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Generating arbitrary polarization states by manipulating the thicknesses
of a pair of uniaxial birefringent plates
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We report an optical method of generating arbitrary polarization states by manipulating the thicknesses of a
pair of uniaxial birefringent plates, the optical axes of which are set at a crossing angle of π /4. The method
has the remarkable feature of being able to generate a distribution of arbitrary polarization states in a group of
highly discrete spectra without spatially separating the individual spectral components. The target polarization-
state distribution is obtained as an optimal solution through an exploration. Within a realistic exploration range,
a sufficient number of near-optimal solutions are found. This property is also reproduced well by a concise
model based on a distribution of exploration points on a Poincaré sphere, showing that the number of near-
optimal solutions behaves exponentially with respect to the number of spectral components of concern. As a
typical example of an application, by applying this method to a set of phase-locked highly discrete spectra, we
numerically demonstrate the continuous generation of a vectorlike optical electric field waveform, the helicity of
which is alternated within a single optical cycle in the time domain.
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I. INTRODUCTION

The use of optical technologies to manipulate physical
quantities to define an optical wave has always opened new
possibilities in terms of both engineering applications such
as information technology and basic sciences related to the
control or measurement of material properties. The establish-
ment of a technology to control the carrier envelope phase
of an optical wave (optical frequency comb) [1] has brought
about revolutionary developments in optical frequency stan-
dards followed by high-resolution laser spectroscopy [2], as
well as in its counterpart, attosecond science [3]; this is
likely the most symbolic example in a recent development
of optical science. Other developments include programmable
waveform generation [4–7] by employing a spatial light
modulator, time-dependent polarization control [8–12], pulse
shaping with metasurfaces [13], controlling terahertz wave-
forms [14–16], and the use of these technologies to control
molecular ionization [9,10], photocurrent in solids [17–19],
magnetization vectors [20,21], and tunneling currents
[22,23].

Here, we describe an optical technology for generating
arbitrary polarization states by manipulating the thicknesses
of a pair of uniaxial birefringent plates, the optical axes of
which are arranged at a crossing angle of π /4. The essential
difference from the widely used method employing a pair
of λ/2 and λ/4 wave plates is that this method can generate
arbitrary polarization-state distributions in a group of highly
discrete spectra without spatially separating them into their
individual spectral components. Generating arbitrary optical
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electric field waveforms “continuously” in the time domain,
like a synthesizer, by arbitrarily controlling each amplitude
and phase of a group of highly discrete spectra [24,25], can
be the representative technologies of optical wave control.
The polarization-manipulation method proposed here can be
used to further provide arbitrary polarization distributions. By
incorporating this method with the results of our previous
study [26], we numerically demonstrate the “continuous” gen-
eration of a vectorlike electric field waveform, the helicity of
which is alternated within a single optical cycle in the time
domain.

II. PRINCIPLES

A. Definitions

A plane (electric field) wave propagating along the z direc-
tion is expressed as

E(t, z) = eiωt

(
Axei(−kz+φx )

Ayei(−kz+φy )

)
, (1)

where ω is the angular frequency, k is a wave vector, and Ax,y

and φx,y are the amplitude and phase, respectively, along the x
and y axes, respectively. The polarization state of this electric
field is described by a normalized Jones vector as

J =
(

cos χ

sin χeiδ

)
,

χ = tan−1 Ay

Ax
, δ = φy − φx, (2)

where χ and δ are the azimuth angle and the relative phase
retardance, respectively. This polarization state is expressed
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FIG. 1. Two different schemes of generating arbitrary polariza-
tion states. (a) Conventional method with a pair of a HWP and
a QWP with variable angles of ψ1 and ψ2, respectively. (b) The
proposed method with two birefringent plates (WP1 and WP2) of
variable thicknesses, d1 and d2, respectively, with a crossing angle,
ψ1 − ψ2, fixed at π/4. (c) The Poincaré sphere is entirely covered by
the Stokes vector when ψ1 = ±π/4 and ψ2 = ψ1 ± π/4 in scheme
(b). (d) The Poincaré sphere is imperfectly covered when ψ1 = π/6
and ψ2 = 0.

by a Stokes vector on the Poincaré sphere as

S =

⎛
⎜⎝

S1

S2

S3

⎞
⎟⎠ =

⎛
⎜⎝

〈
A2

x − A2
y

〉
2〈AxAy cos δ〉
2〈AxAy sin δ〉

⎞
⎟⎠, (3)

where the angle brackets denote the average over time.

