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Spectral properties of transverse Laguerre-Gauss modes in parametric down-conversion
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The first color photos of the parametric down-conversion (PDC) emission cone illustrate the correlation of
longitudinal and transverse momentum in the process, i.e., wavelength-dependent emission angles of PDC
photons. However, current experiments and applications are more conveniently described in terms of discrete
mode sets, with the most suitable choice depending on the propagation symmetries of the experimental setting.
Remarkably, despite the fact that experiments with PDC sources are becoming ever more demanding, e.g., in
terms of brightness or state fidelity, a description of spectral-spatial coupling in parametric down-conversion for
the case of discrete modal decompositions remains elusive. We present a comprehensive study, in theory and
experiment, of the spectral dependence of the transverse Laguerre-Gauss modes in parametric down-conversion.
Moreover, we show how the spectral and spatial coupling can be harnessed to tune the purity of the well-known
orbital angular momentum entanglement. This paper has implications for efficient collection of entangled
photons in a transverse single mode, quantum imaging, and engineering pure states for high-dimensional

quantum information processing.
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I. INTRODUCTION

Spontaneous parametric down-conversion (SPDC) is a
versatile resource that can be tailored to the most challenging
quantum information processing tasks. The maturity of its
understanding, together with the continuous evolution of
photonic technology in various degrees of freedom, has
provided a myriad of ways of characterizing and engineering
photon sources [1-5]. They are exploited for a variety of
experiments and proof-of-concept applications, including a
recent demonstration of quantum computational supremacy
using photons [6].

One of the most attractive features of SPDC is that it quite
naturally yields high-dimensional entanglement in multiple
degrees of freedom. The entanglement generated via SPDC
can be distributed over many modes, such that characteriza-
tion of this entanglement becomes a key challenge. Studies
have been carried out to quantify the large amount of entan-
glement in SPDC in space, time, and photon number [7,8].
However, these rely on the Schmidt number as a figure of
merit, which does not say much about the Schmidt basis, in
general, apart from its dimensionality.
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Studies of the spatiotemporal correlations in SPDC typi-
cally use a continuous variable description of the spatial and
temporal domain, relating the emission angle and frequency
of the photons created [9—11]. Although this is more intuitive,
given that the fundamental rules of energy and momentum
conservation can be directly observed, most calculations result
in a highly complex six-dimensional problem.

Modal decomposition is a practical and insightful represen-
tation. It allows us to discretize a continuous variable space,
and a proper basis choice can reduce the number of dimen-
sions needed without loss of information about the state. It
also acts as an ideal way to connect theory and experiment,
since there exist accurate experimental techniques that can
generate, manipulate, and detect such modes in space and
time [12,13]. Modal decomposition has been applied to study
SPDC, although most previous research has considered the
spectral and spatial domains independently. These studies
have addressed the regime in which these correlations are
purposely minimized—through the use of either unrealistic
narrowband spectral filters [14,15], loosely focused pump
and collection beams in short nonlinear crystals [16—19],
or spatially monomodal waveguides [20]. This approach ne-
glects the well-known correlation of the photons’ spatial and
spectral properties, which is markedly reflected in the fa-
mous SPDC emission rainbow [21]. However, factorability
of the spectral and spatial domains is not always possible, as
shown by Osorio et al. [22]. This can be detrimental when
the goal is to engineer high-dimensional spatially entangled
photon sources, since any distinguishability in any degree
of freedom that is not considered will reduce the purity of
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the entangled state. Interestingly, this coupling of the spa-
tiotemporal domain can also be used as a resource for source
engineering. Torres and coworkers showed how to modify
spectral properties (joint spectral amplitude) through what
they call spatial-to-spectral mapping (see Refs. [23-26]) in a
noncollinear phase-matching configuration by modifying the
transverse spatial profile of the pump beam.

Despite the interest and relevance of efficient SPDC
sources, only a handful of studies have considered the impact
of spectral-spatial coupling on the discrete mode decomposi-
tion. For example, the spatiospectral coupling is implicit to the
discussion in Ref. [27] of efficient fiber coupling of photon
pairs in SPDC. Further, the effect that changing the focal
position of a Gaussian beam has on the temporal properties of
photons was discussed in Refs. [28-30]. Despite these efforts,
and to the best of our knowledge, the question of the spectrally
dependent mode decomposition has not yet been discussed
in more general terms. Despite its great practical relevance
for experiments, a simple, closed, and general expression that
fully describes the spatiotemporal correlations of SPDC in
a discrete spatial mode basis has remained elusive. To con-
tribute to this need, we recently derived a simple expression
for the biphoton state in terms of Laguerre-Gauss (LG) modes,
which is valid in a wide range of SPDC configurations [31].

This paper extends upon our previous work and discusses,
from theory to experiment, how the spatiospectral coupling in
SPDC can be harnessed to engineer spatially entangled bipho-
ton states on the orbital angular momentum (OAM) basis.
We discuss the efficiency, purity, and fidelity of the generated
states and study the spectral dependence of the OAM biphoton
states. We find a simple method to achieve a bright flat spiral
spectrum in a desired subspace (here demonstrated for OAM
values up to |£| = 4) and show that the purity of entanglement
between different OAM modes can be controlled by purposely
adding (suppressing) spectral distinguishability.

