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Chiral materials to control exceptional points in parity-time-symmetric waveguides
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Parity-time (PT ) symmetry and chirality are both actively investigated in photonics due to the original
behaviors they provide. We combine PT symmetry and chirality in a single photonic structure by inserting
a chiral material in the narrow gap between PT -symmetric coupled waveguides. We analyze the various
effects of chiral coupling between the modes, especially in the vicinity of an exceptional point. By tuning
the waveguide gap we tailor the chiral coupling between non-Hermitian modes with different polarizations,
which would otherwise not interact. As a result, a rich variety of qualitatively differing dispersions is achieved,
from typical anticrossings to symmetry-broken and associated symmetry-recovery zones, as well as a hybrid
trimodal anticrossing. Furthermore, the slot effect in the gap leads to a very strong chiral coupling, reaching bulk
sensitivity values near an exceptional point, which could be useful for sensing purposes. We employ a modified
two-dimensional finite-element approach to include chirality in the simulations. Additionally, we propose a
compact coupled-mode theory that elucidates the physics at play and provides opportunities for the study of
more complex devices.
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I. CONTEXT

Parity-time (PT ) symmetry is extensively studied in
photonic structures, with various implementations in waveg-
uides [1–4], lattices and metasurfaces [5–7], plasmonics [8,9],
and several other possibilities [10–15]. An essential approach
is via two coupled waveguides of identical geometry with
a balanced imaginary part of the refractive index, thus one
with a photonic gain material and the other with an equal
amount of loss [1,8,11,13]. Typically, PT -symmetric waveg-
uides operate in two separate regimes, depending on the value
of the gain-loss parameter γ . The transition between these
two regimes occurs at the exceptional point (EP), at a certain
value γEP dependent on the mode coupling via optogeometric
parameters. In the PT -symmetric regime γ < γEP, both su-
permodes of the structure propagate without any gain or loss,
whereas in the PT -broken regime γ > γEP, one supermode
benefits from gain and increases in amplitude, while the other
experiences loss and exponentially decays [14,16,17].

As regards chirality, for the case of plane waves propa-
gating in a uniform medium, it is well known that a chiral
material rotates the polarization plane, a phenomenon called
optical activity that has been known since Pasteur [18].
Used mostly for enantiomer detection in chemistry and bi-
ology [19], these techniques are based on the different
response to left-handed and right-handed circularly polarized
light [20–23]. Various types of chirality have since been
implemented and utilized in photonic structures [19,24,25].
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In particular, waveguide systems with chiral materials were
studied [26–29] and chirality was combined with EPs in ring
resonators [30–32].

It was also shown that chirality and PT symmetry are
related in several ways: PT symmetry can be implemented
in a bulk material as an electrical anisotropy to induce a chiral
polarization in the states of the system stemming only from
PT symmetry [33]. Additionally, such bulk PT symmetry
can be studied in combination with material chirality to gain
insight into the polarization dependence around the EP, as well
as creating directionality [34]. Furthermore, chirality was im-
plemented in PT -symmetric metamaterials, on the one hand
as a way to break PT symmetry in polarization space [35]
and on the other hand to conserve PT symmetry in scatter-
ing multilayers [36–38]. Finally, it was recently shown that
PT symmetry can enhance chiral sensing with a multilayer
approach [39]. However, the influence of material chirality
on the eigenstates of PT -symmetric coupled waveguides has
not been discussed yet, in spite of the importance of these
photonic elements for many applications.

In this work we place a chiral material in the gap between
PT -symmetric coupled waveguides. We study the rich influ-
ence of chirality on the system’s supermodes by numerical
means and propose a coupled-mode theory that elucidates in
detail the salient features: the dispersion, including the EP-
related singularities, the mode profiles, and the polarization.
Different types of avoided crossings can be obtained in the
chiral mode dispersion by tuning the size of the gap. For
narrow gaps, an anticrossing appears between quasi-TE and
quasi-TM modes of the same parity. These modes are lin-
early polarized in the absence of chirality, but they become
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(a) (b)

FIG. 1. PT -symmetric rectangular waveguides (orange and
green) and chiral gap (purple), with mode propagation in the z di-
rection. The device is embedded in air. (b) Schematic of typical TE
(blue solid line and gold dotted line) and TM (red dashed line and
pink dash-dotted line) real dispersions of the structure as a function
of the gain-loss parameter γ . The subscripts up and dn refer to the
upper and lower branches of the PT forks for each polarization.

quasicircularly polarized with chirality. For wider gaps, a
crossing occurs in the dispersion between quasi-TE and quasi-
TM modes of opposite parity. This causes the uncommon
appearance of a PT -broken zone in the previously PT -
symmetric phase, followed by symmetry recovery with an
inverted EP. As explained with the theoretical model, this fea-
ture requires balanced gain and loss. In the locally PT -broken
zone, the polarization of the modes becomes suddenly linear.
A specific intermediate situation arises for medium-size gaps,
where the dispersion crossing occurs right at the EP. Chirality
then yields a trimodal anticrossing effect that appears to reach
the same sensitivity as a fully homogeneous chiral medium, in
tight connection with the field enhancement in the slot.

