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Evolution of merging bound states in the continuum at � point in parameter space
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Bound states in the continuum (BICs) are resonances with infinite lifetimes, even though they are embedded
in the continuous spectrum of free space. Merging multiple BICs can be a promising approach to further improve
the Q factors of nearby states over a broad wave-vector range. Previous studies have shown that merging BICs
can only appear for specific parameter values of a structure; thus, it is commonly believed that they do not have
stability. Here, we analytically study the existence and stability of merging BICs in parameter space, including
material and geometric parameters. Specifically, we derive the conditions for the existence of merging-BICs in
a system with a periodic plasmonic chain and demonstrate that merging BICs can stably exist when the other
parameters are varied. Furthermore, in the momentum-geometric-material space, a BIC surface can be obtained
analytically without performing a tedious numerical search of diverging Q factors in a multiple parameter space.
Based on this surface, BICs at the � point that merge in the momentum space can also merge again in the
parameter space by changing the material parameters. The merging BIC with improved Q factor not only covers
a broad wave-vector range but also spans a wide geometric parameter space when compared with the original
BIC. Our findings provide a different perspective in the investigation of ultrahigh Q factors that substantially
enhance light-matter interaction and improve the performance of photonic devices.
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I. INTRODUCTION

Bound states in the continuum (BICs) are resonances with
infinite lifetimes, even though their corresponding frequencies
lie in the continuous spectrum of free space. Although initially
demonstrated in custom-constructed potentials in quantum
mechanics [1], BICs have attracted extensive attention in clas-
sic waves [2–17]. Various mechanisms have been proposed
to construct BICs [2–7]. In photonic periodic systems, they
can generally be classified into two types: symmetry-protected
BICs (usually appearing at highly symmetric points) and
accidental BICs. The latter can be validated using the diverg-
ing quality (Q) factor through parameter tuning. The unique
features of BICs, including their robustness and infinite Q
factors, allow them to be used in various applications such as
nonlinear optics [8,9], lasers [10], sensors [11,12], and field
enhancement [13].

Apart from the their above attractive features, the topologi-
cal nature of BICs has been investigated [6] and led to further
studies of their robustness in momentum space [7,14–20]. The
topological nature of BICs enables them to continuously move
in the momentum space by varying the system parameters
while maintaining the system symmetry. By tuning multiple
BICs to the same wave vector, a merging BIC can be formed
[7,15,16,19–21]. In practice, the Q factor of an isolated BIC
is much lower than the infinity predicted by theory and sim-
ulation. This is mainly due to the scattering losses caused
by fabrication imperfections or disorders, whereas merging
BICs in the momentum space provide a feasible way for
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the suppression of scattering losses compared with isolated
BICs [16]. However, previous studies have shown that merg-
ing BICs are unstable in the momentum space. Recently,
merging BICs with q = 0 can be found by tuning extra struc-
tural parameter [21]. However, the conditions for existence of
merging BICs and their stability in the parameter space are
not clarified. This lack of clarity is crucial for researching the
dynamical evolution of merging BICs in multiple-parameter
spaces.

In this work, we employ a plasmonic chain system, which
can be analytically solved, to investigate the evolution of
merging BICs in the parameter space. Using the coupled-
dipole equations, we initially study the existence of merging
BICs in the parameter space. Then, using analytical lattice
sums, we derive the condition for the existence of merging
BICs in such a system without resorting to a numerical search
for diverging Q factors. As a result, we find a BIC surface
in a 3D space spanned by momentum-geometric-material di-
mensions, where the merging BICs in the momentum space
can merge again in the parameter space by changing the
material parameters. It is worth noting that the Q factors of
the resulting merging BIC are improved over both a broad
geometric parameter range and a wave-vector range compared
with those of the original BIC. Merging BICs lead to ultrahigh
Q factors in both the parameter and momentum spaces. They
can promote the research on topological photonics and have
the potential to substantially enhance light-matter interaction,
thereby improving the performance of optoelectronic devices.

II. THEORY AND RESULTS

We consider an infinite chain, as shown in Fig. 1(a).
This chain consists of plasmonic nanoparticles, which are
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FIG. 1. BICs in 1D plasmonic nanoparticles chains. Top inset:
Schematic of a 1D plasmonic chain. The real parts of the resonant
frequency and the corresponding Q factor for the � point are plotted
in (a) and (b), respectively. The resonant mode studied here is dom-
inated by the toroidal dipole, which is schematically shown in (a) as
an inset. The Q factor diverges when a BIC is approached. (c) to (e)
describe the real part (upper panel) and imaginary part (lower panel)
of λ(ω) in the momentum space with different d . With the increase of
d , two BICs move towards each other and finally are annihilated. The
divergent Q factor in (b) comes from the merging of two accidental
BICs in momentum space.