B. Standard method: Manipulation of polarization states by
using a pair of λ/4 and λ/2 wave plates

As is well known, arbitrary polarization states can be gen-
erated by employing a pair of λ/4 and λ/2 wave plates [QWP
(quarter-wave plate) and HWP (half-wave plate), respectively;
Fig. 1(a)]. Let us assume that the incident light is linearly
polarized along the y axis, i.e., Jin = (0, 1)T . The in-plane
rotation angles of QWP and HWP are described as ψ1 and ψ2.
The polarization state of the light after passing through these
two wave plates is given as

Jout = R(−ψ2)Jwp(π )R(ψ2 − ψ1)Jwp

(
π

2

)
R(ψ1)Jin

[27], where R is a rotation matrix and Jwp is a Jones matrix of
the wave plate:

Jwp(	) =
(

e−i(	/2) 0
0 ei(	/2)

)
.

	 is the relative phase retardance, defined as 	 =
(ne − no)ωd/c, where d is the thickness of the plate, no and
ne are the ordinary and extraordinary refractive indices, re-
spectively, and c is the speed of light in a vacuum. The Stokes
vector notation of Jout is given as

S =
⎛
⎝− cos 2ψ1 cos (4ψ2 − 2ψ1)

− cos 2ψ1 sin (4ψ2 − 2ψ1)
− sin 2ψ1

⎞
⎠. (4)

As ψ1 and ψ2 are independent of each other, 2ψ1 and 4ψ2 −
2ψ1 vary independently in the range of 0 to 2π . Thereby,
Eq. (4) can be the expression of a Poincaré sphere itself in
the polar coordinate system. In other words, by rotating the
two wave plates independently, it is possible to generate an
arbitrary polarization state.

C. Proposed method: Manipulation of polarization states by
using a pair of uniaxial birefringent plates

of variable thicknesses

There may be other ways to generate an arbitrary polar-
ization state. A pair of uniaxial birefringent plates (WP1 and
WP2) are arranged so that their optical axes make an angle of
π/4 with each other (here, ψ1 = π/4, ψ2 = 0). Instead of the
in-plane angle, ψ1,2, being manipulated, the thickness of each
birefringent plate is manipulated independently [Fig. 1(b)]. It
is possible to generate an arbitrary polarization state in this
manner, as shown below.

The incident electric field is assumed to be y-linearly
polarized. Then, the polarization state of the output light ma-
nipulated in the above manner is given as

Jout = R(0) Jwp(	2)R(0)R
(

−π

4

)
Jwp(	1)R

(
π

4

)
Jin

=
(

sin 	1
2

cos 	1
2 ei(	2+π/2)

)
,

where 	1,2 is the relative phase retardance at each of WP1
and WP2, respectively. Then, the Stokes vector representing
this polarization state is given as

S =
⎛
⎝ − cos 	1

− sin 	1 sin 	2

sin 	1 cos 	2

⎞
⎠.

This is also an expression of the Poincaré sphere in the polar
coordinates, with 	1 and 	2 as variables. In other words, when
the relative phase retardances 	1 and 	2 are independently
manipulated in the range of [0,π ] and [0,2π ), respectively,
the polarization of the output light covers the entire Poincaré
sphere, generating arbitrary polarization states [Fig. 1(c)].
Hereafter, we describe this method in detail.