This paper is structured as follows. In Sec. II the PT -
symmetric coupled waveguide structure is described. The
various types of avoided crossings generated by chirality are
studied in Sec. III by employing a finite-element method that
embeds chirality in the constitutive relations. In Sec. IV the
coupled-mode theory describing our system is presented. In
Sec. V the mode profiles and their polarization are examined
in detail. We summarize in Sec. VI.

II. DEVICE GEOMETRY AND NUMERICAL APPROACH

Our structure is composed of two PT -symmetric waveg-
uides with a rectangular cross section, with an aspect ratio of
4 chosen in order to obtain the desired TE-TM degeneracy
(discussed later). Though other aspect ratios (e.g., 3) can also
produce these degeneracies, we find that a value of 4 gives
dispersions that are easier to tune in the context of our study.
One waveguide is made of a gain material and the other has
loss [Fig. 1(a)]. A potentially chiral material (without gain or
loss) is located in the narrow gap between them. We employ
a waveguide width of 100 nm and thickness of 400 nm, for
a vacuum wavelength of 350 nm (but the phenomena can be
rescaled to other sizes and wavelengths). The gap width be-
tween the waveguides varies between 10 and 50 nm. The gain
and loss materials are characterized by refractive indices of
2 − iγ and 2 + iγ , respectively, so γ , the gain-loss parameter,
is here the imaginary part of the refractive index (not to be

confused with an effective, integrated coefficient). The gap
material can possess a nonzero chirality parameter κ defined
via the chiral constitutive relations [37]

�D = ε �E + i
κ

c
�H , �B = μ �H − i

κ

c
�E , (1)

where �D and �E are the electric displacement and field, re-
spectively, �B and �H are the magnetic induction and field,
respectively, ε = ε0εr (with ε0 and εr the vacuum and relative
electric permittivity, respectively), μ = μ0μr (with μ0 and μr

the vacuum and relative magnetic permeability, respectively),
c is the speed of light in vacuum, and i is the imaginary
number.

We use the mode solver of the SIMPHOTONICS MATLAB

toolbox, a Maxwell equation solver developed at Labora-
toire Charles Fabry to simulate our setup. SIMPHOTONICS was
upgraded to enable finite-element method (FEM) modeling
based on the generalized Helmholtz equation in the case of
chiral media,

�∇ × (p �∇ × �U ) − k0 �∇ × (κ p �U ) − k2
0 (q − κ2 p) �U

− k0κ p �∇ × �U = 0, (2)

where p, q, �U , and κ are all functions of space and k0 is
the vacuum wave vector. In the electric formulation p = 1

μr
,

q = εr , and �U = �E , while in the magnetic formulation p =
1
εr

, q = μr , and �U = �H . For a homogeneous medium (p,
q, and κ constant), Eq. (2) shows that chirality introduces
a single-derivative term −2k0κ p �∇ × �U as well as adding a
contribution k2

0κ
2 p �U to the nonderived term.

The devices described in this paper could be experimen-
tally realized. The gain-loss parameter γ we employ is on
the order of 0.1. This is relatively high compared to common
experimental values that are usually on the order of 0.01 for
crystalline semiconductors in commercial optical amplifica-
tion technology, but such high values can be obtained through
careful engineering of the photonic structure [5]. Additionally,
the geometry of our structure can be adjusted by widening
the gap (lowering the coupling) and adapting the waveguide
aspect ratio accordingly so that the desired dispersion features
(such as the EP) shift to lower values of gain and loss for
more feasible experiments. The chirality parameter κ , here
set to 0.012, is large compared to naturally occurring chiral
materials. However, chirality parameters on the order of 0.01
are reported for chiral liquids [40,41], and metamaterials can
exhibit even stronger chirality [42–44]. Finally, the effects
also appear for smaller κ: The anticrossings and broken zones
become narrower as κ decreases, but there is no threshold
value.

III. CHIRALITY-INDUCED AVOIDED CROSSINGS

In this section we assess the effect of chirality on the
PT mode dispersion obtained by FEM calculations. As the
structure is two dimensional, quasi-TE and quasi-TM modes
coexist in the achiral case. We refer to the modes with a
dominant y electric-field component as quasi-TE and the
modes with a dominant y magnetic-field component as quasi-
TM. Due to the double-waveguide symmetry of the structure,
a symmetric mode and an antisymmetric mode form the
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FIG. 2. (a) Real and (b) imaginary effective indices for the four highest index modes of the 12-nm-gap structure without chirality.
Dispersion of modes TEup (blue solid line) and TMup (red dashed line) around their crossing for a 12-nm-thick gap are shown for (c) and
(d) achiral and (e) and (f) chiral materials. The black arrow in (a) indicates the relevant crossing, which is enlarged in (c).

fundamental PT fork for each polarization. A schematic of
a typical dispersion is represented in Fig. 1(b), with the TE
fork represented by blue solid and gold dotted curves, while
the red dashed and pink dash-dotted curves show the TM
fork. The parity is indicated via the subscripts: We employ the
subscript up to refer to modes that have symmetric transverse
components at γ = 0 (blue solid line and red dashed line)
and the subscript dn to refer to modes with antisymmetric
transverse components at γ = 0 (gold dotted line and pink
dash-dotted line), transverse meaning Hx and Ey for TE modes
and Ex and Hy for TM modes. Without chirality, these two
forks do not interact and remain independent.