periodically arranged along the z-axis direction. Each unit
cell contains three nanoparticles (labeled as A, B, and C). For
simplicity, we assume that A and C are identical plasmonic
nanoparticles with the radius of rA, and rB is the radius of the
central nanoparticle B; a is the period of the chain, and d is the
distance between two adjacent nanoparticles. Thus, the system
maintains mirror symmetry. Each nanoparticle is assumed to
be an electric dipole with polarizability α(ω) = (3i/2k3

0 )a1

assuming rA(B) � λ (λ is the incident wavelength) and d >

3rA(B) [22]. Here, a1 is the electric dipole term of the Mie co-
efficients [23]. The permittivity of metal can be expressed as
ε(ω) = 1−ω2

p/ω(ω + iγ ), where ωp is the plasma frequency
and γ is the collision frequency of nanoparticles. As we focus
on the radiative loss of the system, the intrinsic loss γ is set
as zero (γ = 0) throughout this work. We assume that the
dipole moments are perpendicular to the chain; thus, only the
transverse modes are considered in the following formulation.
It is worth noting that for 1D rotationally symmetric systems,
resonant modes can be classified by the azimuthal index m
[24]. As for the system considered here, each nanoparticle is
assumed to be an electric dipole polarized perpendicularly to
the chain axis, so the resonant mode corresponds to the case
of m = 1.

The response of the plasmonic chain can be obtained
through the following approach. When the chain is excited
by an external plane wave Eext = êyE0ei(kxx+qz), where the
electric field is perpendicular to the chain, the system response

can be obtained from the multiple-scattering theory by solving
the following equation:⎡
⎢⎢⎣

α−1
A − SAA −SAB −SAC

−SBA α−1
B − SBB −SBC

−SCA −SCB α−1
C − SCC

⎤
⎥⎥⎦

⎡
⎢⎢⎣

PA

PB

PC

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

E ext
A

E ext
B

E ext
C

⎤
⎥⎥⎦,

(1)

or MP = E for convenience. The lattice sums of the Green
functions Si j are given in Appendix A. Due to the inver-
sion symmetry of the system, we obtain αA = αC ; Si j have
the following properties: SAA = SBB = SCC , SAB = SBC , and
SBA = SCB, as shown in Appendix A. It should be pointed out
that these lattice sums can be analytically expressed in terms
of polylogarithm and Hurwitz-Lerch transcendent functions;
therefore, it is possible to study BICs analytically. Further-
more, the material and structure parameters are separately
included in αA(B) and Si j . We note that an eigenmode decom-
position method can be used to analyze the electromagnetic
response of a plasmonic lattice [22,23]. The eigenvalue prob-
lem, MP = λP, is considered instead of the linear response in
Eq. (1). If there is an eigenvalue λ = 0, namely, MP = 0, it
will give rise to a nontrivial bound state P0, i.e., a BIC.

Since we are interested in the resonant states and BICs of
the system, we set E = 0 in Eq. (1) and look for the complex
frequency solutions of MP = 0 for a certain parameter, i.e.,
ω(param.) = ω′(param.) + ω′′(param.). The resonant states
supported by the plasmonic chain can be illustrated using
symmetry analysis [25]. There are three types of resonant
states (see Appendix B for details). One is dominated by
the symmetric mode denoted as [1,1,1] with each number
representing the dipole moment of the corresponding nanopar-
ticle, where all three dipoles oscillate in phase. Another one is
dominated by the antisymmetric mode denoted as [1, 0, −1],
where the side dipoles oscillate out of phase. The last one is
dominated by another symmetric mode denoted as [1, −2, 1],
with the nanoparticles on the two sides oscillating in phase
and the central one oscillating out of phase. Therefore, it is
dominated by a toroidal dipole mode [25]. The latter two
cases correspond to resonant states with high Q factors, so
BIC usually appears there. It is well known that a BIC can
be indicated by the divergent radiative Q factor due to it
being decoupled from the far-field radiation [18,19]. As the
intrinsic loss γ= 0, a resonant state becomes a BIC when
its frequency becomes purely real, and the Q factor ω′/ω′′
diverges consequently. Here, we focus on the third resonant
states that are dominated by the toroidal dipole resonance as
illustrated in the inset of Fig. 1(a).

