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Ring Bose-Einstein condensate in a cavity: Chirality detection and rotation sensing
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Recently, a method has been proposed to detect the rotation of a ring Bose-Einstein condensate, in situ, in
real-time, and with minimal destruction by using a cavity driven with optical fields carrying orbital angular
momentum [Phys. Rev. Lett. 127, 113601 (2021)]. This method is sensitive to the magnitude of the condensate
winding number but not its sign. In the present work, we consider simulations of the rotation of the angular lattice
formed by the optical fields and show that the resulting cavity transmission spectra are sensitive to the sign of the
condensate winding number. We demonstrate the minimally destructive technique on persistent current rotational
eigenstates, counter-rotating superpositions, and a soliton singly or in collision with a second soliton. Conversely,
we also investigate the sensitivity of the ring condensate, given knowledge of its winding number, to the rotation
of the optical lattice. This characterizes the effectiveness of the optomechanical configuration as a laboratory
rotation sensor. Our results are important to studies of rotating ring condensates used in atomtronics, superfluid
hydrodynamics, simulation of topological defects and cosmological theories, interferometry using matter-wave
solitons, and optomechanical sensing.

DOI: 10.1103/PhysRevA.109.023524

I. INTRODUCTION

Degenerate atoms contained in a ring-shaped potential
are paradigms of quantum rotation [1–5]. Specifically, a
Bose-Einstein condensate (BEC) in a ring displays quan-
tized persistent superflow [6], phase slips [7,8], solitons [9],
hysteresis [10,11], excitations [12], spinor hydrodynamics
[13,14], and shock waves [15]. Such a BEC can be used
to simulate topological systems [16–18], black holes [19],
the early universe [20], and time crystals [21]. Apart from
fundamental interest, ring BECs are platforms critical to
applications such as matter-wave interferometry [22,23], gy-
roscopy [24,25], atomtronics [26–29], quantum computation
[30], and rotation sensing [31].

In all of the investigations mentioned above, a central role
is played by the state of rotation of the condensate. It is no sur-
prise that therefore a number of methods exist for probing the
condensate winding number, or topological charge, which is
the angular momentum per atom divided by Planck’s constant
h̄. In the earliest instances, the method involved measuring
the diameter of the central density hole of the atomic distribu-
tion upon time-of-flight expansion and subsequent absorption
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imaging [13,32]. This diameter is proportional to the mag-
nitude of the initial condensate vortex charge. However, the
method does not yield the sign of the winding number, which
is the direction of the atomic rotation. Another technique,
which provides the same information, involves interferometric
processing of the condensate so that the image contains a
number of density peaks equal in number to the winding
number [6].

Subsequently, methods that revealed the sign of the wind-
ing number were demonstrated. One way of implementing
such detection is to use a disk-shaped reference condensate,
which is also allowed (along with the ring) to expand via time-
of-flight and the matter-wave phase interferogram resulting
from its interference with the ring carries a clear signature
of the handedness of the atomic rotation. Specifically, if the
ring is not rotating, the interferogram fringes consist of a set
of concentric circles. If the ring is rotating, the fringes appear
in the shape of nested spirals whose number and handedness
reveal the magnitude and sign, respectively, of the condensate
winding number [18].

However, all demonstrated methods of detecting ring BEC
rotation are fully destructive of the condensate because they
all employ absorption imaging [33]. The absorption and sub-
sequent emission of photons destroy the coherence of the
atomic condensate. In recent work, our group proposed a
method for detecting atomic rotation with minimal destruction
to the condensate in real-time and in situ [34,35]. Our proposal
involved coupling the rotating ring BEC to a resonator using
optical beams carrying orbital angular momentum (OAM)
[see Fig. 1] and subsequently carrying out a homodyne de-
tection of the phase quadrature of the cavity output field using
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FIG. 1. Schematic illustration of a Bose-Einstein condensate with winding number Lp trapped in a ring. Two Laguerre-Gauss cavity modes
carrying orbital angular momenta ±�h̄ form an annular lattice to probe the dynamics of the condensate. The lattice is rotated at frequency �.
The optical field transmitted by the cavity is denoted by aout.

the well-established detection techniques of cavity optome-
chanics [36–38]. The signal was shown to contain two peaks,
from the frequency location of either of which the condensate
winding number could be inferred. While the initial proposal
modeled the BEC as a two-mode system, in subsequent work
we used a mean-field model that accounts for all the matter
wave modes of the BEC and considered persistent currents as
well as solitons [35].

Nevertheless, the minimally destructive technique pro-
posed by us only reveals the magnitude, and not the sign of
the winding number, of the ring BEC. This may be understood
from a symmetry point of view by realizing that the optical
beams introduced by us produce an angular lattice overlap-
ping with the ring BEC (see Fig. 1). Since this lattice breaks
rotational symmetry about the cavity axis, it can probe the an-
gular momentum, i.e., the winding number, of the condensate.
However, since it does not break chiral symmetry by picking
a handedness about the cavity axis, it is insensitive to the sign
of the condensate rotation.

