωq − ωr � ωq + ωr and g � min(ωq, ωr ), (3a)

g � 2ωd, and (3b)

� � 4ωd. (3c)

The conditions in Eq. (3a) are those used to derive the JCM
from the QRM. The other two conditions allow us to ac-
count for the presence of the driving field. The condition in
Eq. (3b) is necessary to eliminate the counter-rotating interac-
tion terms g(e+i2ωdt σ̂+â† + e−i2ωdt σ̂−â), whereas the condition
in Eq. (3c) is required to drop the counter-rotating driving
terms �(e+i2ωdt σ̂+ + e−i2ωdt σ̂−)/2. Under all these RWA con-
ditions, the Hamiltonian can be simplified to read

Ĥd
RWA = h̄�

2
σ̂z + h̄δâ†â + h̄g(σ̂+â + σ̂−â†)

+ h̄�

2
(σ̂+ + σ̂−). (4)

This Hamiltonian, which is free of any time-dependent terms,
serves as the basis for the work presented in this section.
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FIG. 1. Characterization of cat states under resonance conditions. All the numerical simulations of the master equation are performed
with QuTiP [38,39]. The parameters used for the simulations are � = 2π × 2 GHz, � = δ = 0, ωq = 2π × 5 GHz, g = 2π × 20 MHz,
γ1 = κ = 500 kHz, and γφ = 1 MHz. (a), (b) P|e〉 and 〈â†â〉 vs normalized time gt/2π . (c) Heatmap of the Wigner function W at gt/2π = 1.0
when the qubit is measured in |e〉. This choice of time corresponds to an ideal cat state, accounting for the driving Bloch-Siegert shift. The
simulations are performed in the laboratory frame and, thus, the resonator state rotates with e−iωrt .

B. Resonant strong driving regime

We start by considering the Hamiltonian of Eq. (4)
under the resonant condition � = 0. To simplify the no-
tation, we define Ĥd

0 = h̄�(σ̂+ + σ̂−)/2 + h̄δâ†â and Ĥd
I =

h̄g(σ̂+â + σ̂−â†). We then apply the unitary transformation
Û0 = exp(−iĤ0t/h̄), which allows us to obtain the interaction
picture Hamiltonian

Ĥ (I)
RWA = Û †

0 ĤIÛ0 = h̄g

2
(|+〉〈+| − |−〉〈−|

+ ei�t |+〉〈−| − e−i�t |−〉〈+|)âe−iδt + H.c. (5)

|±〉 are the dressed basis qubit eigenstates, with the property
that σ̂x|±〉 = ±|±〉.

The Hamiltonian of Eq. (5) reveals two distinct interactions
taking place at different timescales. In one of them, two terms
are modulated by the driving field and exhibit oscillations with
functional dependence e±i�t . These terms can be neglected by
imposing the strong driving condition,

� � |δ|, g. (6)

This condition, however, must be considered at the same time
as the condition of Eq. (3c); therefore, the complete condition
reads

g, |δ| � � � 4ωd. (7)

This means that � is characterized by a lower bound as well
as an upper bound; that is, it cannot be arbitrarily large.1 This
assumption makes it possible to obtain the effective Hamilto-
nian

Ĥ (I)
eff = h̄g

2
(|+〉〈+| − |−〉〈−|)(â†e+iδt + âe−iδt ). (8)

The dynamics associated with this Hamiltonian result in a
conditional displacement of the resonator state based on the
qubit state. Specifically, if the qubit is in state |+〉, the res-
onator state is displaced in a certain direction. Conversely, if
the qubit state is in |−〉, the resonator state is displaced in

1The condition in Eq. (7) is the correction needed to make the
theory of Ref. [37] work for a driven qubit-resonator in circuit QED.

the opposite direction. Explicitly, the time-evolution operator
generated by this Hamiltonian is2

Ûeff(t, 0) = |+〉〈+|D̂(α) + |−〉〈−|D̂(−α), (9)

where D̂(α) = exp(αâ† − α∗â) is the displacement operator
and α = −g(eiδt − 1)/2δ; when δ → 0, then α = −igt/2.
Thus, if we choose the initial state to be |ψi〉 = |g〉|0〉 =
(|+〉 + |−〉)|0〉/√2, the time evolution of the system leads,
in the interaction picture, to the state

|ψ (t )〉(I) = 1√
2

(|+〉|α〉 + |−〉|−α〉)

= 1

2
|g〉(|α〉 + |−α〉) + 1

2
|e〉(|α〉 − |−α〉). (10)

If the qubit is measured to be in |g〉, the resonator is left
in a state that is proportional to the superposition of two
coherent states, 〈g||ψ (t )〉(I) ∝ |α〉 + |−α〉; this state is com-
monly referred to as an even cat state. On the other hand,
if the qubit is measured in |e〉, the resonator is in the state
〈e||ψ (t )〉(I) ∝ |α〉 − |−α〉; this state is known as an odd cat
state.

Using this procedure, we can encode an arbitrary state
of a qubit, |ψq〉 = cg|g〉 + ce|e〉 (with |cg|2 + |ce|2 = 1), into
the resonator via cat states. Let the initial state be |ψi〉 =
(cg|+〉 + ce|−〉)|0〉. After time-evolving for the desired period
and measuring in the bare basis {|g〉, |e〉}, the resonator is left
in a state ∝cg|α〉 ± ce|−α〉. This encoding is an instance of
a bosonic logical qubit encoding using two-component cat
states [29,36].

Figure 1 displays the results of numerical simulations of
the complete system Hamiltonian of Eq. (1), without any ap-
proximations. These simulations are performed in presence of
both qubit and resonator decoherence by means of a Lindblad
master equation, as explained in Appendix A. Figure 1(a)
shows the probability of the qubit to be in the excited state,
P|e〉. This probability shows that, as the cat state grows, the
qubit population converges to an equal superposition of |g〉

2Note that, unlike our method, the displacements using typical
dispersive methods are conditioned on the bare basis {|g〉, |e〉}.
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and |e〉. Figure 1(a) indicates that the photon number n =
〈â†â〉 grows quadratically in time. Interestingly, this behav-
ior persists even in presence of decoherence. The numerical
results closely follow the analytical prediction |α|2 = g2t2/4.

To visualize the cat states, we elect to represent them in
phase space by means of the Wigner function [40]

W (α, α∗) = 1

π h̄
Tr(D̂(2α)eiπ â†âρ̂r ), (11)

where ρ̂r is the resonator density matrix.3 Figure 1(c) shows
W after measuring the qubit for gt/2π = 1.0.