For a given set of geometric and material parameters (rA =
18 nm, rB = 1.05 rA, a = 240 nm, and ωp = 6.18 eV), the
variation of the resonance frequency for the � point and the
corresponding Q factor with respect to parameter d are shown
in Figs. 1(a) and 1(b), respectively. Here, we are only inter-
ested in the zero-order diffraction region, i.e., |q| < ω/c <

2π/a − |q|. The calculated Q factor of the resonant mode
goes to infinity at a discrete point (d = 62 nm), indicating the
existence of a BIC. In fact, this type of BIC is a merging BIC
(� point) in the momentum space. In Figs. 1(c)–1(e), we plot
the real and imaginary parts of the λ(q,ω) for the cases of
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FIG. 2. The existence of merging BICs at the � point. The real
functions f (d ,ω) and h(d ,ω) defined in Eq. (3) are shown in (a)
and (b), respectively. The intersection point of the nodal lines (black
lines) of f and h can give rise to a merging BIC.

d = 60 nm [Fig. 1(c)], d = 62 nm [Fig. 1(d)], and d = 63 nm
[Fig. 1(e)]. It is clearly seen that as d increases to 62 nm, the
two accidental BICs merge at the � point, thereby giving a
divergent Q factor in Fig. 1(b). The evolution of BICs both in
the momentum and parameter spaces will be discussed later.

Next, we analytically derive the conditions for the exis-
tence of merging BICs at � point in the system. For a BIC
with a real frequency solution of Eq. (1), we require that
the total dipole moment of the toroidal dipole mode in a
unit cell is zero, which gives P = [1,−2, 1]T [25]. This is
expected because the superposition of three polarizations in
a unit cell does not produce any radiation loss in the far field
due to complete field cancellation. Thus, the condition for the
existence of BICs becomes the real frequency solutions of

f
def= (

α−1
A − SAA

) + 2SAB − SAC = 0

h
def= −2

(
α−1

B − SAA
) − SBA − SAB = 0

g
def= (

α−1
A − SAA

) + 2SBA − SCA = 0 (2)

However, the conditions f = 0, h = 0, and g = 0 are not
completely independent in the determination of BICs. The
proof is given in Appendix C. Briefly, the inversion sym-
metry of the system gives an identity ( f = g), whereas the
time-reversal symmetry gives f = f ∗ and h = h∗; therefore,
both f and h are real functions. A rigorous mathematical
proof is given in Appendix D. Therefore, the condition for
the existence of BICs becomes the solutions of the real
equations of

f = Re( f ) = 0

h = Re(h) = 0. (3)

The real functions f and h are plotted in Figs. 2(a) and 2(b),
respectively, in the d–ω plane. The nodal lines of f (d ,ω) and
h(d ,ω) are clearly identified and plotted as dashed black lines.
These lines intersect at a point (black circle), giving rise to a
BIC.

Since the size of the discrete dipoles can be tuned indepen-
dently, we study the impact of geometric parameters, such as
the nanoparticle radii, on a BIC. When the radii of A and B
nanoparticles are varied, the real functions f (d ,ω) and h(d ,ω)
can be adjusted independently. Figures 3(a) and 3(b) show the
dependence of nodal lines of h(d ,ω) and f (d ,ω) on the radius

FIG. 3. Evolution of BICs in the geometric parameter space.
(a) The three dashed lines denote the nodal lines of real function h
for different radius rB of the central nanoparticle, and the solid black
line denotes the nodal line of real function f . (b) The three solid
lines denote the nodal lines of f for different radii rA of the two side
nanoparticles, and the dashed red line denotes the nodal line of h.
The intersection points of the nodal lines of h and f denoted by the
light dots give rise to BICs. The numerically calculated resonance
frequency and Q factors are plotted in (c), (d) and (e), (f), respec-
tively. The selected geometric parameters are rA = 18 nm for (a) and
rB = 19 nm for (b).

of the center nanoparticle and side nanoparticles, respectively.
We observe that f (d ,ω) and h(d ,ω) intersect, giving a real
frequency solution of Eq. (3), i.e., a BIC (marked by a light
dot). The nodal line of h(d ,ω) shifts to the right and moves
the BIC toward the left as the center nanoparticle radius in-
creases, as shown in Fig. 3(a). A similar study can be repeated
by varying the radius of the side nanoparticles, as shown in
Fig. 3(b). Thus, we observe that the BIC locus follows the
nodal line of f when the radius of the center nanoparticle is
varied. In contrast, the locus follows the nodal line of h when
the side-nanoparticle radius is varied.

The analytical results for the BICs can be verified nu-
merically using the corresponding resonance frequency and
Q factors. Figures 3(c) and 3(d) and 3(e) and 3(f) show
the resonance frequencies and Q factors simulated using
the finite-element method. By either varying the radius
of the center nanoparticle or the radius of the side ones,
we observe that the shift trends of BICs and the loci
of the diverging Q factors are in good agreement with
each other.