In the present work, we show that the rotation of the optical
lattice, which can be carried out in the laboratory using spatial
light modulators [39], allows us to determine the sign of the
condensate rotation. For realistic lattice rotation frequencies,
we demonstrate our technique on persistent current rotational
eigenstates and counter-rotating superpositions for weak and
repulsive atomic interactions. We also show how the method
works for solitons, singly or in colliding pairs, for weak and
attractive atomic interactions [40–47]. Finally, we also con-
sider the converse of the problem, where we think of the
lattice rotation as caused by the laboratory and ask how well
a condensate with a known winding number can measure this
rotation. In other words, we consider the sensitivity of the ring
BEC in a cavity as a rotation sensor.

We present analytical few-mode calculations, where possi-
ble, and numerical simulations that treat the condensate in the
mean-field limit and the cavity field classically. Damping and

noise arising from the matter as well as optical fields are mod-
eled realistically. Our results include the homodyne spectra of
the cavity transmission [37], which establish the sign as well
as magnitude of the condensate rotation, the sensitivity of the
measurement as a function of system response frequency, and
atomic density profiles showing the effect of the measurement
on the condensate. Before concluding, we mention that a the-
oretical proposal for measuring the magnitude as well as the
sign of the condensate winding number using atom counting
exists [48].

This paper is organized as follows: In Sec. II the theoretical
model and details of the numerical simulation are presented.
In Secs. III A and III B we provide the dynamics, OAM
content, optical spectra, and measurement sensitivity for per-
sistent current and bright soliton detection, respectively. In
Sec. III C we present a detailed analysis of the critical rotation
required for using the ring BEC as a rotation sensor. Following
this, the fidelity is presented in Sec. III D. Finally, we conclude
our work in Sec. IV. In the Appendix B, we present the BEC
chirality detection and rotation sensing at high lattice rotation
frequencies.

II. THEORETICAL MODEL AND DETAILS
OF NUMERICAL SIMULATION

In this section, we describe the few-mode quantum-
mechanical model for the configuration of interest and the
mean-field equations, which take all modes of the condensate
into account.

A. Few-mode Hamiltonian

We consider a BEC confined in a ring trap of radius
R, whose center lies on the axis of an optical resonator;
see Fig. 1. The BEC is probed by a superposition of
frequency-degenerate Laguerre-Gaussian beams carrying
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optical OAM ±�h̄. The combination of these beams creates
an angular lattice inside the cavity, overlapping with the ring
BEC. The matter waves in the condensate Bragg diffract
from this lattice, giving rise to persistent current side modes
Lp → Lp ± 2�, where Lp is the winding number of the
supercurrent initially present in the BEC.

In the rotating frame of the laser drive and the rest frame
of the optical lattice, the azimuthal dynamics of the BEC
are described in terms of the Hamiltonian written in second-
quantized form:

Ĥ0 =
∫ 2π

0
�†(φ)

[(
−i

d

dφ

)2

+ U0 cos2 (�φ)a†a

]
�(φ)dφ

+ G
2

∫ 2π

0
�†(φ)�†(φ)�(φ)�(φ)dφ

− �oa†a − iη(a − a†), (1)

where �(φ) is the bosonic atomic field operator such that
[�(φ), �†(φ′)] = δ(φ − φ′), and φ is the angular variable of
atomic position along the ring. The optical field operators, on
the other hand, obey [a, a†] = 1. The square bracket in the
first line of Eq. (1) has two terms: (i) the first term represents
the rotational kinetic energy of the atoms, and (ii) the second
contribution governs the interaction of the atoms with the
optical lattice potential such that U0 = g2

0/�a, where g0 and
�a are the single photon-atom coupling strength and detuning
of the optical drive from the atomic transition, respectively.
The two-body atomic interaction with the strength G = g/h̄ωβ

is represented in the second line of Eq. (1) which corresponds
to binary collisions in the condensate. Here g = 2h̄ωρas/R
depends on the atomic s-wave scattering length as and the
harmonic trap frequency along the radial direction ωρ ; further,
ωβ is defined to scale the energy such that h̄ωβ = h̄2/(2mR2),
where m is the atomic mass. The terms in the last line of
Eq. (1) contain contributions from the cavity field energy and
the cavity drive, respectively. Here �o is the drive detuning
from the cavity resonance ωo and η = √

Pinγo/h̄ωo is the drive
strength, where Pin (γo) is the input optical power (cavity
linewidth).

B. Rotating angular lattice

As the angular lattice breaks the rotational symmetry of
the system about the cavity axis, it can be used to probe
the winding number Lp of the ring condensate. However, the
lattice does not break the chiral symmetry of the system by
providing a preferred handedness, and only the magnitude of
Lp can be found using this method, as shown earlier [34].