Unlike other experimental works where joint detection of
photon pairs in arbitrary spatial bases is performed [32-35],
we take advantage of advances in wavefront modulation
schemes and utilize the multiplane light conversion technique
(MPLC) [36,37] for spatial mode analysis. MPLC benefits
from high efficiency and mode-independent loss, thus elim-
inating the need for postprocessing, contrary to other highly
used techniques such as phase and intensity flattening [38,39].
Thus, our paper also reiterates the advantage of using MPLC
in quantum optical experiments [40—42].

The paper is organized as follows: In Sec. II we review
the theory of collinear SPDC and describe the spectral-spatial
coupling in terms of a frequency-dependent spatial modal
decomposition. In Sec. III we experimentally validate our
expression by means of spatial and spectral decomposition
through projective measurements. Finally, in Sec. IV we use
our expression to study the spectral coupling in the OAM
basis.

II. THEORY

The LG mode basis is a practical choice in experimental
systems that involve cylindrical symmetry. They are also a
good initial approximation of the spatial Schmidt basis of the
biphoton state, given that the OAM is conserved in SPDC

[43], and that the LG modes carry a well-defined OAM value.
In this case the SPDC state can be expressed as
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where Cp+'i(w;, w;) denotes the mode amplitude for
LG modes |p, ¢, ) = [dq (LG)ﬁ(q)&*(q, ) |vac) with az-
imuthal (or OAM) and radial indices ¢ and p, respectively.
The integration limits in all the equations in the paper are
omitted for the sake of brevity but are taken over all the space.
The mode amplitudes can be calculated from the overlap inte-
gral of the two-photon amplitude (TPA) @ and the collection
modes:

Cpp = / / dq, dg; ®(qs. 4;, 5, @) [(LG);; (g,)]*
x [(LG),i (g, (2)

where ¢,; and ws; are the transverse momenta and fre-
quencies of the photons, respectively. Since the spatial and
spectral components of the TPA are in general nonfactor-
izable, ®(qs, qi, w5, i) # (4, qi) X f(ws, @), the coeffi-
cients Cﬁ;ﬁ are generally frequency dependent. We refer the
reader to our recent work [31] where we derived the ex-
pression Cf,;:f;i (ws, wi) which can be used for an arbitrary
spatiotemporal pump field.

For the scope of this paper and our experimental con-
straints, we restrict ourselves to the case of a monochromatic
Gaussian pump. Under this consideration and due to en-
ergy conservation w, = ws + w; and OAM conservation £, =
£s + € = 0 [31,43], the SPDC biphoton state Eq. (1) can be
reduced to
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where 2 is the frequency deviation from the center frequency
? Wi = a)g’i + Q@ and ¢ = £ = —¥¢;. The detailed expres-

s,1°

. |Z| . . . .
sion for €, is shown in Eq. (A6) in Appendix Al.

III. SPATIAL-SPECTRAL DECOMPOSITION

The experimental setup used to verify Eq. (3) is depicted in
Fig. 1. A collimated pump laser (A, = 404.8 nm) is focused
by the lens L; (f; =200 mm) in the center of a 20-mm-
length type-II periodically poled potassium titanyl phosphate
(ppKTP) KTiOPO4 producing SPDC around 809.6 nm. The
resulting pump waist is w, ~ 60 um. A long-pass filter is used
to block the pump laser and the two photons are transmitted
and then separated deterministically by a polarizing beam
splitter (PBS) later on. The crystal plane is imaged to the input
plane of the detection module by a 4 f imaging system consist-
ing of the lenses L, and L3 (f, = 100 mm, f3 = 1000 mm).

The spatial mode detection setup relies on MPLC to map
an arbitrary spatial mode to a Gaussian mode and then is
coupled to a single-mode fiber (SMF), filtering the desired
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FIG. 1. Experimental setup. A 405-nm continuous-wave laser
pumps a type-II ppKTP crystal. Signal and idler photons are sep-
arated by the polarizing beamsplitter (PBS). The crystal plane is
imaged into the detection system consisting of the SLMs and
single-mode fibers to perform joint projective measurements in
the spatial domain. A monochromator is used in the path of one
photon to project the state in the spectral domain. PMF, polarization-
maintaining fiber; HWP, half-wave plate; PBS, polarizing beam
splitter; ppKTP, periodic poled potassium titanyl phosphate; LPF,
long-pass filter; SLM, spatial light modulator; SPAD, single-photon-
counting avalanche diode; SMF, single-mode fiber.

mode. The MPLC scheme is implemented using three phase
modulations on liquid crystal-based spatial light modulators
(SLMs), and has an efficiency of approximately 40% for all
modes considered (Appendix B). After being coupled to the
SMFs, the photons are detected with single-photon avalanche
diodes and coincidence counts are recorded by a time tagger
(Qtag, 1-ns coincidence window).