The numerical simulations based on the Hamiltonian of
Eq. (1) do not employ the approximations of Eqs. (3) and (7).
This exact Hamiltonian can be rewritten in the rotating frame
and interaction picture as

Ĥ (I) = h̄

2
(|+〉〈+| − |−〉〈−| + ei�t |+〉〈−| − e−i�t |−〉〈+|)

×

⎛⎜⎜⎜⎜⎜⎝
�

2
ei2ωdt︸ ︷︷ ︸

driving
Bloch-Siegert shift

+

interaction
Bloch-Siegert shift︷ ︸︸ ︷
gâ†ei(2ωd+δ)t +gâe−iδt

⎞⎟⎟⎟⎟⎟⎠ + H.c.,

(12)

which includes the counter-rotating driving and interac-
tion terms. These terms lead to the driving and interaction
Bloch-Siegert shifts, respectively. These two effects combined
together result in the oscillation of the amplitude and weight
coefficients of the cat states’ lobes [41]. We are only working
in the strong-coupling regime where the interaction Bloch-
Siegert shift is negligible. In the Supplemental Materials of
Ref. [42], we show a movie comparing side-by-side the ap-
proximated analytical and exact numerical simulations of the
cat state evolution. Except for the oscillations due to the
driving Bloch-Siegert shift, the two solutions very closely re-
semble each other. It is worth noting that these oscillations can
be tracked deterministically, therefore allowing us to measure
an ideal cat state.

C. Detuned regime

Thus far, our analysis has been confined to the resonance
condition where � = 0. However, to achieve scalability, it is
essential to explore the generation of cat states without relying
solely on qubit-drive resonance. One possible application of
our theory is the generation of cat states in multiple driven
qubit-resonator systems. In pursuit of this goal, we extend the
theory to the qubit-drive detuned regime, where � 
= 0.

We consider the Hamiltonian of Eq. (12) when � 
= 0. In
this case,

Ĥ (I)
det = h̄

2ε(� + ε)
[(� + ε)�|+̃〉〈+̃| + (� + ε)2eiεt |+̃〉〈−̃|

− �2e−iεt |−̃〉〈+̃| − (� + ε)�|−̃〉〈−̃|]

×
(

�

2
ei2ωdt + gâe−iδt + gâ†ei(2ωd+δ)t

)
+ H.c., (13)

3In our case, ρ̂r is obtained after performing a qubit state projective
measurement.

ε = (�2 + �2)1/2 and the detuned qubit orthonormal ba-
sis is defined as |+̃〉 = sin(θ/2)|g〉 + cos(θ/2)|e〉 and |−̃〉 =
cos(θ/2)|g〉 − sin(θ/2)|e〉, where the mixing angle θ =
arctan(�/�). Note that, if we set � = 0, we recover the
results of Sec. II B. If � � �, then |+̃〉 � |+〉 and |−̃〉 �
|−〉; on the other hand, if � � �, we have |+̃〉 � |e〉 and
|−̃〉 � |g〉.

We now follow a similar procedure as in Sec. II B but in
presence of detuning. Assuming all the conditions of Eq. (3)
to hold true and additionally imposing the strong driving-
detuning condition

g, |δ| � ε � 4ωd, (14)

we perform an RWA obtaining the effective Hamiltonian

Ĥ (I)
det, eff = h̄g�

2ε
(|+̃〉〈+̃| − |−̃〉〈−̃|)(â†e+iδt + âe−iδt ). (15)

This Hamiltonian generalizes that of Eq. (8) and, thus, gener-
ates a resonator displacement conditioned on |±̃〉. When ini-
tializing the system in state |ψi〉 = |g〉|0〉 = [sin(θ/2)|+̃〉 +
cos(θ/2)|−̃〉]|0〉, we obtain the time-evolved state

|ψ (t )〉(I) =
[

sin

(
θ

2

)
|+̃〉|̃α〉 + sin

(
θ

2

)
|−̃〉|−α̃〉

]

=
{

|g〉
[

1

2
sin (θ )|̃α〉 + sin2

(
θ

2

)
|−α̃〉

]

+ |e〉
[

1

2
sin (θ )|̃α〉 − cos2

(
θ

2

)
|−α̃〉

]}
, (16)

where α̃ = −g�(eiδt − 1)/2εδ; when δ → 0, then α̃ =
−ig�t/2ε. The state described by Eq. (16) exhibits a super-
position of coherent states with opposite phases, featuring
distinct weight coefficients. This results in what we refer
to as an asymmetrically weighted cat state. Remarkably, cat
states can be generated even when � 
= 0, without necessarily
requiring the system to be in the strong dispersive regime or
resonant qubit-drive regime. However, it is essential to note
that cat states produced in the detuned regime possess smaller
amplitudes compared with those generated resonantly, even
when subjected to time-evolution duration. This amplitude
difference arises because |̃α| < |α|.

Under detuning conditions, the Bloch-Siegert and ac Stark
shifts’ oscillations can be harnessed to create an ideal cat state.
This happens when the distinct weight coefficients become
identical at specific times, resulting in the formation of the
ideal cat state.

Figure 2 displays the results of numerical simulations sim-
ilar to those in Fig. 1 but under detuned conditions. The
photon number behaves similarly to the resonant case, |̃α|2 =
g2�2t2/4ε2, growing quadratically in time. This analytical
result is validated by the numerical simulations.

III. EXTENSION TO A QUTRIT

In most implementation schemes, the device is rarely a true
two-level system but rather infinite dimensional. Depending
on the degree of anharmonicity in a system, nearby transitions
can significantly impact the system’s dynamics. Many circuit
QED implementations, including transmon, charge, and flux
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FIG. 2. Characterization of cat states under detuned conditions. The parameters used for these simulations are identical to those used in
Fig. 1, except for � = 2π × 500 MHz. (a), (b) P|e〉 and 〈â†â〉 vs normalized time gt/2π . (c) Heatmap of the Wigner function W at gt/2π = 1.0.
By selecting this specific time, an ideal cat state is achieved, characterized by equal weight coefficients. This outcome is attained by leveraging
the oscillations resulting from the driving Bloch-Siegert shift.

qubits (at the symmetry point), can be described as �-type
(cascade) qutrits when truncated to the first three levels (see
Fig. 3). In this section, we extend our considerations to a
driven �-type qutrit interacting with a resonator, where both
transitions are influenced by the drive and resonator.