The chirality parameter κ is set to 0.012 in all chiral
simulation results shown in this paper. The chiral modes are
also referred to using TE,TMup,dn abbreviations by analogy
with the achiral modes, since the order of the modes in the
dispersion generally remains the same, with the exception of
the chirality-induced avoided crossings, as discussed later.

The structure is designed such that, depending on the gap
width, the TMup dispersion crosses the TE fork at a specific
place: through the upper part TEup, through the lower part
TEdn, or precisely at the TE EP. For a narrow gap, e.g., 12 nm
[see Fig. 2(a)], TMup (red dashed line) crosses TEup (blue
solid line) for a value γ < γEP. As the gap width increases,
conventional (achiral) coupling decreases, resulting in a lower
value of γEP and a lower position of the TMup crossing within
the TE fork. For wide gaps, e.g., 44 nm [see Fig. 3(a)], a
crossing occurs between TMup and TEdn (gold dotted line).
For medium-width gaps, e.g., 32 nm [see Fig. 4(a)], crossing
occurs right at the quasi-TE EP. Now when chirality is intro-
duced in the gap, the modal dispersion picture is qualitatively
altered, primarily around these crossings, with the appearance
of an anticrossing for narrow gaps, a PT -broken zone for
wide gaps, and a hybrid trimodal anticrossing for medium
gaps, as discussed in the following.

We note that the avoided crossings in this section assume
that κ is real. For imaginary κ the effects are interchanged:
A PT -broken zone appears for narrow gaps (crossing the
upper TE branch) while an anticrossing emerges for large gaps
(crossing the lower TE branch). Furthermore, the avoided

crossings acquire a hybrid nature when κ is complex as both
effects compete in altering the dispersion, without new emerg-
ing phenomena; more information is provided in Appendix A.

A. Anticrossing

For narrow gaps, the dispersion of mode TMup crosses the
TE PT fork above the TE EP, located around γ = 0.16 [see
Figs. 2(a) and 2(b)] (negligible imaginary index for γ < γEP),
with a focus on the crossing area in Figs. 2(c) and 2(d). Two
modes having the same parity symmetry and thus cross disper-
sions (TMup and TEup here, with symmetric profiles along x)
without chirality [Figs. 2(c) and 2(d)]. Subsequently, chirality
splits the effective indices into two values: The dispersion
curves [Fig. 2(c)] spread apart around the crossing [Fig. 2(e)],
while remaining real, as Im(neff ) is negligible [Fig. 2(f)]. This
is expected; chirality lifts the TE-TM degeneracy, much as it
does in the bulk, or in chirally loaded waveguides [26] when-
ever accidental crossings occur. Here the main function of
the gain-loss parameter is thus to create degeneracies among
certain branches, which are not available in lossless situations.

The size of the anticrossing, i.e., the splitting between the
effective indices of the modes, increases linearly with the chi-
rality of the gap material. This situation is essentially similar
to optical activity observed in bulk chiral media, where the
effective indices of right and left circularly polarized waves
are nRCP = n + κ and nLCP = n − κ , respectively, with n the
bulk refractive index. This similarity will also be evidenced
in Sec. V when discussing the polarization of the chiral
modes.

B. Local symmetry breaking

For broad enough gaps, both forks get narrower so the
dispersion of mode TMup crosses the TE PT fork under its
EP, located in our example around γ = 0.09 [see Figs. 3(a)
and 3(b) as well as the close-ups in Figs. 3(c) and 3(d)]. Two
modes of different parity thus become degenerate: TMup with
a symmetric profile and TEdn with an antisymmetric profile
along x (red dashed line and gold dotted line in Fig. 3).
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FIG. 3. (a) Real and (b) imaginary dispersions of modes TEup (blue solid line), TMup (red dashed line), and TEdn (gold dotted line) of the
44-nm-gap structure without chirality. The same dispersions around the mode crossing for a 44-nm-thick gap are shown for (c) and (d) achiral
and (e) and (f) chiral materials. The black arrow in (a) indicates the relevant crossing, which is enlarged in (c).

Intriguingly, chirality induces the appearance of a PT -
broken zone in the PT -symmetric regime around the crossing
[0.083–0.088 in Figs. 3(e) and 3(f)]. The effective indices of
the modes present equal real parts [Fig. 3(e)] and acquire a
substantial imaginary part [Fig. 3(f)], despite γ being below
γEP for both forks. At both ends of the locally broken “bubble”
there are thus two new exceptional points, one on the left
with the usual topology (from real to imaginary) and one on
the right with the inverted topology (from imaginary to real,
which can be called symmetry recovery).