A spatial decomposition is performed by projecting the
two-photon states in all different combinations of joint mea-
surements |¢;, pi, s, ps) {4i, pi, £s, ps|. For this, the subspace
of the LG basis with p =0,1,2 and £ =0, £1, +2, 3 and
a collection waist wy, = 30 um was considered for signal and
idler photon. To analyze the spectral properties, we send one
of the photons to a monochromator (Andor Kymera 193 i,
FWHM =30 pm). Upon detecting the signal photon, the idler
photon is automatically projected into the spectral state w; =
wp — w; fulfilling energy conservation.

Figure 2(a) shows the experimental mode correlation
matrix in the broadband regime (before connecting the
monochromator). As expected, anticorrelation of the OAM
and decreased spectral efficiency are observed for higher
values |£| [44]. We repeat the same measurement, but now
add a narrowband spectral filter at Ay =~ 809.66 nm, as shown
in Fig. 2(b). The crosstalk appearing in the experimental
plots between different OAM mode groups is a result of
misalignment due to stability issues during long-time mea-
surements. Inspection of the two figures clearly shows that
spectral filtering eliminates many spatial modes generated in
the down-conversion process. In fact, if we repeat the same
measurement at different A,, the correlation matrix is different
every time (Appendix C). This can be seen directly in the
measured spectrum for different spatial modes [Fig. 2(c)].
We notice that the center wavelengths of higher-order modes
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FIG. 2. (a) Spatial mode decomposition of the spectrally broad-
band PDC emission in the subspace of the LG basis p =0, 1,2
and [ =0, £1, £2, 43 and for a pump waist w, = 60 um and a
collection waist wg = 30 um. (b) Spatial decomposition with nar-
rowband spectral filter centered at A = 809.66 nm. When comparing
both, we see the effect of spectral filtering in the spatial domain.
(c) Joint spectrum of different joint spatial modes. We see that the
center wavelength of higher-order modes is shifted from the collinear
phase-matched wavelength as a result of the higher transverse
momentum contributions.

tend to be shifted away from the collinear phase-matching
wavelength. This is expected, since higher-order modes carry
a higher average |q|, and the phase mismatch is compensated
at different wavelengths, similarly to temperature tuning. This
dependence of the spectrum on the collected modes is due
to spectral-spatial coupling. We can also see that this cou-
pling can occur within a wavelength range where efficient
spectral filtering with off-the-shelf components is not possible
(in our experiment, the relevant spectral bandwidth is less
than 1nm). To decrease the spatiotemporal coupling, larger
waist parameters are typically chosen limiting the solid angle
collected from the SPDC (|g| & 0), but this results in very
inefficient photon sources. The predictions of the theory are
in good agreement with the experimental results [Figs. 2(a)—
2(c)]. More realizations of the experiment were performed for
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different crystal lengths, pumps, and collection waists, and the
results are displayed in Appendix C. It is worth mentioning
that postprocessing was not necessary, since the MPLC is
close to being a mode-independent technique [45] (at least for
the chosen subspace).

IV. SPECTRAL DEPENDENCY OF THE OAM STATES

To see the practicality of our expression, we investigated
the influence of spatial-spectral coupling on OAM anticorrela-
tion in SPDC, which has been widely used in experiments on
high-dimensional entanglement. Restricting ourselves to the
case of p = 0, the biphoton state reads

) =/dsz S Q@6 -6 -2). @

{=—00

Here we have omitted the p = 0 for simplicity. Since the
spectral amplitude C,(£2) or the collection probability P, =
f d2|C g|(Q)|2 is generally not independent of ¢, the amount
of entanglement present in the OAM basis is reduced, com-
pared to a maximally entangled state. To quantify the effect
on spatial entanglement, we calculate the density matrix p =
[W) (W] and then trace the spectral domain, Pgpatial = Tra(p),
which yields

pspaiat = Y Ay glt, —O)(T, =T 5)

e

Here, A, ; = ng(Q)[Cg(SZ)]*dSZ is the spectral overlap
integral of the OAM modes ¢ and £. Evidently, poor spectra
overlap reduces the magnitude of the off-diagonal elements
of the density matrix, leading to loss of entanglement. It
is easy to see that the two-dimensional subspaces |¢, —¢) +
| —¢€,¢) are found to be maximally entangled, since the
spectral correlations C,(2) are the same for both modes.
This might not be the case for |¥,) = C,|€, —£) + C;|¢, —£)
when ¢ # .