In Sec. III A, we state the system Hamiltonian and derive
the necessary RWA conditions for a weakly anharmonic qutrit.
We show that the cat-state-generating protocol can be success-
fully generalized with some modifications. We also generalize
the mapping of a qubit state into the resonator state for the
qutrit-resonator system. In Sec. III B, we examine the qutrit
in the strongly anharmonic limit. While qubit considerations
remain largely applicable, there are notable perturbations aris-
ing from leakage and interference associated with the third
state. We discuss the case of an arbitrarily anharmonic qutrit
in Appendix D.

A. Extension to a weakly anharmonic qutrit

We start by generalizing the driven QRM to include a qutrit
with two allowed transitions. The Hamiltonian for this system
reads

Ĥ = Ĥ0 + ĤI + Ĥd, (17a)

FIG. 3. Schematic of a cascade-type (�-type) qutrit with both
transitions simultaneously coupled to a resonator and a classi-
cal drive. A cascade qutrit has selection rules only permitting
nearest-neighbor transitions, i.e., |g〉 ↔ |e〉 and |e〉 ↔ |f〉 are allowed
transitions, while |g〉 ↔ |f〉 is forbidden.

where

Ĥ0 = h̄ωeg

2
(|e〉〈e| − |g〉〈g|) + h̄ω̃f

2
|f〉〈f| + h̄ωrâ

†â, (17b)

Ĥd = h̄ cos (ωdt )[�1(σ̂1+ + σ̂1−) + �2(σ̂2+ + σ̂2−)], (17c)

and

ĤI = h̄[g1(σ̂1+ + σ̂1−) + g2(σ̂2+ + σ̂2−)](â† + â). (17d)

Here, we define ω̃f = 2ωfe + ωeg, σ̂1+ := |e〉〈g| (σ̂1− = σ̂
†
1+)

as the raising (lowering) operator for the first transition, |g〉 ↔
|e〉, with frequency ωeg and σ̂2+ := |f〉〈e| (σ̂2− = σ̂

†
2+) as the

raising (lowering) operator for the second transition, |e〉 ↔
|f〉, with frequency ωfe. Also, �1 (g1) is the coupling strength
between the drive (resonator) and the first transition, and
�2 (g2) is the coupling strength between the drive (resonator)
and the second transition.

We can rewrite the Hamiltonian of Eq. (17) in a ro-
tating frame by means of the unitary transformation Û =
exp{−it[ωd(|e〉〈e| − |g〉〈g|) + ω̃f|f〉〈f| + 2ωdâ†â]/2},

Ĥd = h̄�1

2
(|e〉〈e| − |g〉〈g|) + h̄δâ†â

+ h̄�1

2
(σ̂1+ + σ̂1− + ei2ωdt σ̂1+ + e−i2ωdt σ̂1−)

+ h̄�2

2
(eiχ̃t/2σ̂2+ + e−iχ̃t/2σ̂2−

+ ei(ω̃f+ωd )t/2σ̂2+ + e−i(ω̃f+ωd )t/2σ̂2−)

+ h̄[g1
(
eiωdt σ̂1+ + e−iωdt σ̂1−

)
+ g2(e+i(ω̃f−ωd )t/2σ̂2+ + e−i(ω̃f−ωd )t/2σ̂2−)]

× (eiωdt â† + e−iωdt â), (18)

where �1 = ωeg − ωd, δ = ωr − ωd, and χ̃ = ω̃f − 3ωd.
Henceforth, we set �1 = 0 so that the drive is on resonance
with the first transition. Typically, ξ = ωfe − ωeg is the anhar-
monicity parameter between the first and second transitions.
Depending on the energy-level spacing of a given circuit,
ξ can be negative or positive. When �1 = 0, the parameter
χ̃ becomes proportional to the anharmonicity ξ ; χ̃ = ω̃f −
3ωeg = 2ωfe − 2ωeg = 2ξ .
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For a qubit implementation like the transmon, the first
and second transition frequencies are usually close and ξ is
negative. Additionally, the transition matrix elements of a
transmon between the nth and (n + 1)st states are proportional
to

√
n + 1. Thus, to simplify the analytical calculations, we

assume a perfectly harmonic qutrit where χ̃ = 0, g2 = √
2g1,

and �2 = √
2�1. We use this as a toy model to derive ana-

lytical results for a weakly anharmonic qutrit. Following this,
numerical simulations with realistic anharmonicity values are
used to corroborate these outcomes. We, again, simplify the
Hamiltonian of Eq. (18) by imposing a set of RWA conditions
that read

ωeg − ωr � ωeg + ωr and
√

2g1 � min(ωeg, ωr ), (19a)
√

2g1 � 2ωd, and (19b)
√

2�1 � 4ωd. (19c)

The conditions of Eq. (19a) are the usual conditions needed
to arrive at a qutrit JCM Hamiltonian. The condition in
Eq. (19b) is necessary to eliminate the counter-rotating inter-
action terms, whereas the condition in Eq. (19c) is required to
drop the counter-rotating driving terms. Under all these RWA
conditions, the simplified Hamiltonian reads

Ĥd
RWA = h̄�1

2
(σ̂1+ + σ̂1− +

√
2σ̂2+ +

√
2σ̂2−) + h̄δâ†â

+ h̄g1(σ̂1+ +
√

2σ̂2+)â + h̄g1(σ̂1− +
√

2σ̂2−)â†.

(20)

We now diagonalize the qutrit part of the free Hamiltonian,
h̄�1(σ̂1+ + σ̂1− + √

2σ̂2+ + √
2σ̂2−)/2, to find the eigenval-

ues and eigenstates:

λ0 = 0, |v0〉 = 1√
3

(−
√

2|g〉 + |f〉), and (21a)

λ± = ± h̄�1

√
3

2
, |v±〉 = 1√

3

(
1√
2
|g〉 ±

√
3

2
|e〉 + |f〉

)
.

(21b)

The zero-eigenvalue state |v0〉 is commonly referred to as a
dark state in quantum optics [43]. In this system, this qutrit
state does not get populated by the classical drive nor does it
exchange photons with the resonator. This can also be seen as
a mathematical feature of the zero eigenvalue, which makes it
not evolve in time.