The width and magnitude of the local symmetry-breaking
zone increase linearly with the chirality of the gap material;
thus the PT -symmetry breaking is due to the chiral coupling.
Local symmetry breaking followed by symmetry recovery has
already been observed, e.g., in the somewhat more intricate
case of four-waveguide systems [45], but here chirality offers
the same possibility with only two waveguides by allowing
quasi-TE and quasi-TM modes to couple. We will see later
that the gain and loss in this system are essential to be
able to break the symmetry locally; this is not possible in a

passive, lossless system (unlike the anticrossing of the pre-
ceding section).

C. Trimodal anticrossing

At the TE EP, TEup and TEdn modes coalesce: In addition
to having the same propagation constant, their field profiles
are the same instead of being orthogonal. For a medium gap
width, the TMup dispersion [red dashed lines in Figs. 4(a)
and 4(b)] crosses the TE fork exactly at the EP [close-ups in
Figs. 4(c) and 4(d)] and thus interacts with both TE modes
(blue solid line and gold dotted line), resulting in a hybrid
coupling. The dispersions of TMup and TEup seem to undergo
an anticrossing: The blue solid curve and red dashed curve
spread apart in Fig. 4(e), while the real dispersions of TMup

(red dashed line) and TEdn (gold dotted line) join together in
an EP. Through this process the EP is slightly shifted towards
lower values of γ [Fig. 4(f)] and the PT -broken regime
is attained earlier: The imaginary part becomes nonzero at
γ = 0.110 in the achiral case, but at γ < 0.109 with chirality.

FIG. 4. (a) Real and (b) imaginary dispersions of modes TEup (blue solid line), TMup (red dashed line), and TEdn (gold dotted line) of the
32-nm-gap structure without chirality. The same dispersions around the mode crossing for a 32-nm-thick gap are shown for (c) and (d) achiral
and (e) and (f) chiral materials. The black arrow in (a) indicates the relevant crossing, which is enlarged in (c).
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The size of the anticrossing, measured vertically between
the shifted EP [junction between red dashed and gold dotted
curves in Fig. 4(e)] and the first chiral mode (blue line),
increases linearly with the chirality of the gap material, with a
proportionality coefficient that is close to the Pasteur value in
the case of bulk medium splitting. There is thus a potential for
a large sensitivity enhancement, which we attribute to field en-
hancement in the narrow gap or slot between the waveguides,
as this highly localized, partial modal overlap (discussed later)
leads to the same chiral coupling as bulk plane waves.

We note that this EP remains a degeneracy between two
modes despite the effect of chirality; it is therefore not a
higher-order EP. The combination of higher-order EPs and
chirality in this type of design is a topic for further study,
which could be implemented, e.g., using coupled ring cavities
with chiral waveguides, extending the structures in [46].

IV. COUPLED-MODE THEORY

We have derived a coupled-mode model that accounts for
the patterns evidenced in the preceding section and other
effects. In coupled PT waveguides without chirality, the iso-
lated modes in each separate waveguide (gain and loss) are
assumed to have the same polarization in order to couple
into supermodes, either (quasi-)TE or (quasi-)TM [1]. The
addition of a chiral material in the gap offers a way to couple
TE and TM modes, through interaction of the electric and
magnetic fields [see Eq. (1)], thereby adding a coupling chan-
nel between the two waveguides. To model this interaction,
the “standard” PT coupled equations must be supplemented
by a coupling between the polarizations. The resulting system
can be written in matrix form, in the basis of the isolated
waveguide modes, as

i

k0

d

dz

⎡
⎢⎢⎢⎢⎣

TEg

TEl

TMg

TMl

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

nTE − iγTE CTE β α

CTE nTE + iγTE α β

β∗ α∗ nTM − iγTM CTM

α∗ β∗ CTM nTM + iγTM

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

TEg

TEl

TMg

TMl

⎤
⎥⎥⎥⎥⎦, (3)

where g refers to the gain waveguide [left in Fig. 1(a)] and l to the lossy waveguide [right in Fig. 1(a)], nTE and nTM are the
effective indices of the isolated TE and TM modes (without any coupling), and CTE and CTM are the coupling constants from
conventional directional coupler theory (from the left TE-TM mode to the right TE-TM mode and vice versa). The effective
imaginary refractive indices perceived by the isolated TE and TM modes, γTE and γTM, are proportional to the material imaginary
refractive index γ by a confinement factor dependent on the polarization (more details in Appendix B). In the off-diagonal
subblocks, α and β determine the new chiral coupling when a chiral material is in the gap, detailed further on, which are
proportional to κ .