In addition to the presence of stable BIC with the change
of the geometric parameters, a BIC can also stably exist
under the variation of material parameter. Here, we assume
that the plasma frequency ωpB of nanoparticle B is fixed,
and the plasma frequency ωpA of nanoparticle A (as well as
nanoparticle C) is varied. Figure 4(a) shows the nodal lines
of f (a,ω) and h(a,ω) for ωpA = 6.185, 6.188, and 6.1895 eV,
which indicates that two BICs gradually approach each other
as the plasma frequency increases. They then disappear when
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FIG. 4. BICs can merge in the parameter space. (a) The four
dashed lines denote the nodal lines of f for different values of plasma
frequency ωp, and the solid black line denotes the nodal line of h.
Two intersection points of the nodal lines of f and h give rise to two
BICs in the parameter space. The two BICs meet and are annihilated
when a critical ωc

pA is reached, above which they suddenly disappear.
The numerically calculated resonance frequency and Q factors are
plotted in (b) and (c), respectively. The Q factors are illustrated
both before (ωpA = 6.185 eV and ωpA = 6.188 eV; red and green
lines) and after BIC merging (ωpA = 6.192 eV; purple line). The
transition phase (ωc

pA = 6.1895 eV; blue line) corresponds to the
merging-BIC configuration, which exhibits considerably higher Q
factors than those in the BIC configuration (red and green lines).
(d) The divergence rate of the Q-factor rate changes from Q ∝ δa−2

to Q ∝ δa−4 when a critical ωc
pA is approached.

ωpA > 6.1895 eV. Thus, the loci of BICs follow the nodal
line of h when ωpA is varied. The corresponding evolution
of BICs in momentum space is given in Appendix E. The
BICs in Fig. 4(a) correspond exactly to the merging BICs
of the momentum space. It is interesting to note that BICs
in Fig. 4(a) can merge in the geometric parameter space by
varying the material parameters. Here, the selected geometric
and material parameters are rA = rB = 18 nm, d = 75 nm,
and ωpB = 6.18 eV.

This evolution can be further demonstrated using the cor-
responding resonance frequency and Q factors shown in
Figs. 4(b) and 4(c), respectively. For a critical plasma fre-
quency (ωpA = 6.1895 eV), the Q factors are sufficiently large
over a broad geometric range around the Q diverging point,
which is a typical feature of merging BICs. By further in-
creasing ωpA, these two BICs annihilate each other and form a
quasi-BIC mode, which has a high but nondiverging Q factor.
Furthermore, Fig. 4(d) shows the calculated Q factor, which
geometrically decays as Q ∼ |a − aBIC|−2 = |δa|−2 for the
two isolated BICs indicated by a green diamond and a star,
respectively, in Fig. 4(a). When these two BICs merge, as
Q ∼ |δa|−4 (blue line), the decay rate of the Q factor away
from the BIC is improved. The nearby Q factor is several
orders of magnitude higher than that of the isolated BICs in
the geometric parameter space when the material parameters
are varied to produce the merging BIC.

FIG. 5. Evolution of BICs in the parameter space. (a) The BICs
in the q-a-ωpA space form a closed surface. The contour of BICs
in the q–a space shrinks with the increase of ωpA and then reduces
to a single point when ωpA = ωc

pA, above which the merging BIC
disappears. (b) Numerically obtained slices at three values of ωpA.
Distributions of the Q factor corresponding to ωpA = 6.186 eV,
ωpA = 6.188 eV, and ωc

pA = 6.1895 eV are presented.

The preceding examples illustrate the stability of BICs
under varying conditions, encompassing changes in material
and geometric parameters. We further demonstrate the evolu-
tion of BICs in the momentum-geometric-material space. As
shown in Fig. 5(a), we vary the momentum q, chain period
a, and plasma frequency ωpA. A surface of BICs is obtained
analytically. The trace of BICs form a closed loop in q-a space
for a fixed ωpA. This means that when the other parameters
are fixed, as a increases from a small value (<230 nm here), a
BIC is generated at the � point, and soon splits into two BICs
moving away from the � point. Then, the two BICs move back
toward the Brillouin-zone center. Finally, they annihilate at
the � point. According to the contour of BICs, the loop in
Fig. 5(a) shrinks when ωpA increases. When a critical value is
approached, the loop of BICs reduces to a single BIC point;
beyond this critical value, it disappears. It is worth noting
that all the BICs described in Fig. 1 to Fig. 4 are merging
BICs in momentum space, whereas in Fig. 5, only the BICs
with q = 0 correspond to merging BICs, while the others are
accidental BICs.

For further verification, the simulated Q factors, evaluated
in the q-a space using the finite-element method, are shown
in Fig. 5(b). A clear loop of BICs with a diverging Q factor is
observed. The loop reduces to a single point and forms a merg-
ing BIC when a critical ωpA is reached, as shown at the top
plane of Fig. 5(b). It is worth emphasizing that the off-� BICs
mentioned previously are based on the dipole approximation
[19]. If other multipoles, although they are extremely weak as
their size is much smaller than the wavelength, are taken into
account, the off-� BICs will turn into quasi-BICs with high
Q factors. In this case, the TE and TM components of the
resonant mode are fully coupled [24] and it is very difficult
to diminish the two radiations simultaneously, whereas the
at-� merging BICs are all bona fide BICs due to the TM
channel being closed at the � point [24]. It is worth noting
that the merging BICs investigated here are rather different
from those reported in previous studies [5,9,15,16,19]. They
not only exhibit a quartic behavior of Q−1 in the momentum
space but also in the parameter space, whereas the previously
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reported behavior of merging BICs is only enhanced in the
momentum space. The merging of BICs in both the parameter
and momentum spaces leads to enhanced Q factors for the
nearby states, resulting in improved performance in practical
applications.