Now that we found the dressed qutrit states, we
follow the same procedure as in the qubit case
by proceeding to the interaction picture. We define
Ĥd

0 = h̄�1(σ̂1+ + σ̂1−
√

2σ̂2+ + √
2σ̂2−)/2 + h̄δâ†â and

Ĥd
I = h̄g1(σ̂1+ + √

2σ̂2+)â + h̄g1(σ̂1− + √
2σ̂2−)â†. Then,

the interaction picture Hamiltonian reads

Ĥ (I) = h̄g1

[√
3

2
(|v+〉〈v+| − |v−〉〈v−|)

−
√

3

6
|v+〉〈v−|ei�1

√
3t +

√
3

6
|v−〉〈v+|e−i�1

√
3t

−
√

4|v+〉〈v0|ei�1
√

3t/2 +
√

4|v−〉〈v0|e−i�1
√

3t/2

+ 1√
3
|v0〉〈v+|e−i�1

√
3t/2

− 1√
3
|v0〉〈v−|ei�1

√
3t/2

]
âe−iδt + H.c. (22)

Similar to the qubit case, the Hamiltonian of Eq. (22)
comprises two distinct interactions: a time-independent (di-
agonal) interaction and a time-dependent-drive-modulated
(off-diagonal) interaction. We now impose the strong driving
condition, g1, |δ| � �1, which when combined with the driv-
ing RWA condition of Eq. (19c) becomes4

g1, |δ| � �1 � 4ωd/
√

2. (23)

This allows us to neglect the drive-modulated terms and obtain
the effective Hamiltonian

Ĥ (I)
eff = h̄g1

√
3

2
(|v+〉〈v+| − |v−〉〈v−|)(â†eiδt + âe−iδt ). (24)

This Hamiltonian generalizes that of Eq. (8) for our qutrit
case. Interestingly, it generates displacement in the resonator
conditioned on two of the three qutrit dressed basis states, |v+〉
and |v−〉.

We now analyze the dynamics stemming from the qubit
recipe for generating a cat state, where the initial state is
|ψi〉 = |g〉|0〉. We rewrite the qutrit state using the dressed
basis {|v0〉, |v+〉, |v−〉}, and we find that |ψi〉 = |g〉|0〉 =
(cg0|v0〉 + cg+|v+〉 + cg−|v−〉)|0〉, where cg0 = −√

2/3 and
cg± = 1/

√
6. Then, the interaction picture time-evolved state

is

|ψ (t )〉(I) = −
√

2

3
|v0〉|0〉 + 1√

6
|v+〉|α〉 + 1√

6
|v−〉|−α〉

= 1

6
|g〉(4|0〉 + |α〉 + |−α〉)

+ 1√
12

|e〉(|α〉 − |−α〉)

+ 1√
18

|f〉(2|0〉 + |α〉 + |−α〉), (25)

where α = √
3g1(eiδt − 1)/2δ; when δ → 0, then α =

−i
√

3gt/2. Since any term involving the dark state remains
unchanged in the time-evolved state. We find the resonator
vacuum state |0〉 coupled to |g〉 and |f〉 (does not couple to |e〉,
since 〈e|v0〉 = 0). Measuring the qutrit in |e〉 yields an odd
cat state in the resonator, exactly as in the qubit case. When
measuring the qutrit in either |g〉 or |f〉, another nonclassical
state within the resonator, which is a superposition of the
vacuum state and an even cat state, obtained; 〈g||ψ (t )〉(I) ∝
4|0〉 + |α〉 + |−α〉 and 〈f||ψ (t )〉(I) ∝ 2|0〉 + |α〉 + |−α〉.

This class of states is intriguing in its own right, exhibit-
ing varying Wigner-negative regions and interference patterns
[see Fig. 4(c)]. While the goal of this section is to investigate
cat states using qutrits, we briefly comment on the potential
uses of this class of states. When |α| � 1, the overlap between
the states {|0〉, |α〉, |−α〉} becomes very small, and the states

4Note that the qutrit bound is tighter than the qubit bound in Eq. (7).
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FIG. 4. Dynamics of cat states in a driven qutrit-resonator for different initial states. The parameters used for the simulations are �1 = 2π ×
1 GHz, �2 = √

2�1, g1 = 2π × 20 MHz, g2 = √
2g1, �1 = δ = 0, ωq = 2π × 5 GHz, ξ = −2π × 100 MHz, γ1 = κ = 500 kHz, γ2 = 2γ1,

and γφ = 1 MHz. The Wigner functions are obtained by projectively measuring the qutrit after a time-evolution period of g1t/2π = 0.61.
(a)–(c) The dynamics of the system when the initial state is |g〉|0〉. (d)–(f) The dynamics of the system when the initial state is |e〉|0〉. When
the qutrit is measured in |g〉, the resonator is found in a state very similar to that when the qutrit is measured in |f〉 [see Eqs. (25) and (26)].

are quasi-orthogonal. As a result, we can encode a logical
qutrit in the resonator, with each of the three states corre-
sponding to a logical qutrit state. This encoding generalizes
the qubit cat code to the case of a qutrit. Additionally, these
states can be employed to generate approximate Gottesman-
Kitaev-Preskill (GKP) states [44] by squeezing the state
orthogonally to the axis of displacement [45]. The resulting
state exhibits a Gaussian profile, as required in finite-energy
approximations of GKP states [36,46].

The presence of the dark state prevents us from determinis-
tically encoding a qubit state in the resonator using cat states.
This is because measuring the qutrit in |g〉 or |f〉 does not
leave a cat state in the resonator. To maximize the probability
of finding a cat state in the resonator, we seek an alternative
recipe. Initializing the qutrit in |e〉 removes |v0〉 and its sta-
tionary vacuum contribution due to its decoupling from the
dark state subspace. Therefore, we propose a new recipe for
a generating a cat state tailored to the qutrit. Let the system
start in an initial state |ψi〉 = |e〉|0〉 = (|v+〉 − |v−〉)|0〉/√2.
Then, the interaction picture time-evolved state for this initial
state is

|ψ (t )〉(I) = 1√
2

(|v+〉|α〉 − |v−〉|−α〉)

=
(

1√
12

|g〉 + 1√
6
|f〉

)
(|α〉 − |−α〉)

+ 1

2
|e〉(|α〉 + |−α〉). (26)

We note that a projective measurement on |g〉, |e〉, and |f〉
leaves a cat state in the resonator. While the specified initial

state yields a cat state, the parity remains conditional on the
qutrit state—exactly as in the qubit case. To encode a qubit
state, cg|g〉 + ce|e〉, in a cat state as described in Sec. II A, pre-
pare the system in an initial state |ψi〉 = (cg|v+〉 + ce|v−〉)|0〉.
After time-evolving for the desired period and measuring in
the bare basis {|g〉, |e〉, |f〉}, the resonator is left in a state
∝cg|α〉 ± ce|−α〉. This serves as a generalized procedure for
encoding a qubit state in a resonator using a driven qutrit-
resonator system.