This can be fixed by applying a quick-and-dirty approach
based on the previous observations. By simply changing the
waist parameters we can directly manipulate the amount
of transverse momentum of the collection modes, and with
this also the spectrum. Choosing the right parameters al-
lows us to optimize the spectral overlap A, ;, and attain
a nearly flat OAM distribution P,, thus maximizing en-
tanglement in the relevant subspace. This approach, unlike
Procrustean filtering, i.e., the introduction of mode selec-
tive loss irrespective of spectrum [46], also addresses the
spectral overlap. Note that this waist choice can also be
interpreted as projecting into a differently weighted dis-
tribution of p states, since (LG)i(w/) = ZpAf,(LG)f;(w),
where A = [[ dpd¢(LG),(w)[(LG)', (w")]* and w’ and w
are different waist parameters [47], thereby demonstrating the
importance of considering (the often forgotten) radial mode
number, when engineering spatially entangled states [48].
This way, we are still restricted to the case p =0 in each
OAM subspace |£| in a redefined basis of waist w,. The fol-
lowing calculations were done considering a continuous-wave
pump laser at A, = 405nm and a ppKTP crystal of length
L = 10mm. First, we select the focus waist to be used in
the experiment; in this case, we set wp, = 141 um. We now
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FIG. 3. (a) Theoretical pair collection probability P, as a func-
tion of the collection waist wy for the state for |¢, —¢), given the
pump waist w, = 141 um. The orange dot corresponds to the op-
timal collection waist for the OAM mode |[| = 4 that maximizes
the collection probability. (b) Theoretical spectral amplitude of the
different OAM modes collected with wy = 41 um [dots on vertical
dashed line in (a)], showing the shift of the central wavelength and
different amplitude. (c) Theoretical spectral amplitude of the differ-
ent OAM modes collected with different waist parameters w,; [dots
on horizontal dashed line in (a)]. In (c) and (d) £1 and £1’ represent
the two different choices of collection waists w; and wj, respectively.
(d) Theoretical overlap of the spectra of the OAM modes. This shows
how sensitive the SPDC state is with respect to the collection mode.

calculate P, for each OAM mode as a function of the collec-
tion waist wg, which is plotted in Fig. 3(a) for [£| =1, 2, 3,
and 4. We then calculate the spectral amplitude of the differ-
ent modes by selecting ws that maximizes the mode |{| = 4,
wy = 41 um [orange dot in Fig. 3(a)]. As mentioned above, if
we choose the same wy for all |£| [green dots on the vertical
dashed line in Fig. 3(a)], the spectra are slightly shifted from
each other and the amplitude also decreases for higher ¢, as
can be seen in Fig. 3(b). Following the approach mentioned
above, we define different collection waist parameters w,
for each OAM mode, as shown in the red and blue dots on
the horizontal dashed line in Fig. 3(a). The waist parameters
used in the experiment are w; = 25 um, w,; = 29 um, w3 =
35 um [blue dots in Fig. 3(a)] for |€| = 1, 2, 3, 4, respectively.
To illustrate the consequence of spatial-spectral coupling,
we also choose an erroneous waist parameter for £ = 1 to be
w; = 85 um (we add the apostrophe to differentiate from the
w) configuration), which has the same generation probability
[red dot in Fig. 3(a)]. On a more technical note, this again
shows the versatility of the MPLC scheme which allows us
to efficiently vary the beam waist parameter of the collection
modes.

We plot Cy(A) for these configurations in Fig. 3(c). As
expected, the spectral overlap of the modes can be improved,
by choosing smaller waist parameters for the modes with
lower OAM. In contrast, the overlap decreases when choosing
the larger beam waist parameter wj = 85um [solid green
line in Fig. 3(c)]. The absolute value of the spectral overlap
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FIG. 4. Absolute value of the experimentally reconstructed density matrices for the state pspaia = > 0P Ay ile, —2) (Z , =l | for the chosen
waist parameters (a) w; and (b) wj. It can be seen that for the latter, the off-diagonal elements have significantly reduced. (c) Theoretical pair
collection probability P; as a function of collection waist w, and pump waist w), for the state |4, —4). (d) Theoretical spectral amplitude of the
states ¢, —¢€) with collection waists w; = 15 um, w, = 19 ym, w3 = 21 wm, and w, = 31 pm.

|A;.r| is shown in Fig. 3(d), which has been normalized to the
highest value P,. Interestingly, looking at Fig. 3(d), we can
find two configurations for |[€| = 1 (w; and w}) in which the
collection probabilities are close to identical but one is highly
entangled and the other is poorly entangled with |[¢| = 2, 3,
and 4. Ideally, the elements of A, | (the first 4 x 4 terms)
should be equal to unity for all £ and ¢’. However, we found
that this is not possible only by changing the waist parameters
while also optimizing also for the spectral overlap. Nonethe-
less the approach yields a high purity and entanglement
fidelity with a maximally entangled state, as will be shown in
the following. It is worth mentioning that the calculation was
performed with a resolution in the collection waist of 2 um,
which in this tight focusing regime can lead to non-negligible
change of the amplitude and a shift of the spectrum. This also
shows how sensitive the SPDC state is in the choice of the
collection mode.

We tested our predictions by performing full quantum
state tomography in the two-dimensional subspaces |V, ;) =
Col, —0) + C;|€, —f) for £ =2,3,4 and € = 1 for the two
configurations, w; and w}. The chosen measurement bases are
{19), 1)}, {1€) £ 1)}, {|€) £ i|€)}. We then reconstruct their
respective density matrices p, ; from the measurement results
using a maximum likelihood estimation technique [49,50] and
calculate the purity and fidelity of the entangled biphoton state
through y, ; = Tr{p} ;} and F, ; = (Tr{\/ /B¢ 1P /D7)’ Te-
spectively. Here p, ; is the calculated density matrix and p
is the density matrix of a maximally entangled target state
|W,) = |€, —€) + €'®|Z, —F) (with normalization factors omit-
ted for brevity).