III. CONCLUSION

In summary, we demonstrated that a plasmonic chain
provides an analytically solvable model for merging BICs.
We also demonstrated that merging BICs can stably exist
under changes in extra parameters, including the material
and geometric ones. By varying the material parameters, the
BICs that merge in the momentum space can merge again
in the parameter space. Furthermore, a BIC surface in the
momentum-geometric-material space is obtained analytically
without resorting to a tedious numerical search for diverging
Q factors in a multiple-parameter space. The vertex of the
BIC surface corresponds to a merging BIC in both parameter
and momentum spaces. It is worth noting that the Q factors
are enhanced over a broad range of geometric parameters and
wave vectors at this surface vertex compared to the original
BIC. Merging BICs in both the parameter and momentum
spaces lead to extremely high Q factors, enrich the investi-
gation of topological photonics, and are potentially useful in
nonlinear optics and lasers by improving the performance of
optoelectronic devices.

All data needed to evaluate the conclusions in the paper
are present in the paper and/or the Appendix. Additional data
related to this paper may be requested from the authors.
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APPENDIX A: COUPLED DIPOLE EQUATION
FOR PLASMONIC CHAINS

Let us consider a periodic plasmonic lattice as specified
in the upper inset of Fig. 1 of the main text. For simplicity,
a TE-polarized incidence with the electric field perpendicu-
lar to the chain is considered: Eext = êyE0ei(kxx+qz) and E0 =
(0, E0, 0). Only the transverse mode is considered, i.e., PA,B =
(0,pA,B, 0). Using Bloch theorem, the coupled-dipole equa-
tions for the chain can be written as

pA = αA

(
E ext

A +
∑
n �=0

G(na)pn,A +
∑

n

G(na + d )pn,B +
∑

n

G(na + 2d )pn,C

)

pB = αB

(
E ext

B +
∑
n �=0

G(na)pn,B +
∑

n

G(na − d )pn,A +
∑

n

G(na + d )pn,C

)

pC = αC

(
E ext

C +
∑
n �=0

G(na)pn,C +
∑

n

G(na − 2d )pn,A +
∑

n

G(na − d )pn,B

)
,

where G is Green’s function for electric dipoles. The above coupled-dipole equations can be reexpressed as
⎡
⎢⎣

α−1
A − SAA −SAB −SAC

−SBA α−1
B − SBB −SBC

−SCA −SCB α−1
C − SCC

⎤
⎥⎦

⎡
⎢⎣

PA

PB

PC

⎤
⎥⎦ =

⎡
⎢⎣

E ext
A

E ext
B

E ext
C

⎤
⎥⎦, (A1)

i.e., Eq. (1) in the main text, or in a more compact form: MP = E, where α is the polarizability of the nanoparticles, and the
lattice sums Si j of Green’s functions have the following forms:

SAA = SBB = SCC =
∑
n �=0

g(na)eiqna SAB = SBC =
∑

n

g(na + d )eiqna SAC =
∑

n

g(na + 2d )eiqna

SBA = SCB =
∑

n

g(na − d )eiqna SCA =
∑

n

g(na − 2d )eiqna. (A2)

The above the lattice sums Si j can be reexpressed as

SAA = SBB = SBB = k3
0

∑
n �=0

(
1

k0|na| + i
1

k2
0 |na|2 − 1

k3
0 |na|3

)
eik0|na|eiqna

SAB = SBC = k3
0

∑
n

(
1

k0|na + d| + i
1

k2
0 |na + d|2 − 1

k3
0 |na + d|3

)
eik0|na+d|eiqna
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SBA = SCB = k3
0

∑
n

(
1

k0|na − d| + i
1

k2
0 |na − d|2 − 1

k3
0 |na − d|3

)
eik0|na−d|eiqna

SAC = k3
0

∑
n

(
1

k0|na + 2d| + i
1

k2
0 |na + 2d|2 − 1

k3
0 |na + 2d|3

)
eik0|na+2d|eiqna

SCA = k3
0

∑
n

(
1

k0|na − 2d| + i
1

k2
0 |na − 2d|2 − 1

k3
0 |na − 2d|3

)
eik0|na−2d|eiqna. (A3)

The lattice sums in Eq. (A3) can be expressed in terms of
certain special functions:

SAA = SBB = SCC = k3
0

(
L1

k0a
+ i

L2

k2
0a2

− L3

k3
0a3

)