The aim of the qutrit extension is to model a weakly anhar-
monic system, e.g., the transmon. Up until now, our work has
been based on the assumption of the qutrit’s perfect harmonic-
ity, which encompasses multiple assumptions. We previously
justified the perfect harmonicity of the coupling strengths. As
for the detuning between the transition frequencies, |ξ |, the
typical values are on the order of 100–300 MHz for a weakly
anharmonic system such as a transmon. Next, we show show
that the perfectly harmonic qutrit model serves as a very good
approximation for weakly anharmonic qutrits.

Figure 4 displays the results of numerical simulations of
the complete system Hamiltonian of Eq. (17), without any
approximations and using nonzero anharmonicity. These sim-
ulations are performed in presence of both qutrit and resonator
decoherence by means of a Lindblad master equation, as
explained in Appendix A. Figure 4(a) shows the occupation
probabilities of the qutrit states when the system is initial-
ized in |g〉|0〉. The probability of finding a cat state, for this
initial state, depends on measuring the qutrit in |e〉—which
is low. The Wigner functions of the resonator state after a
projective measurement on different qutrit states are shown
in Fig. 4. The Wigner functions of the states shown match the
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analytical predictions. The anharmonicity used for the sim-
ulations is ξ = −100 MHz.5 This anharmonicity is easily
achievable by the transmon. The effect of nonzero anhar-
monicity can be seen in the perturbed interference regions in
some of the aforementioned Wigner functions. Additionally,
the lobes of the cat states get slightly deformed, but this is
also due to the terms neglected in the strong driving RWA.

B. Strongly anharmonic limit

In this section, we discuss the limit of large anharmonic-
ity |ξ |, while maintaining the perfectly harmonic coupling
strengths. When |ξ | is very large compared with �1 and g1, the
second transition (|e〉 ↔ |f〉) is very far detuned from the first
transition (|g〉 ↔ |e〉). As a result, the driving barely affects
the second transition and the resonator is either decoupled
from or dispersively coupled to it depending on how far de-
tuned it is. In either case, the effective dynamics are those of a
driven qubit-resonator system with slight perturbations to the
cat state from small third state leakage population.

In Fig. 5, we show the results of numerical simulations
for such a regime. Figure 5(a) shows the occupation proba-
bilities with the |f〉 population fluctuating around 0.1 (10%).
Note that the sign of ξ does not change the dynamics for a
fixed set of selection rules. We can justify these arguments
analytically by explicitly performing an RWA that eliminates
terms oscillating with e±iχ̃t in the Hamiltonian of Eq. (18)
when |ξ | � �1, g1.

We can discuss this regime of |ξ | � �1, g1 in an experi-
mental implementation context. For a charge qubit (operating
at the degeneracy point), the anharmonicity between the two
transitions fits this strongly anharmonic regime. In this case,
the system behaves as a driven qubit-resonator. This can be
extrapolated to different circuit implementations such as flux-
based circuits in the appropriate regimes.

Up to this point, we have explored two extremes: the
weakly- and strongly anharmonic limits. Throughout our
discussion, we have consistently upheld the harmonic as-
sumption regarding the coupling strengths. However, for the
intermediate regimes, we extend our analytical framework, as
detailed in Appendix D, to address these scenarios while also
relaxing the assumptions concerning the coupling strengths.

IV. DISCUSSION

The goal of this section serves two purposes: first, to
contextualize our proposal in relation to other pertinent tech-
niques commonly employed in circuit QED, and second, to
explore the potential applicability of our method to qutrits
with varying selection rules.

A. Comparison with other methods

We briefly listed methods used to generate cat states rel-
evant to circuit QED in the introduction. The most relevant

5We performed simulations using anharmonicity values between 50
and 400 MHz. From 50 to ≈200 MHz, the qualitative predictions of
the perfectly harmonic qutrit hold true. See Appendix D for consid-
erations regarding arbitrary anharmonicity.

FIG. 5. Strongly anharmonic driven qutrit-resonator dynamics.
The parameters used for the simulations are �1 = 2π × 1 GHz,
�2 = √

2�1, g1 = 2π × 20 MHz, g2 = √
2g1, �1 = δ = 0, ωq =

2π × 5 GHz, ξ = 2π × 2 GHz, γ1 = κ = 500 kHz, γ2 = 2γ1, and
γφ = 1 MHz. The Wigner functions are obtained by projectively
measuring the qutrit after a time-evolution period of g1t/2π = 0.61.
The results resemble those of a driven qubit-resonator. The cat state
is displaced off-center due to the contributions of the |e〉 ↔ |f〉
transition.

techniques to date are an engineered two-photon loss method
[33,47], a dispersive method known as “qcMAP” [29,30] and
a two-photon driven Kerr nonlinearity (KNR) [34,35].

For the qcMAP, it depends on the ac-Stark shift, χ =
g2/(ωq − ωr ), and thus is limited by χ . The cat size for this
method is |αqcMAP(t )|2 � (15/(2(χt − π ))). It is also worth
noting that the dispersive conditional-displacement relies on
the bare basis and, as a result, requires a further qubit rotation
to place the coherent states in superposition. Meanwhile, in
the all-resonant case, our cat size is |α(t )| = g2t2/4. This
means that, for similar parameters,6 our proposal outperforms
the qcMAP by generating cats of the same size in a much
shorter time. The main premise of the qcMAP is the ability
to deterministically encode a qubit state into a resonator. As

6The qcMAP operates in the dispersive regime, so either ωr or ωq

has to be different from our resonant case.
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shown in Sec. II A, our method also allows for the encoding of
a qubit state in a resonator with a qubit-state-dependent parity,
cg|g〉 + ce|e〉 �→ cg|α〉 ± ce|−α〉. For a single encoded qubit,
this is not an issue since it can be tracked once the state is
prepared. However, for multiple encoded qubits, this becomes
an issue since they could have differing parities. A type of
“parity-fluid” protocol would need to be developed for this.
Alternatively, a possible remedy would be to repeat the state
preparation until the desired parity is obtained, enabled by the
fast quadratic growth of the cat.