It is instructive to write the matrix of Eq. (3) in the basis of the four achiral PT supermodes TEup, TEdn, TMup, and TMdn

(the eigenmodes of the traditionally coupled but achiral waveguides). If we consider CTE = CTM = C and γTE = γTM = γ for
brevity and simplicity, the supermode coupling matrix is given by

Msm =

⎡
⎢⎢⎢⎢⎢⎣

nTE + A 0 βA+Cα

A
αγ

CA (γ + iA)

0 nTE − A αγ

C (−γ + iA) βA−Cα

A
β∗A+Cα∗

A
α∗γ
CA (γ + iA) nTM + A 0

α∗γ
CA (−γ + iA) β∗A−Cα∗

A 0 nTM − A

⎤
⎥⎥⎥⎥⎥⎦, (4)

where the quantity A =
√

C2 − γ 2 is characteristic of the PT
mode dispersion.

This form (4) elucidates distinct features of the coupling
between same-symmetry and opposite-symmetry TE and TM
modes (with respect to parity). Indeed, isolating the matrix
coefficients that link TEup and TMup (selecting lines and
columns 1 and 3) gives the subblock matrix

Mup,up =
[

nTE + A βA+Cα

A
β∗A+Cα∗

A nTM + A

]
. (5)

Its eigenvalues in the case of the TEup-TMup crossing (nTE +
A = nTM + A) are nTE + A ± |βA+Cα|

A and are therefore real,
which characterizes the splitting or anticrossing under the
effect of chirality (as in Sec. III A). This is due to the product
of the chiral (antidiagonal) terms of matrix Mup,up [Eq. (5)]
being positive.

The same process for a TEdn and TMup mode pair [select-
ing lines and columns 2 and 3 in Eq. (4)] gives the matrix

Mdn,up =
[

nTE − A αγ

CA (−γ + iA)
α∗γ
CA (γ + iA) nTM + A

]
. (6)

Its eigenvalues at the TEdn-TMup crossing (nTE − A = nTM +
A) are nTE − A ± i|α|γ

A and are therefore complex, character-
izing the locally PT -broken zone brought about by chirality
(the bubble in Sec. III B). This is due to the product of the
chiral (antidiagonal) terms of matrix Mdn,up [Eq. (6)] now
being negative.

For the system without gain and loss, γ = 0, Eq. (4)
becomes

Msm =

⎡
⎢⎢⎣

nTE + C 0 β + α 0
0 nTE − C 0 β − α

β∗ + α∗ 0 nTM + C 0
0 β∗ − α∗ 0 nTM − C

⎤
⎥⎥⎦. (7)
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TABLE I. Effective indices, couplings, and confinement factors
of isolated TE and TM modes for structures with 12-, 32-, and
44-nm-wide achiral gaps.

TE TM

Gap (nm) n C F n C F

12 1.664 0.149 0.937 1.517 0.226 0.695
32 1.678 0.101 0.916 1.526 0.167 0.571
44 1.680 0.0834 0.937 1.525 0.148 0.626

The zeros in this system demonstrate that coupling between
modes of opposite symmetry (leading to the locally broken
zone) is impossible without PT symmetry in this configu-
ration. As indicated before, gain and loss are thus genuinely
required to achieve the local symmetry-breaking zone pre-
sented in Sec. III B and are not just a tuning mechanism to
obtain degeneracy.

We can recreate the avoided crossings observed in the sim-
ulations via the eigenvalues of the coupling matrix in either
basis [isolated modes (3) or supermodes (4)]. First, we obtain
the achiral parameters nTE, nTM, CTE, and CTM using the simu-
lated achiral dispersion (their values are included in Table I of
Appendix B). Second, the chiral coupling coefficients α and
β are calculated using an overlap integral over the gap area
and the supermode profiles at γ = 0. Chiral coupling between
supermodes was discussed in [26], leading to

Imn = i
∫∫

S
ω

κ

c
( �H∗

n · �Em − �E∗
n · �Hm)dS, (8)

where the subscripts n and m designate supermodes of the
achiral structure, ω is the mode frequency, and S is the surface
of the chiral gap. The modes in Eq. (8) are normalized by their
overlap integral over the whole simulation domain

∫∫
S ( �Em ×

�H∗
n + �E∗

n × �Hm) · ẑ dS = δmn. The chiral overlap integrals,
when calculated using the supermode profiles at γ = 0, are
directly related to the chiral coupling coefficients of Eq. (7):
β + α and β − α. Coefficients α and β can thus be ob-
tained from these integrals, as explained in more detail in
Appendix B. The calculated values of α and β are included
in Table II in Appendix B. The resulting eigenvalue disper-
sions are shown in Fig. 5, showing an accurate match to the
simulations, especially considering that we calculate the chiral

TABLE II. Chiral couplings calculated from mode overlap inte-
grals at γ = 0 for structures with 12-, 32-, and 44-nm-wide achiral
gaps.

Gap (nm) α β

12 0.0320i 0.0682i
32 0.0512i 0.1370i
44 0.0610i 0.1566i

coupling at the simplest, lossless situation (γ = 0) and apply
it for all γ values.