D. Features of the proposed method

A remarkable feature of this method [Fig. 1(b)] is its
ability to generate arbitrary polarization-state distributions in
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a group of highly discrete spectra [Fig. 1(b), right panel].
Although the standard method (combining the in-plane rota-
tional operations of QWP and HWP) can be used to create
one specific polarization state in a (generally continuous)
spectrum [Fig. 1(a), right panel], it is generally impossible
to create arbitrary distributions of polarization states in the
spectrum. The key mechanism of the method [Fig. 1(b)] is
that the polarization has a periodicity of 2π with respect to
the thickness of the uniaxial birefringent plate, and this peri-
odicity differs significantly among a group of highly discrete
spectra. Despite the manipulation of only a single variable
(plate thickness, d1,2), a variety of polarization-state distri-
butions are tested (typically over hundreds of periods within
a few tens of millimeters of thickness) in a group of highly
discrete spectra. The essential difference between the standard
method [Fig. 1(a)] and the proposed method [Fig. 1(b)] lies in
the mechanism, namely, that the former, in principle, limits
the range of manipulation to a single rotation whereas the
latter does not. In contrast, this method does not work well
when an exact solution is pursued. Another key of this method
is that, in reality, near-optimal solutions are useful for a variety
of applications, and many such solutions can be found in a
realistic exploration range.

E. Requirements of the proposed method

1. Requirement 1: Installation angle of the pair of uniaxial
birefringent plates

Before proceeding, we will add a few more words about
the requirements for generating arbitrary polarization states
by using the proposed method. In order for the output po-
larization states to cover the entire Poincaré sphere, specific
conditions are imposed on the polarization of the incident light
and the angles of the optical axes of WP1 and WP2 (ψ1 and
ψ2, respectively). After manipulation by using this method,
the Jones vector, J

′
out, in the coordinates of the second uniaxial

birefringent plate, WP2, is notated as

J
′
out = Jwp(	2)R(ψ2 − ψ1) Jwp(	1)R(ψ1) Jin

=
(

e−i	2 [e+i(	1/2) cos ψ1 sin ψ3 + e−i	1/2 cos ψ3 sin ψ1]
e+i(	1/2) cos ψ1 cos ψ3 + e−i(	1/2) sin ψ3 sin ψ3

)
,

where ψ2 − ψ1 = ψ3. The first parameter, S1, of the Stokes
vector representing the output polarization state, J

′
out, is

S1 = sin 2ψ1 sin 2ψ3 cos 	1 − cos 2ψ1 cos 2ψ3.

To cover all the polarization states, S1 must at least vary in its
full range, i.e., −1 � S1 � 1. This can be satisfied only when
the coefficient of the first term of S1, sin 2ψ1 sin 2ψ3, amounts
to ±1. Therefore, ψ1 and ψ2 must be

ψ1 = ±π
4 , ψ2 = ψ1 ± π

4 .

When ψ1 and ψ2 are set under these conditions, the entire
Poincaré sphere is covered [Fig. 1(c)]. Otherwise, for exam-
ple, if ψ1 = π/6 and ψ2 = 0, the output Stokes vector forms
an incomplete Poincaré sphere [Fig. 1(d)].

2. Requirement 2: Polarization state of incident light

As described in the preceding section, the proposed method
imposes the requirement that the incident light is linearly

polarized for all the spectral components, at a crossing angle
of π /4 with respect to the optical axis of the first uniaxial
birefringent plate, WP1. This restriction on the incident light
does not spoil the generality of the method. This is because
controlling all the physical quantities that characterize an
optical wave (amplitude, polarization, and phase) provides
the most arbitrary control of the optical field, and then the
manipulation of each quantity, in general, is performed in the
following order: amplitude (the pair of HWP and polarizer),
polarization (anisotropic transparent medium) as discussed
in [26], and phase (isotropic transparent medium). In the
proposed method, the assumption that the optical wave is lin-
early polarized before the polarization manipulation—in other
words, linearly polarized by a polarizer after manipulation of
the amplitude—does not limit the arbitrariness of the opti-
cal wave manipulation. More generally, even if the incident
optical wave has an arbitrary polarization-state distribution,
it can be transformed to any polarization-state distribution
by the installation of one more uniaxial birefringent plate
before the pair of birefringent plates, WP1 and WP2 (see
Sec. A in [28]).