The two-photon driven KNR method depends on the Kerr
nonlinearity of the system (â†2â2 with strength η) and the
strength of the two-photon drive. Cat states are instantaneous
degenerate eigenstates of the two-photon driven KNR, allow-
ing for adiabatic preparation. Additionally, a counter-diabatic
two-photon drive, as described in Ref. [48], can be used to
accelerate the adiabatic state preparation while leveraging
pulse optimization. In Ref. [34], no estimate of the cat size
as a function of system parameters are provided. However,
the authors showcase the ability to prepare cats with |α|2 ≈ 4
photons on a timescale τ � 1/η (accounting for reasonable
single-photon loss κ = η/250). Typically, η is at most on the
order of 10 MHz, and for such η values, the timescale is on the
order of 100 nanoseconds. Taking the resonator single-photon
loss into consideration, we can approximate our cat size (in the
all-resonant case) by |α(t )|2 � g2t2e−κt/4 (see Appendix A
for the details on this estimate and further decoherence con-
siderations). This means that even for modest values of g,
we can achieve the same size cat or even a larger one
without the need for pulse optimization or counter-diabatic
driving.

Lastly, the two-photon loss method partially overlaps with
the two-photon driven KNR protocol. When a resonator is
subjected to a two-photon drive and a two-photon dissipative
process, odd Fock states converge to the odd cat states and
even Fock states converge to the even cat state. The advan-
tage is that the steady states of the system are the desired
cat states. This is precisely the core of the two-photon loss
scheme. We think that our protocol is complementary to
this method. Explicitly, one can generate the cat state using
our protocol and ensure its confinement via the two-photon
loss scheme.

B. Qutrits with different selection rules

In our extension of the to a driven qutrit-resonator system,
we exclusively focused on the �-type qutrit. However, it is
worth noting that there are three other types of qutrits: � type,
V type, and � type. For the �-type qutrit, the allowed tran-
sitions are |g〉 ↔ |f〉 and |e〉 ↔ |f〉. In the case of the V -type
qutrit, the allowed transitions include |g〉 ↔ |f〉 and |g〉 ↔ |e〉.
Lastly, for the �-type qutrit, all transitions are allowed.

Our framework can be readily extended to accommodate
�- and V -type qutrits. For a �-type qutrit, we replace the tran-
sition operators in Eq. (17) with σ̂ �

1+ = |f〉〈g| and σ̂ �
2+ = |f〉〈e|.

For a V -type qutrit, the replacement transition operators are
σ̂V

1+ = |e〉〈g| and σ̂V
2+ = |f〉〈e|. Additional work is necessary

to account for a cyclic �-type qutrit, and this will be addressed
in a later work.

With these substitutions, if the coupling strengths also ex-
hibit harmonic scaling, the findings presented in Secs. III A
and III B can be directly applied. Otherwise, one can use the
general framework outlined in Appendix D.

V. SUMMARY AND CONCLUSIONS

We introduced a cat-state generation method centered on a
driven qubit-resonator system with linear coupling as its foun-
dation. We described the requisite conditions and outlined the
regime of validity, examining scenarios encompassing both
resonant and detuned qubit drives. The method’s operation
is primarily situated in the strong-driving regime, character-
ized by the dynamics of the driving Bloch-Siegert shift. This
shift induces oscillations in the weighting coefficients of the
cat lobes, a phenomenon that can be tracked. Subsequently,
we leveraged this method to encode a qubit state within the
resonator (with a qubit- and qutrit-state-dependent parity).
We then generalized the method to a driven qutrit-resonator.
We analyzed the regimes of weak and strong anharmonicities
along with their implications for experimental implementation
candidates, e.g., a transmon or charge qubit. Throughout, we
showed the robustness of our protocol against qubit and res-
onator decoherence, using worse-than-average decoherence
parameters in numerical simulations.

Next, we situated our method within the context of cat-state
generation protocols commonly employed in circuit QED and
demonstrated its adaptability to qutrits with varying selection
rules, including �-type and V -type qutrits.

Finally, we believe that a fast scheme generating cat states
that grow quadratically in time using a resonant or detuned
qubit drive, as proposed here, presents a valuable tool for all
purposes of generating a cat state.
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APPENDIX A: DECOHERENCE

The numerical simulations are performed using a Lind-
blad master equation at zero-temperature, assuming the
qubit-resonator system interacts with their environment baths
separately. The master equation for the qubit-resonator system
reads [49,50]

d

dt
ρ̂ = − i

h̄
[Ĥ , ρ̂] + γ1D(σ̂−)ρ̂ + γφ

2
D(σ̂z )ρ̂ + κD(â)ρ̂,

(A1)

where ρ̂ is the full system density matrix, D(Ô)ρ̂ = Ôρ̂Ô† −
{Ô†Ô, ρ̂}/2 is the dissipator for a given operator Ô, γ1 and γφ

are the qubit energy relaxation and dephasing rate, and κ is
the resonator photon loss rate. While for the qutrit-resonator
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FIG. 6. Fidelity of prepared state with varying decoherence rates. The Hamiltonian parameters and initial state used for the simulations
are identical to those in Fig. 1 with the decoherence parameters varied. (a)–(c) The fidelity between a state prepared via time-evolution using
Eq. (A1) and a reference state evolved with Eq. (1) is plotted for different qubit and resonator decoherence rates, with a time-evolution period
of gt/2π = 1.0. The resonator photon loss rate κ is the most detrimental parameter to the state fidelity. Meanwhile, the qubit relaxation rate
γ1 diminishes the fidelity but the qubit dephasing γφ is practically negligible as the three plots are nearly identical. The red dot in panel
(c) represents the decoherence parameters used in Figs. 1 and 2.

system, the master equation reads

d

dt
ρ̂ = − i

h̄
[Ĥ, ρ̂] + γ1D(σ̂1−)ρ̂ + γ2D(σ̂2−)ρ̂

+ γφ

2
D(σ̂z + 2|f〉〈f|)ρ̂ + κD(â)ρ̂. (A2)

Here, γ2 is the energy relaxation rate of the second tran-
sition. For the purpose of simulating a qutrit resembling a
transmon, we assume γ2 � 2γ1 and that the dephasing op-
erator is σ̂z + 2|f〉〈f|. Explicitly, this is related to the fact
that in a harmonic oscillator, the nth Fock state has a re-
laxation rate γn = nγ1, n times the relaxation rate of the
first-excited Fock state [51]. Additionally, experiments test-
ing the coherence times of higher levels of transmons (even
beyond |f〉) have confirmed this Fock-state-like scaling of
decay times [52]. These assumptions are quite reasonable
for both transmon and charge qubits. All the numerical
simulations of the master equation were performed using
QuTiP [38,39].