SAB = SBC = k3
0

(

1,1

k0a
+ i


1,2

k2
0a2

− 
1,3

k3
0a3

− 
1

)

SBA = SCB = k3
0

(

−1,1

k0a
+ i


−1,2

k2
0a2

− 
−1,3

k3
0a3

− 
1

)

SAC = k3
0

(

2,1

k0a
+ i


2,2

k2
0a2

− 
2,3

k3
0a3

− 
2

)

SCA = k3
0

(

−2,1

k0a
+ i


−2,2

k2
0a2

− 
−2,3

k3
0a3

− 
2

)
, (A4)

where

Ln = Lin
(
ei(k0−q)a)+Lin

(
ei(k0+q)a)


m,n = 


(
ei(k0+q)a,n,m

d

a

)
eimk0d

+ 


(
ei(k0−q)a,n, − m

d

a

)
e−imk0d


m =
(

− 1

k0(md )
+ i

1

k2
0 (md )2 + 1

k3
0 (md )3

)
e−ik0(md ).

And, Lin(x) and 
(z, s, a) are the polylogarithm function
and the Hurwitz-Lerch transcendent function, respectively.

By changing the variable from n to −n in Eq. (A3), it
is straightforward to show that the lattice sums in Eq. (A3)
satisfy the following symmetry relations:

SAA(BB,CC)(−q, ω) = SAA(BB,CC)(q, ω)

SAB(AC,BC)(−q, ω) = SBA(CA,CB)(q, ω), (A5)

or equivalently,

M(−q, ω) = MT(q, ω). (A6)

Equation (A6) is consistent with the inversion symmetry of
the plasmonic chain. Under the inversion along the z direction
(axis of the chain), z → −z; this yields nanoparticle A →
nanoparticle C, and leads to q → −q for the Bloch eigenstate.

For the M matrix, the inversion gives

M(−q,ω) = σxM(q,ω)σx,

which gives rise to Eqs. (A5) and (A6).

APPENDIX B: THREE TYPES OF RESONANT STATES
SUPPORTED BY SYSTEM

Under the dipole approximation, the transverse plasmonic
modes supported by the 1D chain [Fig. 6(a)], denoted
as P = [PA, PB, PC]T, can be decomposed into three or-
thogonal bases: A ∼ [1, 0,−1]T, S1 ∼ [1, 1, 1]T, and S2 ∼
[1,−2, 1]T with A antisymmetric and S1, S2 symmetric (see
Ref. [25]). The so-called toroidal dipole resonance is mainly
supported by the S2 mode, where the two side dipoles oscillate
in phase while the central one oscillates out of phase. More
specifically, because the dipoles can act as current elements
(blue arrows) in Fig. 6(b), this model mimics the toroidal
current configuration shown in Fig. 6(a); therefore, a toroidal

FIG. 6. Top inset: Schematic of a 1D plasmonic chain.
(a) Schematics of a typical toroidal dipole moment. (b) For the
transverse mode we consider the system dominated by three type
of modes, antisymmetric mode (A mode), symmetric modes (S1

and S2). Toroidal dipole moment is dominated by S2 mode. And,
the equivalent current outflows from the center nanoparticle and
flows back through the side ones. (c) The real parts of the resonant
frequency for the � point. The spatial profiles of the |E| and Ey for
the three resonant mode are shown in the corresponding insets.
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FIG. 7. Im( f ) and Im(h) are illustrated in the d-ω space. This
shows that f and h are two real functions.

dipole is induced. In our paper, only the modes dominated by
toroidal dipole resonance are studied.

At the same time, we also give the numerical calculation
about the resonant mode vs the center-to-center distance d as
shown in Fig. 6(c). We take d = 65 nm as an example and
give the spatial field profiles in the near field for the three
resonant modes, respectively. It can be clearly seen that the
lowest-frequency mode we are concerned about is dominated
by toroidal dipole moment.

APPENDIX C: RIGOROUS PROOF OF EXISTENCE
OF MERGING BICS

From Eqs. (A1) and (A5), the matrix M for the chain in our
main text can be expressed as

M =

⎡
⎢⎢⎣

α−1
A − SAA −SAB −SAC

−SBA α−1
B − SAA −SAB

−SCA −SBA α−1
A − SAA

⎤
⎥⎥⎦, (C1)

where α0 contains the term of radiation loss. The inverse

polarizability α−1
A(B)(ω) = 1

r3
A(B)

(
ω2

pA(B)−3ω2

ω2
pA(B)

) − 2i
3 k3

0 , where the

imaginary part denotes the radiation loss [26] and k0 = ω/c,
with c being the light speed in vacuum. We first consider the
Brillouin-zone center, i.e., q = 0. A real frequency solution of
MP0 = 0 gives rise to a BIC with P0 being the eigenstate of
BIC. Since a BIC does not radiate, the two side-dipole mo-
ments in the cell-periodic wave function must be out of phase
with the center-dipole moment in order to produce complete
destructive interference of the radiation in the far field. Thus,
we can write