Last, we briefly comment on the Soleil-Babinet (SB) com-
pensator, which is an optical device that acts as a zero-order
wave plate at a target wavelength by adjusting the entire
thickness of a thin wedged-plate pair. The SB compensator
has a structure similar to that of the proposed method, but
the mechanism and function differ intrinsically from those of
the proposed method. The SB compensator can never ma-
nipulate the distribution of polarization states among highly
discrete spectra.

III. RESULTS AND DISCUSSION:
NUMERICAL SIMULATIONS

A. Generation of arbitrary polarization-state distributions
in a group of five highly discrete spectra

Here, we show the results of numerical simulations in
which the method of arbitrarily manipulating polarization
states, as described in Sec. II C, was applied in a realistic
situation. We employed a group of five highly discrete spectra,
each of which had an integer multiple frequency of 125 THz,
extending from the near infrared to the visible wavelength
region (ω: 125 THz, 2400 nm; 2ω: 250 THz, 1200 nm; 3ω:
375 THz, 800 nm; 4ω: 500 THz, 600 nm; 5ω: 625 THz,
480 nm). Here, we assumed crystal quartz as the material
of the uniaxial birefringent plates [29] (see Sec. B in [28]).
We placed a pair of crystal quartz plates (WP1 and WP2)
coaxially on the optical axis [as illustrated in Fig. 1(b)], and
varied each of the plate thicknesses, d1 and d2, up to 50 mm
with a step size of 0.1 µm. Here, a variable plate thickness
of 50 mm is selected, as it is technologically feasible and
can provide a sufficient number of near-optimal solutions for
the arbitrary targets (see also Sec. IV). One of the practical
mechanisms for varying the plate thickness is to employ a pair
of wedged plates. Further details will be discussed in Sec. D
in [28].

The polarization state of the incident light was set
to y-linear polarization for all the spectral components
(see Sec. II E, Requirement 2). We then set a variety of
polarization-state distributions as targets and numerically
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FIG. 2. Traces of Jones vectors obtained as optimal solutions for three targets. (a) −45◦ linear polarization; (b) RH (right-handed) circular
polarization; (c) Mixed target: +45◦ linear, −45◦ linear, LH (left-handed) circular, RH (right-handed) circular, and X linear for 1ω − 5ω. For
comparison, the corresponding target is also plotted in each panel (solid gray line).

explored the optimal solutions. As an error function to evalu-
ate deviation from the targets, we employed the mean-squared
(MS; Euclidean) distances (see Sec. C in [28]) for the five
spectral polarization states. This was a numerical demonstra-
tion of the arbitrary manipulation of polarization states to be
used in line with the arbitrary optical-waveform generation
studied in [26].

We plotted the optimal solutions obtained within the explo-
ration range for three different targets (Fig. 2). We visualized
them by the one-period behaviors of the Jones vectors. In
Figs. 2(a) and 2(b), we set a single polarization state as a target
for all five components, namely, (a) −45◦ linear polarization
and (b) right-handed circular polarization. To demonstrate
the capacity of this method more clearly, in Fig. 2(c) we
set a more random target, namely, +45◦ linear, −45◦ linear,
left-handed circular, right-handed circular, and x linear for
each of 1ω to 5ω. Below, for simplicity, ±45◦ of linear po-
larization, left-handed/right-handed circular polarization, and
x/y linear polarization are denoted as ±45, LH/RH, and X/Y,
respectively. As a result of our explorations, we achieved good
approximate solutions for each of the three different targets in
Figs. 2(a), 2(b), and 2(c).

B. Distribution of near-optimal solutions

We plotted the observed deviations from the targets around
the optimal solution obtained, where 
d1 and 
d2 indicate the
thickness changes of WP1 and WP2, respectively, with respect
to the optimal position [Figs. 3(a)–3(c)]. The range of 0.8 mm
is plotted for each of 
d1 and 
d2. This range corresponds to
about 0.03% of the entire exploration area. See Sec. E in [28]
for the error behaviors over a wider area. The horizontal and
vertical axes, 
d1 and 
d2, correspond to the circumferential

motions on the Poincaré sphere [Fig. 3(d)]; the former is on
the cross section cut out by the plane containing the axis S1