Figures 4(a) and 4(b) show the absolute values of the re-
constructed density matrices for both configurations w; and
wj, respectively. As expected for the latter, the off-diagonal
terms are considerably smaller than the on-axis elements, rep-
resenting a loss of coherence due to spatial-spectral coupling.
The experimental and theoretical fidelity F, ; and purity y, ;

of the different states are shown in Table 1. The uncertainty
was calculated by repeating 10000 times the reconstruction
procedure adding Poissonian noise to the recorded data. As
expected from the calculated spectral overlap, we obtained
higher values of F, ; and y, ; for the w; configuration and
significantly decreased for w/. The results show good agree-
ment with our calculations. The slight discrepancy can be
due to possible underestimation of the state purity and fi-
delity in the maximum-likelihood estimation method and/or
several experimental factors such as not fully corrected static
aberrations of the SLMs and a high-precision requirement
when working with small beam waists. Although the results
were not far away from the theoretical prediction even un-
der experimental errors, our expression allows us to upper
bound the property of interest, in this case the purity and
fidelity with a maximally entangled state. When the focus
of the pump and collection modes is carefully chosen, it is
possible to control the purity and amount of entanglement of
the state.

We also show that we can get an increase in brightness by
a factor of ~2 by focusing the pump beam. This is shown in

TABLE I Fidelity and purity of the state pgpaia =
D i Aeile, —£)(£, —Z). In the first E:olumn, w; and w] represent the
two choices of waist parameter for £ = 1.

Experiment Theory
i=1 ¢ Fy; Yei Fyq Yei
wy 2 0953+0.016 0.927+0.030 0991 0.983

3 0965+£0.012 0.939+0.022 0992  0.983
4  0919+£0.023  0.869+£0.040 0.992  0.984
w) 2 0.658+0.025 0.564+0.032 0.752  0.628
3 0.601 £0.024 0.530+0.012 0.755 0.631
4 0.764+0.023 0.642+£0.024 0.773  0.649
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Fig. 4(c), where the pair collection probability Py is displayed
as a function of the pump and collections waist parameters, ws
and wyp, respectively. By applying the same method as before
and choosing a smaller pump waist w, = 75 um, the required
collection waists also shift to smaller values (w; = 15 um,
wy = 19um, wz = 21 um, and w4 = 31 um). From the spec-
tral amplitude of this configuration [plotted in Fig. 4(d)], we
can see that in the tight-focusing regime the spectrum of the
photons is no longer sinc shaped and the spectral overlap
slightly decreases. Nevertheless, fidelities F' > 0.97 can still
be achieved for any combination of |£| = 1, 2,3 and F' > 0.94
for |£] = 4. This results in the limitation of this method.

To conclude, we note that a more general version of
this method can be formulated by considering the collection
modes as superpositions of the radial index modes, rather
than simply changing the waist parameters. The collection
modes for idler and signal photons can be written as |u) =
Zp; Ay, |pi) and |v) = ZA B, |ps), respectively. The bipho-
ton OAM state is |uy) [v_;) = Zpi,p, A, By |pi, €) |ps, —1£).

The spectral amplitude can be calculated through
Cov() =3, ,, ApBy.C,, , (1). This approach allows us to
control the spectral correlations by selecting appropriate val-
ues of the coefficients A, and B, . As an example, in
Appendix D, we show how this can be applied to optimize
brightness and spectral separability for the OAM modes |£| =
0, 1,2. This can be further generalized by optimizing the
pump mode, which can also be achieved by using our more
general expression [31].

V. DISCUSSION

Our paper shows the potential and importance of con-
sidering the spectral and spatial coupling when engineering
quantum photon sources. We have experimentally verified
our theoretical model and addressed the unexplored spectral
dependence of the OAM basis. We showed how the spatial-
spectral coupling can be used to control the purity of spatial
entanglement. The method described in Sec. IV, although
only proven for two-dimensional subspaces, can be easily
extended for high-dimensional entanglement. Furthermore,
we described a more general method that can be used to
shape the spectral properties through spatial filtering, which
we applied to ensure spectral indistinguishability for a subset
of OAM modes. All of this shows how versatile and pow-
erful is the spatial decomposition description of SPDC for
spatial and spectral control of the biphoton state. Our paper
also illustrates some limitations of a description in terms of
Schmidt modes. We have shown, for the LG-mode basis,
that the mode decomposition is frequency dependent, which
implies that the spatial Schmidt modes will be frequency
dependent. We leave the problem of determining the full
spatiotemporal Schmidt modes in the combined transverse
momentum and frequency space as a subject of follow-up
research.
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APPENDIX A: THEORY

The biphoton state of SPDC can be described by the
expression

= /f dqs dql da)S dwi CD(qS’ q;, Ws, wi)

x al(gs, @) & (g, @) [vac) , (A1)
where ®(qs, q;, ws, w;) is the so-called two-photon amplitude.
It encloses all the spatial-temporal correlations and is given by

. AkL
D(qs, qi, ws, ;) ~ Ep(qi +qs, a)p)SIHC T . (A2)

Here, Ak = kj — ki —k{ is the longitudinal phase mis-
match and E(qs + qi, wp) is the amplitude of the pump beam
in the spectral (w,) and transverse momentum (q, = qs + q;)
space.