P0 =

⎡
⎢⎣

pA

pB

pC

⎤
⎥⎦ = 1√

6

⎡
⎣ 1

−2
1

⎤
⎦. (C2)

Substituting Eqs. (C1) and (C2) into MP0 = 0, we obtain
the condition for a BIC as the real frequency solution of the
following equations:

(
α−1

A − SAA
) + 2SAB − SAC = 0

def= f

−2
(
α−1

B − SAA
) − SBA − SAB = 0

def=h
(
α−1

A − SAA
) + 2SBA − SCA = 0

def=g, (C3)

FIG. 8. (a) The intersection points of the nodal lines of f and
h give rise to the merging BICs. The real and imaginary parts of
λ(ω) at different period a [emphasized by six golden arrows in (a)]
are plotted in (b) and (c), which give the evolution of BICs at the
vicinity of the two merging BICs indicated by the green star and
green diamond in (a). The above BICs comes from the merging
of two accidental BICs in momentum space [middle panel of (b)
and (c)].

which is Eq. (2). We have already proved the identity f = g
from inversion symmetry, i.e., Eq. (A6). Here, we will prove
the identity f = f ∗ and h = h∗ for the BIC at q = 0 by apply-
ing time-reversal operation on MP = 0, i.e.,

�M�−1�P = M∗P∗ = 0,

where � is the time-reversal operator. Since we consider
the q = 0 and the frequency is real at the BIC, we have
P∗ = P0. The Bloch wave function of this BIC also has
the form in Eq. (C2). As a result, we have the following
identities: (

α−1
A − SAA

)∗ + 2SAB
∗ − SAC

∗

= (
α−1

A − SAA
) + 2SAB − SAC = 0

− 2
(
α−1

B − SAA
)∗ − SBA

∗ − SAB
∗

= −2
(
α−1

B − SAA
) − SBA − SAB = 0,

from which, we obtain

f = f ∗ and h = h∗, (C4)

i.e., f and h are two real functions whose solution determine
the position BIC.

In fact, Eq. (C4) holds not only at BICs, but in general in
the region of zeroth-order diffraction and the whole range of
parameter spaces in which we are interested. To prove this, we
need to prove that f and h are two real-valued functions. To
prove the above, we need to rely on the following theorems:
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The following result always satisfied for the region of zeroth-order diffraction, b = d/a ∈ (0, 1),

−
∑
n �=0

sin|nx|
|nx| +

∑
n

sin|(n + b)x|
|(n + b)x| = 1

−
∑
n �=0

cos|nx|
|nx|2 +

∑
n

cos|(n + b)x|
|(n + b)x|2 = 1

x2

(
1

b2
− π2

3
+ 2g(b)

)
− 1

2
,

∑
n �=0

sin|nx|
|nx|3 −

∑
n

sin|(n + b)x|
|(n + b)x|3 = 1

x2

(
π2

3
− 1

b2
− 2g(b)

)
+1

6
, (C5)

where g(b) = ∑∞
n=1

1
(n+b)2 and x = k0a. The above theorems have been proved in Ref. [27]. The rigorous mathematical proof of

f = f ∗ and h = h∗ is given in Appendix D. A numerical verification is shown in Fig. 7.

APPENDIX D: RIGOROUS MATHEMATICAL PROOF OF f = f ∗ AND h = h∗

Substituting Eq. (A3) into (C3), the f and h function can be reexpressed as

f = α−1
A − k3

0

∑
n �=0

(
1

k0|na| + i
1

k2
0 |na|2 − 1

k3
0 |na|3

)
eik0|na| + 2k3

0

∑
n

(
1

k0|na + d| + i
1

k2
0 |na + d|2 − 1

k3
0 |na + d|3

)
eik0|na+d|

− k3
0

∑
n

(
1

k0|na + 2d| + i
1

k2
0 |na + 2d|2 − 1

k3
0 |na + 2d|3

)
eik0|na+2d|,

h = − 2α−1
B + 2k3

0

∑
n �=0

(
1

k0|na| + i
1

k2
0 |na|2 − 1

k3
0 |na|3

)
eik0|na| − k3

0

∑
n

(
1

k0|na − d|+i
1

k2
0 |na − d|2 − 1

k3
0 |na − d|3

)
eik0|na−d|

− k3
0

∑
n

(
1

k0|na + d|+i
1

k2
0 |na + d|2 − 1

k3
0 |na + d|3

)
eik0|na+d|. (D1)

First, we prove that the imaginary part of h is zero. The imaginary part of h can be expressed as