(the latitude), and the latter is on the cross section cut out
by the plane parallel to S2−S3 (the longitude). Each Stokes
vector of the five spectral components moves at a markedly
different speed on the Poincaré sphere, forming the interfer-
ence lattice patterns of the sum of the MS errors from the
respective target polarization states [Figs. 3(a)–3(c)]. From a
perspective viewpoint, the interference lattice patterns gradu-
ally collapse with about a 0.2-mm thickness change, followed
by the revival of similar lattice patterns. The key property of
this method is concisely determined by these characteristic
behaviors, namely, we cannot know exactly where an optimal
solution will appear, but we can predict how frequently allow-
able near-optimal solutions may appear if we explore over a
certain range. Additionally, deviations from the targets tend
to be small along a certain path where the ratio of the two
thicknesses 
d1 and 
d2 is approximately constant [the red
slopes in Figs. 3(a)–3(c)]. It is possible efficiently to explore
the near-optimal solutions by tracing these paths.

Table I summarizes the evaluations of the near-optimal
solutions found in our numerical explorations. It includes the
number of near-optimal solutions within an allowable error
(MS error < 0.02) and the inferred probabilities of finding a
near-optimal solution. Deviations from the targets are evalu-
ated either by the spherical distance (SD) or by the projection
of an optimal solution onto the target (see Sec. C in [28]). The
table shows that the optimal solutions achieved approximately
98% similarity by the projection to the targets and about
6% deviation from the targets by the spherical distance. As
already mentioned, this method does not function if an exact
solution is pursued (see Sec. F in [28]). By introducing an
acceptable error, depending on the aim, one can indeed find a
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FIG. 3. Two-dimensional maps of deviation from the targets plotted as functions of the birefringent plate thicknesses, d1 and d2.
(a) −45◦ linear; (b) RH circular; (c) Mixed target. The center of each map corresponds to the optimal solution obtained. (d) Poincaré sphere
representation of the Stokes vector; the red curves illustrate traces corresponding to scanning of the plate thickness d1 or d2.

sufficient number of near-optimal solutions within a realistic
exploration range (a few tens of millimeters), as exemplified
in Table I.

The linewidth allowed for each spectral mode of the highly
discrete spectra is estimated to be 30 GHz at full width at half
maximum. The most critical factor in restricting the allowable
linewidth is broadening of the Stokes vector itself on the
Poincaré sphere; this is caused by refractive index dispersion
of the birefringent plate with a maximum thickness of 50 mm
that is employed.

In this section, we demonstrated a numerical simulation
assuming actual frequencies and materials. We showed that,
based on the method presented in Secs. II C to II E, it is pos-
sible to generate arbitrary polarization-state distributions in a
group of five highly discrete spectra without spatially separat-
ing them. Synthesis of optical waves is generally an extremely
high hurdle once each of the spectral components is spa-
tially separated, because both the optical paths and the spatial
modes must be exactly matched, with a precision of the optical
phase, among all the spectral components over a long period,
as can be seen in recent studies of the coherent addition
of laser beams [30]. The arbitrary polarization-manipulation
technology presented here, which does not spatially separate
a group of spectral components, has a great advantage in
practical applications.

TABLE I. Evaluation of near-optimal solutions. Deviations from
the targets are evaluated and represented as spherical distance (SD;
first row), and also as projections to the target vector (second row).
The third row indicates the number of near-optimal solutions where
the normalized MS error (Euclidean distance) reaches less than 0.02.
The bottom row shows the probabilities of finding a near-optimal
solution.

Targets −45◦ linear RH circular Mixed target

SD (deg.)/(%) 10.61/5.89 11.31/6.28 11.58/6.43
Projection 0.983 0.980 0.980
Number of solutions 11675 5575 10757
Probability (10−10) 467 223 430

IV. DISCUSSION: DETAILED PROPERTIES AND
DISTRIBUTION OF NEAR-OPTIMAL SOLUTIONS

In this section, we discuss the properties of the near-
optimal solutions in more detail, namely, how they are
distributed on the Poincaré sphere and how they behave dif-
ferently depending on the given conditions.