Following the work from Ref. [17] we project the spatial
domain of Eq. (A1) in the LG basis ({¢s, ps, £i, pi|¥)), which
runs over the radial p and azimuthal ¢ indices of the signal and
idler photons. The LG basis is a good initial approximation of
the spatial Schmidt basis of the biphoton state, given that the
OAM is conserved in SPDC [43], and that LG modes carry
well-defined OAM (given by the index ¢). While considering
an arbitrary pump field in its transverse profile, it can also
be decomposed as a superposition of LG modes given by

Ey(qp) = > Dot Cﬁi (LG),‘;‘; . After this projection the state can
be written as

Z Z /deQ

Ps:pi=0 £, €, li=—00

L, L, 6

X Cppp, p,(QwQ”pwEhQ > |Pi,zi,9i)~ (A3)

Here, we have used the notation w; = a) + Q;, where Q;
is the frequency shift from the central frequency a)? The

Chril Qo @) is the solution of the

probability amplitude C," .

overlap integral

l iyl

AkL
pp pope(S2) —Nqusdq,mnc( )(LG),,p

x (LG);i (q)* (LG} (i), (A4)

which gives all the information of the spatial-spectral correla-
tions. Here, N is the normalization factor. A close expression
for this coefficient has been reported under special con-
siderations such as spectrally narrowband or thin-crystal
approximation [16] (Rayleigh range Z, > crystal length L).
In our recent work [31] we have derived a semianalytical
bt .

expression for Cp, ' 5, (25, €2i), where only two approxima-
tions were applied: the paraxial approximation (k >> |¢q|) and
small frequency shifts with respect to the center frequency
(2 <« wyp). Taking this into account, the longitudinal wave
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vector can be expanded as follows:

QG gyl
K=k —|q>~k = L A5
i i |‘IJ| 1,0 + 0 + D) 2k_l 0 ( )

where k; 0, u;0, and Gj o are the wave vector, group velocity,
and group velocity dispersion, respectively, evaluated at the
center frequency w; o. From Eq. (A5) we can see directly that
an increase in the transverse momentum |g;|, related to the
detection spatial mode, will necessarily affect the spectral
state of the collected photons such that the PM condition is
satisfied.

SPDC expression for a CW Gaussian pump beam. We
consider a continuous-wave Gaussian beam given by

wZ
Vg +a) = —= exp(— Ll +ai )52+ 2.
qs T qi N p 2 qs T q;

Under this consideration, we can simplify Eq. (A4) using £ =
Ly = —¢; and Q2 = Q, = —Q;, which reads [31]

il (Q) Z Z

]vpv M\ (TPiv‘e‘)*
i

s=0 i=0
L/2 o o @

* / dz exp |:iz<— -— -G+ Gs))]
—L/2 up ug 2
D . D?

X WzFl[l—i—s,l—l—l,l—wLﬁ}

(A6)

where the function ,F| is known as the regularized hypergeo-
metric function [51]. The missing coefficients are given by

w? 1
D=—-"L_j;z—,
4 2k,
2
[0.1emlH = -2 + wi ik _ks,
4 4 2k pky
2
[0.1cm]B = ﬂ+w—’2 —izk”_k‘,
4 4 2kpk;
[0 lcm]Tp‘e — /M (i)%ﬁlllﬂ
: u T ﬁ
(_1)p+u

X .
(p —w)! (|€] + u)!

Here we used the fact that Cf,;’ E(Q) ps p‘ L) =
C [|f | 1;(§2). Note that for the case of type-II phase matching the
state is asymmetric in the radial dimension and the p; and p;
cannot be exchanged, for example C(lflz(Q) #* Cyj(‘)(Q). Clearly
this is also the case for £; and £; when £, # 0.

APPENDIX B: CHARACTERIZATION OF THE MODE
PROJECTION SYSTEM

For the spatial mode projections, we used the MPLC
scheme. To characterize the performance of the system, we
used one of the MPLC systems to generate the spatial modes

Mirror L

Qwp D HWP_ »%%

%
Laser

FIG. 5. Characterization setup. A 808-nm continuous-wave
single-mode fiber coupled laser is incident on the MPLC system
generating the desired spatial modes. The generated mode is sent to
the other MPLC system after the reflection from the mirror and po-
larization rotation achieved using the quarter-wave plate. The optical
power coupled to the single-mode fiber after projecting to different
spatial modes for each input spatial mode is measured using a photo
diode and a power meter. QWP, quarter-wave plate; HWP, half-wave
plate; PBS, polarizing beam splitter; SLM, spatial light modulator;
SME, single-mode fiber.