Im(h) = 4

3
k3

0 + 2k3
0

∑
n �=0

(
sin|nx|
|nx| +cos|nx|

|nx|2 − sin|nx|
|nx|3

)
− k3

0

∑
n

(
sin|(n − b)x|
|(n − b)x| +cos|(n − b)x|

|(n − b)x|2 − sin|(n − b)x|
k3

0 |(n − b)x|3
)

,

− k3
0

∑
n

(
sin|(n + b)x|
|(n + b)x| +cos|(n + b)x|

|(n + b)x|2 − sin|(n + b)x|
|(n + b)x|3

)
, (D2)

where x = k0a and b = d/a.
We reformulate the summation in terms of the power of the denominator in Eq. (D2) as follows. Substituting Eq. (C5) into

(D2), we obtain

Im(h) = 4

3
k3

0 + 2k3
0

∑
n �=0

(
sin|nx|
|nx| +cos|nx|

|nx|2 − sin|nx|
|nx|3

)
− k3

0

∑
n

(
sin|(n + b)x|
|(n + b)x| +cos|(n + b)x|

|(n + b)x|2 − sin|(n + b)x|
k3

0 |(n + b)x|3
)

− k3
0

∑
n

(
sin|(n + 2b)x|
|(n + 2b)x| +cos|(n + 2b)x|

|(n + 2b)x|2 − sin|(n + 2b)x|
|(n + 2b)x|3

)

= 4

3
k3

0 − 2k3
0 − 2

[
1

x2

(
1

b2
− π2

3
+ 2g(b)

)
− 1

2

]
k3

0 − 2

[
1

x2

(
π2

3
− 1

b2
− 2g(b)

)
+1

6

]
k3

0 = 0. (D3)

Below, we prove that the imaginary part of f in Eq. (D1) is zero. To prove this, we need to rely on the following theorems
[27]: ∑

n �=0

sin|nx|
|nx| = π

x
− 1,

∑
n

sin|(n + b)x|
|(n + b)x| = π

x

∑
n �=0

cos|nx|
|nx|2 = 1

x2

(
x2

2
− πx + π2

3

)
,

∑
n

cos|(n + b)x|
|(n + b)x|2 = 1

x2

(
1

b2
− πx + 2g(b)

)

∑
n �=0

sin|nx|
|nx|3 = 1

x3

(
−π

2
x2 + π2

3
x

)
+ 1

6
,

∑
n

sin|(n + b)x|
|(n + b)x|3 = 1

x3

(
−π

2
x2 +

(
2g(b) + 1

b2

)
x

)
. (D4)
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The imaginary part of f can be expressed as

Im( f ) = − 2

3
k3

0 − k3
0

∑
n �=0

(
sin|nx|
|nx| +cos|nx|

|nx|2 − sin|nx|
|nx|3

)
+ 2k3

0

∑
n

(
sin|(n + b)x|
|(n + b)x| +cos|(n + b)x|

|(n + b)x|2 − sin|(n + b)x|
k3

0 |(n + b)x|3
)

− k3
0

∑
n

(
sin|(n + 2b)x|
|(n + 2b)x| +cos|(n + 2b)x|

|(n + 2b)x|2 − sin|(n + 2b)x|
|(n + 2b)x|3

)
. (D5)

We reformulate the summation in terms of the power of the denominator in Eq. (D5) as follows:

Im( f ) = − 2

3
k3

0 − k3
0

∑
n �=0

(
sin|nx|
|nx| +cos|nx|

|nx|2 − sin|nx|
|nx|3

)
+ k3

0

∑
n

(
sin|(n + b)x|
|(n + b)x| +cos|(n + b)x|

|(n + b)x|2 − sin|(n + b)x|
k3

0 |(n + b)x|3
)

= − 2

3
k3

0 + k3
0 + k3

0

(
1

x2

(
1

b2
− π2

3
+ 2g(b)

)
− 1

2

)
+ k3

0

(
1

x2

(
π2

3
− 1

b2
− 2g(b)

)
+1

6

)
= 0. (D6)

Finally, from (D3) and (D6), we get that f and h are two real-valued functions for b = d/a ∈ (0, 1).

APPENDIX E: EVOLUTION OF BIC IN MOMENTUM SPACE

As shown in Fig. 8, we also give the evolution of BIC in momentum space of Fig. 4. Here we take the plasma frequency equal
to 6.188 eV as an example. When period a is 238.3 nm (green star) and 264.6 nm (green diamond), respectively, the modes at
the � point correspond exactly to the BIC modes. Near a = 238.3 nm and a = 264.6 nm, the real and imaginary parts of λ in the
q-ω space for several values of a [emphasized by six golden arrows in Fig. 8(a)] are plotted in Figs. 8(b) and 8(c), respectively.
It can be clearly seen that the BICs (green star and green diamond) in Fig. 8(a) correspond exactly to the merging BICs in the
momentum space.
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