Deviations from a target form a certain probability dis-
tribution, which can be reproduced and interpreted well
based on the concise model proposed in this section. Let
us consider the case where the number of spectral com-
ponents, N, equals 1. Polarization states having an equal
deviation, s ± 
s, from a given target form a circular band
on the Poincaré sphere. If we take a sufficient number of
exploration points on the Poincaré sphere into consideration,
then the ratio of the number of points within this band to
the total number of exploration points gives the probability
of finding the polarization state having a deviation within
s ± 
s.

The distribution of the exploration points depends on how
the thicknesses of the birefringent plates are manipulated.
Here, we varied the thicknesses of the plates WP1 and WP2,
i.e., d1 and d2, at a constant increment. In this case, the
exploration points are distributed on the Poincaré sphere such
that the angle variables 	1 and 	2 change with equal spac-
ing. Therefore, in this operational method, a greater number
of exploration points are distributed around the north and
south poles (	1 = mπ , where m is a natural number) and,
conversely, a smaller number are distributed around the equa-
tor (	1 = π/2 + mπ ). Consequently, the dependence on the
location of a target on the Poincaré sphere is incorporated
into the probability distribution of the deviation from the
target.

In the case of multiple and discrete spectral components
(N � 2), deviation from a given target (the polarization-state
distribution of multiple spectral components) has to consider
all the contributions of the deviations of the spectral polariza-
tion states from the targets. If we assume that the deviation
distribution does not depend on the frequency of the spectral
component under the manipulation, and that each of the polar-
ization states behaves independently on the Poincaré sphere,
then the distribution of the total deviation of multiple spectral
components can be given by convolving each of the deviation
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FIG. 4. Detailed properties of near-optimal solutions. (a) En-
tire behaviors of the probability distribution, including dependence
on the targets: LH and ellipse. N = 5; exploration range, 100 ×
100 mm2. (b) Extended view of the left tail region of (a) (shadowed
region). (c) Dependence of the probability of near-optimal solutions
on the number of spectral components, N. Target, LH; exploration
range, 100 × 100 mm2. (d) Number of near-optimal solutions as a
function of N.

distributions sequentially by N–1 times. The total deviation
distribution calculated by using this model reproduces well
the behavior obtained in the numerical simulations, including
the tail regions of the distributions with small probabilities,
which provide near-optimal solutions. For more details, see
Sec. G in [28].

In Fig. 4(a), two typical examples of the deviation distri-
butions observed in the numerical simulation for the group
of five spectral components examined in Sec. III are ex-
hibited (colored dots); one corresponds to the target, LH
(located at the equator, 	1 = π/2), and the other to an el-
liptical polarization (Ellipse; at midlatitude, 	1 = π/4). The
horizontal and vertical axes correspond to the deviation (MS
error) normalized by its maximum value and the probability,
respectively. Modeled deviation distributions are shown by
the gray solid lines. The deviation distributions predicted by
the above concise model are in good agreement with those
observed in the numerical explorations, including the target
dependence.

Figure 4(b) is an extended view of the left tail region of the
distribution profiles in Fig. 4(a), providing near-optimal solu-
tions. The target dependence appears strongly in this region
of small deviation. As mentioned above, a greater number of
exploration points are distributed around the poles. Therefore,
the probability of finding a near-optimal solution is expected
to increase when the target is located near the poles. It turns
out that the model indeed predicts the deviation distribu-
tions, including such a small probability region, providing
near-optimal solutions. Figure 4(b) also shows that the proba-
bility increases or decreases nearly exponentially with respect
to the deviation, thus the number of near-optimal solutions

increases dramatically when a slightly larger error tolerance
is provided, and vice versa. This property can be attributed to
the mechanism that each of the polarization states in a group
of multispectral components behaves almost independently;
thereby, the behavior of the total deviation from the target is
given as the convolution of each of the deviation distributions.

A realistically controllable number of discrete spectral
components can also be estimated from this property of the
total deviation. The probabilities of the near-optimal solutions
decrease with a power law with respect to a given number, N,
of spectral components to be controlled [Figs. 4(c) and 4(d)].
In reality, the number of spectral components to be simulta-
neously controlled is determined on the basis of this property;
this includes the controllable thicknesses of the birefringent
plates and the amount of refractive index dispersion among
the spectral components.