We can obtain an approximate analytic estimate for the res-
onator’s photon number in the presence of single-photon loss
since α �→ αe−κt/2 [53]. Thus, in the case of an open system,
specifically in the scenario of all-resonant conditions, |α|2 =
g2t2e−κt/4 (|̃α|2 = g2�2t2e−κt/4ε2 in the cross-resonant case
where � 
= 0 and δ = 0). We can now use this expression
to find the maximum size a cat can reach by differentiat-
ing it with respect to time and equating the derivative to
zero. The time at which α reaches a maximum is tmax = 2/κ

(valid for both all-resonant and cross-resonant cases). This is
a rough estimate based on the resonator single-photon loss
channel.

For a full quantitative picture, we further analyze the sys-
tem by varying the decoherence parameters to determine its
effect on the fidelity of the prepared state, ρ̂prep. We take the
fidelity to be defined as

F = [Tr(
√√

ρ̂prepρ̂ideal

√
ρ̂prep)]2,

where we use a reference ideal state ρ̂ideal arrived at only
using the system Hamiltonian in Eq. (1) and ρ̂prep is arrived

at using the master equation (A1). Figure 6 illustrates the
outcomes of numerical simulations in which the reference and
prepared states underwent time evolution over a normalized
period of gt/2π = 1. In the same figure, it is evident that the
resonator photon loss rate emerges as the most detrimental
factor influencing the state fidelity. Although qubit relaxation
also contributes to fidelity reduction, the impact of qubit de-
phasing is almost negligible within the considered timescale.
Notably, the maximum decoherence rates employed in our
simulations, set at 1 MHz, are considerably more severe than
those typically encountered in current circuit QED setups, let
alone state-of-the-art devices.

APPENDIX B: DEFORMED CAT STATES

The driving regimes considered in the main text have all
be centered around strong driving. Although, a cat state can
be achieved with a weaker drive, i.e., when � � |δ|, g does
not hold. An example of such state is shown in Fig. 7. This
cat state is manifestly deformed. To understand the origin
of the deformation, we group together all the terms dropped
to obtain the Hamiltonian of Eq. (8) in what we define the
deformation Hamiltonian:

Ĥ (I)
def = Ĥ (I)

RWA − Ĥ (I)
eff

= h̄g

2
(ei�t |+〉〈−| − e−i�t |−〉〈+|)âe−iδt + H.c.

= ih̄g

2
[σ̂y cos (�t ) + σ̂z sin (�t )](e+iδt â† − e−iδt â).

(B1)

The dynamics described by the deformation Hamiltonian
also exhibit a conditional displacement, similar to Eq. (8).
However, in this case, the displacement is modulated by the
classical drive and is conditioned on two different qubit oper-
ators, σ̂z and σ̂y. Furthermore, the deformation Hamiltonian
introduces a displacement in a different direction in phase
space (specifically, on the real axis) compared with the dis-
placement generated by Eq. (8). In the presence of a weak
drive, the contributions from Ĥ (I)

def become non-negligible.
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FIG. 7. Deformed cat state dynamics. The parameters used for
the simulations are � = 2π × 200 MHz, � = δ = 0, ωq = 2π ×
5 GHz, g = 2π × 20 MHz, γ1 = κ = 500 kHz, and γφ = 1 MHz.
The Wigner function W of the resonator state is obtained after mea-
suring the qubit in |e〉 at gt/2π = 1. The cat state exhibits squeezing
of the lobes and interference region and a displacement on both the
real and imaginary axes.

When measuring in the bare basis of the qubit, {|g〉, |e〉} [as
required to obtain the cat state given by Eq. (10)], we observe
a cat state that exhibits properties resembling squeezing.

APPENDIX C: SPURIOUS RESONATOR DRIVE

When considering the implementation scheme of a driven
qubit-resonator system, we must account for the crosstalk
between the qubit drive and the resonator. This crosstalk
results in a spurious driving of the resonator. When the qubit
is coupled to the resonator and the drive capacitively, the
system is composed of a three-port capacitive network, and
the couplings are made explicit in the capacitance matrix

C =
qubit

resonator
drive

qubit resonator drive⎛⎜⎝C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞⎟⎠.
(C1)

The capacitance matrix is taken to be real and symmetric,
i.e., Ci j = Cji ∈ R. To obtain the capacitive part of the circuit
QED Hamiltonian, we typically resort to [4]

Ĥcap = 1
2

�̂QT C−1 �̂Q, (C2)

where �̂Q is the vector of charge operators and C−1 is the
inverse of the capacitance matrix in Eq. (C1). It is worth
explicitly expressing the inverse capacitance matrix to
elaborate on the presence of a spurious coupling even when
there is no direct capacitive coupling. We point out that
(C−1)13 = (C12C23 − C13C22)/ det C, which determines the
coupling between the drive and resonator in the Hamiltonian,
can have a nonzero value even when C13 = 0.

The spurious resonator drive modifies the Hamiltonian of
Eq. (1) to

Ĥ ′ = h̄ωq

2
σ̂z + h̄ωrâ

†â + h̄g(σ̂+ + σ̂−)(â† + â)

+ h̄� cos(ωdt )(σ̂+ + σ̂−)

+ h̄�′ cos(ωdt + φ′)(â† + â), (C3)

where the spurious drive is characterized by a strength �′ and
a phase, φ′. The presence of this drive displaces the resonator
state by an additional coherent state. To address this, we add a
cancellation drive to the resonator that is physically far from
the qubit such that its effects are minimal on the qubit. The
Hamiltonian of the system now reads

Ĥ ′ = h̄ωq

2
σ̂z + h̄ωrâ

†â + h̄g(σ̂+ + σ̂−)(â† + â)

+ h̄� cos(ωdt )(σ̂+ + σ̂−)

+ h̄[�′ cos(ωdt + φ′) + �c cos(ωdt + φc)](â† + â),

(C4)

where �c and φc are the strength and phase of the cancel-
lation drive. Then, we can experimentally find �′ and φ′ by
identifying the coherent state displacing the resonator state.
Finally, setting �c = �′ and φc = φ′ + π and using the iden-
tity cos(x + π ) = − cos(x), we achieve total cancellation of
the spurious drive.

APPENDIX D: EXTENSION TO AN ARBITRARILY
ANHARMONIC QUTRIT

In this section, we extend our analytical framework to
address arbitrarily anharmonic qutrits by carefully selecting
an appropriate rotating frame. Additionally, we relax assump-
tions on coupling strengths and assume arbitrary coupling
strengths. However, we maintain the bare minimum assump-
tion, g1/g2 = �1/�2. This is because the mechanism in
which the qutrit physically couples to the driving field is the
same as it does to the resonator.