Optical power
measurement

SMF

that are of interest in the experiment and the other MPLC to
detect those modes. The experimental setup is shown in Fig. 5.
A collimated Gaussian beam of approximately 750-um beam
waist from a single-mode fiber coupled 808-nm laser diode
is incident on the MPLC system consisting of three planes of
phase modulation and free-space propagation, which is imple-
mented by the SLM and a mirror. This system generates the
desired modes with a beam waist of 400 um. The generated
modes are fed back into the other MPLC system using a 4f
system, where a mirror is placed in the focal plane of the
lens (f = 1000 mm) and the polarization is rotated by 90°
by passing through the quarter-wave plate twice, with the fast
axis oriented at 45 °. Thus, the beam is reflected by the PBS
and the input mode is mapped to the first plane of the other
MPLC with a beam waist of 400 um. A HWP is placed in
the beam path so that the polarization of the incident field is
changed to the polarization state that the SLM can modulate
[52]. In the detection MPLC, the reverse transformation as the
previous MPLC is performed wherein, after the three planes
of phase modulation, the correct mode is transformed to the
fundamental Gaussian mode that gets coupled efficiently into
the single-mode mode fiber. When other orthogonal modes are
incident, the transformation also produces a field profile that
is orthogonal to the fundamental Gaussian mode and hence
does not couple to the single-mode fiber. We characterized
the detection of 21 different modes of the LG basis which
we used in the mode decomposition of the SPDC photons.
For a specific input mode, the power coupled into the single-
mode fiber after the transformation from the detection MPLC
is measured for different detection modes. From these mea-
surements, the modal crosstalk matrix can be created which
is used to evaluate the performance of the detection system.
We calculate visibility (V), which quantifies the quality of the
transformations from the crosstalk matrix as follows:

Zi Pii

V = .
Zij Pij

(BI)
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FIG. 6. Detection of LG modes: (a) detection efficiency and
(b) modal crosstalk matrix for 21 different modes of the Laguerre-
Gauss basis. The mode number represents specific modes as follows:
1-LG}, 2- LG}, 3- LG}, 4- LGZ, 5- LG?, 6- LG3, 7- LG}, 8- LG3, 9-
LG3, 10- LG}, 11- LGY, 12- LGY, 13- LG;', 14- LG 1, 15- LGS,
16-LG,?, 17-LG;?, 18- LG;?, 19- LG,?, 20- LG, ?, 21- LG .

Here, P;; are the diagonal elements of the crosstalk matrix and
P;; corresponds to all the entries in the crosstalk matrix. We
also calculate the detection efficiency for each of the modes
as the ratio between the power coupled to the SMF and the
input power for the right combination of the input mode and
the detection holograms. The modal cross-talk matrix and the
plot of detection efficiency for the 21 modes are shown in
Fig. 6.

The clear diagonal in the crosstalk matrix shows that the
detection system performs quite well. Ideally, visibility should
be 1, in case of a perfect detection system. We obtain a
visibility of approximately 0.91. The main reason for the
reduction in visibility is from the p modes as the orthogonality
of the p index of LG modes is contained in the waist of the
beam or the curvature of the wavefront [39]. Another factor
contributing to the reduced visibility is slight misalignment
in the system. We see that the average detection efficiency
is approximately 40% and is nearly mode independent. We
can still observe a small drop in efficiency for higher values
of the p index, which is also attributed to the dependence
of the beam waist on the orthogonality of the p modes.
However, we can see that for a fixed value p, the detection
efficiency for all the £ values remains constant. If we remove
the inherent losses in the system, namely from the SLM due
to the additional blaze grating to remove the interference
from the undiffracted light on the three planes (~80% in
each plane) and the single-mode fiber coupling efficiency
(>80%), we can see that the detection system is near perfect
and lossless [45].

APPENDIX C: SPATIAL DECOMPOSITION OF PHOTON
PAIRS IN DIFFERENT FREQUENCY BANDS, BEAM
PARAMETERS OF THE PUMP PHOTON FIELD,
AND CRYSTAL LENGTHS

We have seen the effect of narrowband spectral filtering
on spatial decomposition in the main section, where the fil-
tering was performed around the center wavelength of the
spectrum of the photons occupying the fundamental Gaus-
sian mode. As a result, we could suppress the contribution
of several higher-order modes as the central wavelengths of
these modes, which carry higher transverse momenta, were

Narrowband @ 809.66nm Narrowband @ 809.8nm

1
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FIG. 7. Narrowband spatial decomposition around different cen-
tral wavelengths. (a) Experimental results around A = 809.66 nm
(red) and A = 809.8 nm (blue). (b) Theoretical predictions for the
narrow band spatial decomposition around A = 809.66 nm (red) and
A = 809.8nm (blue). (c) Joint spectrum of different joint spatial
modes where the spectral filtering around A = 809.66 nm is shown
with the red arrow and around A = 809.8 nm is shown with the blue
arrow.