We note that the model and dispersions in this section as-
sume the chirality parameter κ to be real. For complex or
imaginary κ , the model requires a slight adjustment: The
overlap integrals [Eq. (8)] that enable the calculation of chiral
couplings α and β verify Imn = I∗

nm if κ is real, whereas for
a complex κ we get Imn = κ

κ∗ I∗
nm = e2iφ(κ )I∗

nm, where φ(κ ) is
the phase of κ . The chiral couplings α and β then become
complex instead of imaginary and α∗ and β∗ in Eq. (3) must be
multiplied by e2iφ(κ ). These adjustments influence the effects
as discussed in Sec. III and as shown in simulated dispersions
in Appendix A.

V. MODE PROFILES

It is interesting to view the chirality effect through the
mode profiles and polarizations. Electric-field profiles of rel-
evant modes, as well as their polarization at the center of the
gap (at x = y = 0), are presented below. Magnetic-field pro-
files of the corresponding modes are included in Appendix C.

A. Anticrossing

In addition to lifting the degeneracy at the crossing be-
tween modes TEup and TMup, chirality couples these modes to
form two quasicircular polarization modes at the anticrossing.
Figures 6(a) and 6(b) show the profiles and polarization, re-
spectively, of the achiral TEup mode, with a clearly dominant
y electric-field component, highlighting its quasi-TE nature.
Figures 6(c) and 6(d) show the profiles and polarization of the
anticrossing’s highest-index mode in the presence of chirality,
which we also call TEup by analogy. The x and y electric-field
components have similar amplitudes in the gap; the x compo-
nent presents a strong slot effect due to its perpendicularity to
the gap (via continuity of the normal �D component) [47,48].

FIG. 5. Eigenvalues obtained from the chiral coupled-mode model for the isolated modes [Eq. (3)], with chiral parameters α and β

calculated from the (a) 12-, (b) 32-, and (c) 44-nm-gap simulations at γ = 0.
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FIG. 6. (a) and (c) Electric-field profile and (b) and (d) central polarization (at x = y = 0) of the highest mode TEup for a 12-nm gap at
γ = 0.145 with (a) and (b) κ = 0 and (c) and (d) κ = 0.012. The x and y coordinates are expressed in microns and the electric field is in V/m.

The polarization plot of the field at the center of the gap
clearly shows a strong ellipticity close to a circular polariza-
tion.

This is in good agreement with the eigenvectors vup,up

of the chiral matrix for these two modes [Eq. (5)], in the
equal-coupling form, expressed in the basis of the achiral
supermodes TEup and TMup:

vup,up =
(

± βA + Cα

|βA + Cα| , 1

)T

. (9)

Since α and β are imaginary values, the eigenvectors exhibit
an imaginary TEup component and a real TMup component,
with the imaginary component taking opposite signs for the
two vectors. They thus represent a complex superposition of
the TMup and TEup eigenmodes, i.e., an elliptic field polar-
ization. The two eigenvectors have opposite phase differences
between the two components due to the ± sign, similarly to
the right and left circularly polarized eigenmodes in a bulk
chiral medium.

Around the anticrossing, the magnitude of the x and y
electric-field components (at x = y = 0) and their phase dif-
ference evolve in an interesting manner (Fig. 7). Before the
anticrossing, the TEup (blue solid line) and TMup (red dashed
line) chiral modes start with y (thin line) and x (thick line)
dominant electric-field components, respectively, just like
their achiral counterparts. The phase difference between Ex

and Ey is already ±90◦ due to chirality [fundamentally due
to the i factor in Eq. (1)], resulting in an elongated ellipse.
At the anticrossing (γ = 0.148 for the theoretical dispersion),
the electric fields of both modes are equal in magnitude, with
phase difference ±90◦, so polarization is nearly circular as ob-
served in Fig. 6 and mentioned above. After the anticrossing,
for larger values of γ , their dominant field components are

swapped compared to their initial components, with a dom-
inant Ex for TEup and a dominant Ey for TMup. This allows
the chiral modes to merge back to a dispersion close to the
achiral case, with the proper mode polarizations (TE and TM),

FIG. 7. (a) Module of x (thick lines) and y (thinner lines) electric-
field components and (b) phase difference 
φxy between them for
modes TEup (blue solid line) and TMup (red dashed line) for a 12-nm
gap. The x and y coordinates are expressed in microns and the electric
field is in V/m.
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FIG. 8. (a) and (c) Electric-field profile and (b) and (d) central polarization (at x = y = 0) of mode TEdn for a 44-nm gap at γ = 0.086
with (a) and (b) κ = 0 and (c) and (d) κ = 0.012. The x and y coordinates are expressed in microns and the electric field is in V/m.

and the quasicircular polarization evolving into elliptical, and
linear further on.