We start by transforming driven qutrit-resonator Hamil-
tonian of Eq. (17) into a different rotating frame. This
rotating frame is defined by the unitary transforma-
tion Û = exp{−it[ωd(|e〉〈e| − |g〉〈g| − |f〉〈f|) + 2ωdâ†â]/2}.
In this frame, the system Hamiltonian reads

Ĥd = h̄�1

2
(|e〉〈e| − |g〉〈g|) + h̄�

2
|f〉〈f| + h̄δâ†â

+ h̄�1

2
(σ̂1+ + σ̂1− + ei2ωdt σ̂1+ + e−i2ωdt σ̂1−)

+ h̄�2

2
(σ̂2+ + σ̂2− + ei2ωdt σ̂2+ + e−i2ωdt σ̂2−)

+ h̄[g1(eiωdt σ̂1+ + e−iωdt σ̂1−)
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+ g2(eiωdt σ̂2+ + e−iωdt σ̂2−)]

× (eiωdt â† + e−iωdt â), (D1)

where � = ω̃f + ωd. The intuition behind this particular
frame is that it sets both transitions on equal footing. The off-
diagonal terms have the same form in their time-dependence
for both transitions. This Hamiltonian can be simplified by a
set of RWA conditions that read

ωeg − ωr � ωeg + ωr and g1 � min(ωeg, ωr ), (D2a)

g1 � 2ωd, (D2b)

�1 � 4ωd, (D2c)

ωfe − ωr � ωfe + ωr and g2 � min (ωfe, ωr ), (D2d)

g2 � 2ωd, and (D2e)

�2 � 4ωd. (D2f)

These conditions generalize those of Eq. (19) for arbitrary
coupling strengths. Then, assuming all the conditions stated
above allows us to perform an RWA and obtain the Hamilto-
nian

Ĥd
RWA = h̄�1

2
(|e〉〈e| − |g〉〈g|) + h̄�

2
|f〉〈f| + h̄δâ†â

+ h̄�1

2
(σ̂1+ + σ̂1−) + h̄�2

2
(σ̂2+ + σ̂2−)

+ h̄(g1σ̂1+ + g2σ̂2+)â + h̄(g1σ̂1− + g2σ̂2−)â†.

(D3)

For simplicity, we assume �1 = 0. We now diagonalize the
qutrit part of the free Hamiltonian, h̄�|f〉〈f|/2 + h̄�1(σ̂1+ +
σ̂1−)/2 + h̄�2(σ̂2+ + σ̂2−)/2, to find the eigenvalues and
eigenstates [43]:

λ1 = −1

3
a + 2

3
p cos

(
θ

3

)
, (D4)

λ2 = −1

3
a − 2

3
p cos

(
θ

3
+ π

3

)
, (D5)

λ3 = −1

3
a − 2

3
p cos

(
θ

3
− π

3

)
, (D6)

and

|vk〉 = 1

Nk

{[
�1

(
λk − �

2

)]
|g〉

+
[

2λk

(
λk − �

2

)]
|e〉 + �2|f〉

}
, (D7)

where

a = −�

2
, (D8a)

b = −1

4

(
�2

1 + �2
2

)
, (D8b)

c = 1

8
��2

2, (D8c)

p =
√

a2 − 3b, (D8d)

cos θ = −27c + 2a3 − 9ab

2p3
, (D8e)

and

Nk =
√

λ2
k |�2|2 + (

4λ2
k + |�1|2

)(
λk − �

2

)2

(D8f)

for k = 1, 2, 3. Next, we proceed as done in previous
sections by transforming to the interaction picture. We
define Ĥ0 = h̄�|f〉〈f|/2 + h̄δâ†â + h̄�1(σ̂1+ + σ̂1−)/2 +
h̄�2(σ̂2+ + σ̂2−)/2 and ĤI = h̄(g1σ̂1+ + g2σ̂2+)â +
h̄(g1σ̂1− + g2σ̂2−)â†. Then, the interaction picture
Hamiltonian reads

Ĥ (I) = h̄
3∑

k=1

{
2λk

(
λk−�

2

)
N 2

k

[
g1�1

(
λk−�

2

)
+ g2�2

]
|vk〉〈vk|

+
∑
l 
=k

(
λl − �

2

)
NkNl

[
2g1�1λk

(
λk − �

2

)
+ g2�2

]
|vk〉

× 〈vl |ei�λkl t

}
(â†e+iδt + âe−iδt ), (D9)

where �λkl = λk − λl . In this Hamiltonian, there are
time-independent (diagonal) terms and time-dependent (off-
diagonal) terms. The separation of timescales cannot be
assumed a priori. To achieve a similar Hamiltonian as in
the previous sections, we must find the strong driving-
anharmonicity7 regime where

g1, g2, |δ| � |�λkl |. (D10)

We note that this has to be satisfied with the RWA conditions
of Eq. (D2). If this regime is achieved, we can neglect the
off-diagonal terms modulated by �λkl and obtain the effective
Hamiltonian

Ĥ (I)
eff =h̄

3∑
k=1

g̃k|vk〉〈vk|(â†e+iδt + âe−iδt ), (D11)

where g̃k = 2λk (λk − �/2)[g1�1(λk − �/2) + g2�2]/N 2
k .

This Hamiltonian generates resonator displacements
conditioned the dressed qutrit basis {|v1〉, |v2〉, |v3〉}. Let the
initial state be |ψi〉 = ∑3

k=1 ck|vk〉|0〉 with
∑3

k=1 |ck|2 = 1.
Then, the time-evolved state under the effective Hamiltonian
yields

|ψ (t )〉(I) =
3∑

k=1

ck|vk〉|αk〉, (D12)

where αk = −g̃k (eiδt − 1)/2δ; when δ → 0, then αk =
−ĩgkt/2. Similar to the previous sections, we can create in-
teresting nonclassical states composed of a superposition of
coherent states by rewriting the states in the bare basis and
measuring the qutrit. This leaves the resonator in a nonclassi-
cal state dependent on which qutrit state was measured.

The framework presented in this section has been quite
general and abstracted away from a particular circuit im-
plementation. The purpose of this section is to present a
general framework for an arbitrarily anharmonic driven qutrit-

7The parameters �λkl are functions of the driving strengths �1 and
�2, as well as �, which can be directly reformulated in terms of ξ .
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resonator system that does not conform to either of the
two extremes introduced in the previous two sections. Addi-
tionally, the approach presented here is useful for tailoring
parameters to a particular device. One can use the derived
analytical eigenvalues and eigenstates along with all the given
constraints to numerically optimize for the generation of a

cat state or a particular (collinear8) superposition of coherent
states of interest for a set of particular device parameters.

8All the displacements generated are on the same axis.
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