In this Discussion section, we have described how the
distribution of the deviation of polarization states from a given
target is reproduced well by a concise model, and how, based
on this model, we can infer enough of the information required
to apply this arbitrary polarization-manipulation method in
reality. This information includes the distribution properties
of the near-optimal solutions; the exploration ranges required
to obtain a near-optimal solution with the requested accuracy;
and the number of simultaneously controllable spectral com-
ponents.

V. APPLICATION: CONTINUOUS GENERATION OF
VECTORIAL ELECTRIC FIELD WAVEFORMS

Lastly, we present a numerical demonstration in which
the proposed method of arbitrary polarization manipulation
is used to control an optical electric field waveform in the
time domain. The optical technology of continuously gener-
ating arbitrary electric field waveforms, just like a synthesizer
in electronics, can be one of the representative technologies
in optical wave control. As theoretically and experimentally
discussed in [25,26,31,32], manipulation of the amplitude
and phase of each of five phase-locked spectra having an
exact integer frequency ratio can continuously produce ar-
bitrary electric field waveforms in the time domain. The
method proposed here appends an extra degree of freedom,
namely, the arbitrary manipulation of the polarization-
state distribution in a group of such highly discrete
spectra.

We show a typical example in Figs. 5(a)–5(c). After we ma-
nipulate the polarization states of 1ω, 3ω, and 5ω to x-linear
polarization and those of 2ω and 4ω to y-linear polarization
[16] by applying the proposed method, the spectral phases
of 1ω–5ω are set to π /2, 0, π /2, 0, and π /2, respectively
[Fig. 5(a)]. In this spectral-phase manipulation, we employ an
isotropic dispersive material as described in [26]; this does not
spoil the polarization states generated in Fig. 5(a). The dotted
line in Fig. 5(b) shows the electric field waveform retrieved
by the achieved polarization-state distribution, in which the
helicity is alternated in a single optical cycle. Figure 5(c)
compares the waveform achieved in Fig. 5(b) with the target.
It can be seen that the achieved polarization-state distribution
provides a satisfactory solution in reality.
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FIG. 5. Numerical demonstration of full vectorial control of an electric field waveform under a continuous generation regime. (a) The
optimal solutions found in the exploration of the target, namely, X, Y, X, Y, and X for 1ω–5ω, respectively. The spectral phase is assumed to
be controlled by the method discussed in [26] and has the values π /2, 0, π /2, 0, and π /2 for 1ω–5ω, respectively. (b) An ultrafast waveform
retrieved by using the polarization state achieved in (a). (c) Comparison between the optimal waveform achieved in (b) and the target.

VI. CONCLUSIONS

Here, we have described an optical technology for gen-
erating arbitrary polarization states by manipulating the
thicknesses of each of a pair of uniaxial birefringent plates,
the optical axes of which are arranged in relation to each
other at a crossing angle of π /4. The essential difference from
the widely used method of manipulation of a pair of λ/2 and
λ/4 wave plates is that this method can generate an arbitrary
polarization-state distribution in a group of highly discrete
spectra without spatially separating them into their individual
spectral components. Through an exploration, we have shown
that the target polarization-state distribution can be obtained
as one of the near-optimal solutions and that a sufficient
number of near-optimal solutions is found within a realistic
exploration range. We have also shown that the properties of
such near-optimal solutions, including the exploration range
required to find them and the number of controllable spec-

tral components, are described well by a concise model on
Poincaré spheres. As a typical example of application, we
have numerically demonstrated the continuous generation of
a vectorial optical electric field waveform in the time domain,
the helicity of which alternates in a single optical cycle, by ap-
plying the proposed method to a group of five highly discrete
phase-locked spectra and using the arbitrary manipulation of
amplitudes and phases investigated in [26]. This method of
arbitrarily manipulating polarization states can be regarded as
an optical technology that provides a new degree of freedom
in material control or information processing involving light.
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