B. Local symmetry breaking

The local symmetry breaking via chirality, with crossing
between TMup and TEdn, also creates hybrid modes. The
PT -symmetric profiles and TE polarization of TEdn can be
observed in Figs. 8(a) and 8(b), respectively. With a chiral
gap, the local symmetry breaking is manifested through the
(slightly) asymmetric Ey field profile in Fig. 8(c). The hy-
bridization is also visible in the tilted quasilinear polarization
of the chiral mode [Fig. 8(d)], very distinct from the tradi-
tional quasicircular anticrossing modes [Fig. 6(d)].

These results are also modeled with the eigenvectors vdn,up

of the chiral matrix, in the equal-coupling form

vdn,up =
(

± iα

|α|C (iA − γ ), 1

)T

. (10)

Near the EP [as is the case in Fig. 3(a)], the first component
of the eigenvectors is almost real, as α is imaginary and γ is
close to C, implying that A =

√
C2 − γ 2 is small compared

to γ . These vectors, expressed in the basis of the achiral su-
permodes TEup and TMdn, thus represent a distinct quasilinear
complex superposition of the TMup and TEdn eigenmodes, just
like the simulated profiles.

The rich variation of the TMup (red dashed line) and TEdn

(gold dotted line) eigenvectors’ polarization across the PT -
broken zone is represented in Fig. 9. Figure 9(a) shows that the
fields of both modes have equal magnitudes in the PT -broken
zone, with equal x (thick lines) and y (thin lines) electric-field
modules. The quasilinearity and opposite polarizations of the
eigenvectors at the center of the PT -broken zone is due to the
local variation of the phase difference between their x and y
fields, as evidenced by Fig. 9(b). Both TMup and TEdn have

a phase difference of −90◦ before the PT -broken zone and
+90◦ after. However, the phase difference of TMup transitions
to this value through a 180◦ decrease, thereby passing through
(±)180◦ at the center of the zone, whereas TEdn increases by
180◦ and passes through 0◦ at the center. It is exactly this
passage through 0◦ and 180◦ that provides the two orthogonal,

FIG. 9. (a) Module of x (thick lines) and y (thinner lines) electric-
field components and (b) phase difference 
φxy between them for
modes TEup (blue solid line), TMup (red dashed line), and TEdn (gold
dotted line) for a 44-nm gap.
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FIG. 10. (a) and (c) Electric-field profile and (b) and (d) central polarization (at x = y = 0) of mode TMup for a 32-nm gap at γ = 0.109
with (a) and (b) κ = 0 and (c) and (d) κ = 0.012.

quasilinear, tilted polarizations at the center of the broken
zone.

It is interesting to note the qualitative difference (and cor-
respondence) between the anticrossing and local symmetry
breaking: For the anticrossing the field components vary,
whereas the phase is constant (Fig. 7), while for the local
symmetry breaking the field is fairly constant, whereas the
phase varies strongly (Fig. 9).

C. Trimodal anticrossing

At the TE EP, TEup and TEdn coalesce and are represented
by the same field profile. An intermediate-size gap makes the
TMup dispersion cross this EP, so the three modes interact in a
hybrid coupling on an equal footing. Figures 10(a) and 10(b)
represent the achiral TMup mode, with a dominant x electric-
field component, while Figs. 10(c) and 10(d) represent its
chiral counterpart [red dashed lines in Figs. 4(c) and 4(e),
respectively]. The latter’s electric field exhibits an asymmetry
in the z component [Fig. 10(c)] and its tilted elliptical polar-
ization suggests that it can be viewed, physically, as a hybrid
of the anticrossing and local PT -broken modes [Fig. 10(d)].
Note also that the slot effect is quite large, with a discontinuity
of electric field Ex of a factor of approximately 2. This fact
strongly advocates for the slot effect as a key element of the
attainment of a bulklike chiral sensitivity mentioned earlier,
one of the salient features of this study.

VI. CONCLUSION

To summarize, we have shown that introducing a chiral
material in the gap of a pair of PT -symmetric waveguides
results in a variety of avoided crossing patterns occurring
at achiral degeneracies in the mode dispersion, accessible
through modulation of the PT landscape with a proper initial

waveguide design. For narrow gaps, an anticrossing appears
in the chiral mode dispersion and the polarization of the
affected modes becomes quasicircular, much as in the bulk.
Medium-size gaps yield a trimodal anticrossing that appears
to display the same sensitivity as a fully homogeneous chiral
medium, an interesting feature for which the slot effect has
been invoked and which could be exploited in integrated chiral
sensing applications. Finally, for wide gaps, chirality brings
about a local broken-symmetry zone followed by symmetry
recovery with an inverted EP. In the gap the polarization of
the locally broken modes varies strongly, which can lead to
interesting switching opportunities. The coupled-mode model
developed in this work reproduces these features in much
detail, enough to form the basis for quantitative designs and
the study of novel geometries, for example, with higher-order
EPs, or other types of PT symmetry (anti-PT or gainless
PT , for example). The model further elucidates that gain
and loss not only are useful to obtain degeneracy, but are
fundamental to obtain the local breaking effect.
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APPENDIX A: AVOIDED CROSSINGS FOR COMPLEX
CHIRALITY PARAMETER