shifted to higher wavelengths. With our experimental realiza-
tions closely matching the theory, we performed the spatial
decomposition at a different frequency band slightly away
from the central wavelength. The experimental setup is the
same as given in the main text, with the only difference that
the monochromator is set to measure around A = 809.8 nm,
while it was A = 809.66 nm in the main section. The narrow-
band spatial decomposition obtained around A = 809.8 nm
compared to that around A = 809.66 nm along with the ex-
pected results from the theory is shown in Fig. 7. We can
clearly see that the experimental results agree well with the
theoretical predictions. While looking into the joint spatial
amplitudes for different modes, we can see that for the spa-
tial decomposition around A = 809.8 nm, the fundamental is
no longer the brightest mode and here the combination of
I,=1,p,=0 and [; = —1, p; =0 or vice versa has the
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FIG. 8. Broadband spatial decomposition for different crystal
lengths and pump beam waists. (a) L = 20 mm, w, ~ 20 um. (b) L =
20 mm, w, ~ 60 um. (c) L = 10 mm, w, ~ 45 um. The collection
waist for the photon fields is set to w, ~ 30 um in all the three cases.

brightest joint spatial amplitude. The spectral filtering at a dif-
ferent wavelength here suppresses the contribution of modes
with lower transverse momenta and that is why the higher-
order modes can be brighter than the fundamental Gaussian
mode. This is visible from the joint spectrum of the different
spatial modes [Fig. 7(c)].

Now we test the predictions of our theoretical model for
the broadband spatial decomposition of photon pairs at dif-
ferent beam parameters for the pump photon field and also
for two different crystal lengths. In the main text, we looked
at the broadband spatial decomposition for a ppKTP crystal
of length L =20 mm, pump beam waist w, ~ 60 um, and
collection waist wy; ~ 30 um. In Figs. 8(a) and 8(b), we com-
pare the experimental results and theoretical predictions for
a tight and loose pump focusing, here w, ~ 20 and ~60 ym
respectively. We can see that the relative weights for differ-
ent joint spatial mode detections obtained in the experiment
agree well with the theory. For a smaller beam waist for the
pump, the contributions of the higher OAM modes are much
less than those of the Gaussian mode. These parameters are
important in applications where spatial entanglement has to
be minimized so that entanglement in different degrees of
freedom can be enhanced. Figure 8(c) shows the broadband

spatial decomposition for the crystal length L = 10 mm, pump
beam waist w, ~ 45 um, and collection waist w, ~ 30 um.
Here, we used a crystal that is different from that in the
previous cases, and the experimental results are in accor-
dance with the theory. Another interesting feature here is
with respect to the spiral bandwidth of the OAM modes. The
weights of the anticorrelated OAM modes are the same as in
Fig. 8(b).

APPENDIX D: OPTIMIZATION OF THE OAM
COLLECTION MODES FOR SPECTRAL DECOUPLING

As mentioned in the main text, a general bipho-
ton OAM state can be written as |ug)|v_y) =
Zpi,psAI’iBPs |pi, £) |ps, —€). And the spectral amplitude

can bf? calculated through Civ()») = Zpi,ps APiBP<C£;,pS r).
This approach allows us to control the spectral cor-
relations by selecting the appropriate values of the co-
efficients A, and B,. We can choose a particular nor-
malized target spectrum ®,(A) [f d\|®,(1)]> = 1] and op-
timize the coefficients A, and B, minimizing the cost
function:
2
F=1- ‘/dkd)f()\)chv(k) , (D1)

where Cf,v(k) is properly normalized in each iteration. We
can choose to optimize the brightness of a particular state by
minimizing

Jlet, ol dn
Yo L 1CE G0 d

Similarly to Eq. (D1), we can optimize the spectral overlap
and equalize the probability amplitude of the different OAM
states £ and ¢’ using

Foright = 1 (D2)

| [ (CL,) ct (dr|

u,v

fleL, 0ol f |t oo dn

D3)

Fspecl =

For our simulation, we chose a 10-mm-long type-II pp-
KTP crystal, and calculated the coefficients Cﬁi’ (1) using
the pump and collection waists w, = 50 um and ws = 50 um.
These are shown in Fig. 9(a) for |¢| =0, 1,2 and p = 0-10.
Now, we first use Eq. (D2) to optimize the brightness for
|€| =2 (subspace in the blue box). This can be done eas-
ily using the fminsearch function of MATLAB. We then use
Eq. (D3) for £ =2 and ¢ =0, 1 (subspaces in the yellow
and orange boxes, respectively). The spectra of the calculated
modes are plotted in Fig. 9(b) showing almost perfect overlap
and amplitude, potentially leading to a highly pure and bright
five-dimensional entangled state. Figure 9(c) shows the recon-
structed OAM modes |u;) and |v_,) in amplitude and phase.
Interestingly, the optimal modes are not identical for signal
and idler photons. This is especially noticeable for |£| = 1,
where the outer ring is more predominant. This can be further
generalized by optimizing the pump mode, which can also be
achieved by using our expression.
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calculated OAM modes.
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