The chirality parameter κ controls the nature of the chiral
coupling. If its value is changed from real to imaginary, the
types of avoided crossings are swapped: An anticrossing ap-
pears between modes of opposite parity (under the TE EP),
while a PT -broken zone appears at crossings between modes
of the same parity (above the TE EP). If κ is complex with
real and imaginary parts of the same order, a hybrid avoided
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FIG. 11. Real (top) and imaginary (bottom) dispersions of modes TEup (blue solid line) and TMup (red dashed line) for a 12-nm chiral gap
with (a) κ = 0.012, (b) κ = 0.012ei0.3π/2, (c) κ = 0.012ei0.5π/2, (d) κ = 0.012ei0.7π/2, and (e) κ = 0.012i.

crossing appears as both effects compete in the alteration of
the dispersion (see Fig. 11).

APPENDIX B: COUPLED-MODE-THEORY PARAMETERS

The coupled-mode theory, expressed in the isolated modes
basis as in Eq. (3), involves achiral as well as chiral coeffi-
cients. This Appendix describes their calculation methods.

The achiral coefficients are based on the mode dispersions
for achiral gaps. The effective indices of the isolated TE and
TM modes without any coupling, nTE and nTM, are the value of
neff at the EP for the relevant polarization. The mode couplings
CTE and CTM are approximated by dividing the difference
between the effective indices of the upper and lower fork
modes for each polarization, divided by 2:

CTE,TM = [neff(TE, TMup) − neff(TE, TMup)]/2. (B1)

As mentioned in Sec. IV, the effective imaginary refractive in-
dices γTE and γTM perceived by the isolated TE and TM modes
are proportional to the material imaginary refractive index γ .
These proportionality factors are the confinement factors of
each polarization, which we call FTE and FTM: γTE = FTEγ

and γTM = FTMγ . The confinement factors are deduced from
the values of C and γEP for each polarization. PT -symmetry
theory states that TE and TM exceptional points occur when
γTE = CTE and γTM = CTM. We have access to the value of γ ,
the material’s imaginary index, at each exceptional point, as
well as CTE and CTM from the method described by Eq. (B1).
It then follows that, for each polarization,

F = γeff(EP)/γ (EP), (B2)

where γeff is the effective imaginary refractive index γTE or
γTM and γ is the material imaginary refractive index. The
values of nTE, nTM, CTE, CTM, FTE, and FTM are included in
Table I.

To obtain the chiral couplings α and β used in our model,
we make use of an adaptation of the theory presented in
Ref. [26], with overlap integrals written as Imn in Sec. IV.
Since the general supermode model is quite complex, we use
its expression at γ = 0 to determine α and β. The coupling
matrix of this model is⎡

⎢⎢⎣
nTE + CTE 0 β + α 0

0 nTE − CTE 0 β − α

β∗ + α∗ 0 nTM + CTM 0
0 β∗ − α∗ 0 nTM − CTM

⎤
⎥⎥⎦
(B3)

[see Eq. (4)]. It can be seen that the overlap integral I13 be-
tween TEup and TMup gives β + α and the overlap integral I24

between TEdn and TMdn gives β − α. It is then easily obtained
that

α = 1
2 (I13 − I24), β = 1

2 (I13 + I24). (B4)

Their values are included in Table II.

APPENDIX C: MAGNETIC-FIELD MODE PROFILES

Below are the magnetic-field profiles for the modes pre-
sented in Sec. V.

1. Anticrossing

Modes TEup and TMup couple under the influence of chi-
rality to form two quasicircular polarization modes at the
anticrossing (for polarization, see Fig. 6), with similar mag-
nitudes of Hx and Hy (see Fig. 12).

2. Local symmetry breaking

At the crossing between the achiral dispersions of modes
TMup and TEdn, the chiral structure admits two PT -broken
modes with left-right asymmetric field profiles (see Fig. 13).
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FIG. 12. Magnetic-field profile of the highest mode TEup for a 12-nm gap at γ = 0.145 with (a) κ = 0 and (b) κ = 0.012. The x and y
coordinates are expressed in microns and the magnetic field is in A/m.

FIG. 13. Magnetic-field profile of mode TEdn for a 44-nm gap at γ = 0.086 with (a) κ = 0 and (b) κ = 0.012. The x and y coordinates are
expressed in microns and the magnetic field is in A/m.
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FIG. 14. Magnetic-field profile of mode TMup for a 32-nm gap at γ = 0.109 with (a) κ = 0 and (b) κ = 0.012. The x and y coordinates
are expressed in microns and the magnetic field is in A/m.

3. Trimodal anticrossing

A hybrid coupling occurs between TEup, TEdn, and TMup

modes at the EP. Coupling the TE modes with TMup through

chirality results in a slightly left-right asymmetric field profile
(see Fig. 14).
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