To detect the sign of the persistent current, we break the
chiral symmetry of the system by rotating the optical lattice
with an angular frequency of � [39,49,50]. Mathematically,
this corresponds to replacing cos2(�φ) on the first line of
Eq. (1) by cos2[�(φ + �t )]. Using then the operator ei�L̂φ t that
transforms the Hamiltonian from the laboratory to the rotating
frame of the optical angular lattice, where

L̂φ =
∫ 2π

0
�†(φ)

(
−i

d

dφ

)
�(φ)dφ. (2)

is the angular-momentum operator, we obtain

Ĥ (�) = Ĥ0 − �L̂φ. (3)

Using Eqs. (1) and (2) in Eq. (3) and adding the constant
terms, the Hamiltonian in the rotating optical lattice frame
becomes [9]

Ĥ (�) =
∫ 2π

0
�†(φ)

[(
−i

d

dφ
− �

2

)2
]
�(φ)dφ

+
∫ 2π

0
�†(φ)U0 cos2 (�φ)a†a�(φ)dφ

+ G
2

∫ 2π

0
�†(φ)�†(φ)�(φ)�(φ)dφ

− �0a†a − iη(a − a†). (4)

Physically, the atoms of the condensate get Bragg diffracted
from the optical lattice. We consider photon numbers smaller
than unity in the cavity (this has already been achieved ex-
perimentally [36,51]); hence, the lattice is weak, and only
first-order atomic diffraction is non-negligible. This results
in two side modes, ωc and ωd , respectively, in terms of
the matter-wave OAM states. The frequencies of these side
modes can be deduced by following the procedure outlined in
Ref. [34], with a straightforward modification arising from the
transformation between laboratory and lattice rotation frames

ωc,d (�) = ωβ

(
Lp ± 2� − �′

2

)2

, (5)

where the normalized angular frequency is �′ = �/ωβ . From
Eq. (5) it follows that, for a fixed angular frequency �′ of
lattice rotation, the frequencies of the side modes are different
for opposite winding numbers ±Lp. Thus, this technique can
be used to infer the direction of the BEC rotation. In contrast,
in the absence of lattice rotation (�′ = 0), it can be verified
that transforming Lp ↔ −Lp merely exchanges the side mode
frequencies (ωc ↔ ωd ), thus leaving the sign undetermined.
In the above discussion, we have neglected the effect of atomic
interactions on the side mode frequencies. Inclusion of inter-
actions leads to the modified frequencies [9,34]

ω′
c,d = [ωc,d (ωc,d + 4g̃N )]1/2, (6)

where g̃ = g/(4π h̄) and N is the number of atoms in the
condensate. We compare the analytical expression of the side
mode frequencies from Eqs. (6) to our numerical simulations
presented below. In the simulations, we calculate the noise
spectrum of the phase quadrature aout of the field transmitted
by the cavity, see Fig. 1. Experimentally, this corresponds to
the homodyne measurement of the cavity output field aout

with respect to the local oscillator supplied by the input
field ain [37].

We note that the optical lattice rotates through the con-
densate, presenting obstacles that are penetrable by the
superfluid, since the peak optical potential U0|αs|2 (where
|αs|2 is the steady-state photon number in the cavity) is al-
ways smaller than the chemical potential μ. In this work, we
only consider lattice rotation rates smaller than the speed of
sound vs = √

μ/m in the condensate, i.e., such that ωβ�′ <

vs/(2πR). This ensures that the flow around the ring is always
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superfluidic, and the local Landau criterion for the onset of
dissipative flow is never satisfied [52].

C. Equations of motion

In contrast with the few-mode model discussed above,
we now take into account the full-mode characterization of
the condensate by employing a mean-field Gross–Pitaevskii
formalism. Using Eqs. (4), the mean-field equation can be
derived, including the fluctuations [53,54]. Then the coupled
dynamical equations for the condensate wave function ψ and
light field amplitude α in the rotating optical lattice are written
as [35]

(i − �)
dψ

dτ
=

[
− d2

dφ2
+ U0

ωβ

|α(τ )|2cos2 (�φ) − μ

+ G|ψ |2 − �′
(

−i
d

dφ

)]
ψ + ξ (φ, τ ), (7)

and

i
dα

dτ
=

{
−

[
�c − U0〈cos2 (�φ)〉τ + i

γ0

2

]
α + iη

}
ω−1

β

+ i
√

γ0ω
−1
β αin(τ ). (8)

Equation (7) is the dimensionless stochastic Gross–Pitaevskii
equation, where ψ ≡ ψ (φ, τ ) represents the condensate wave
function, which is normalized to the total number of atoms in
the condensate N , as expressed by∫ 2π

0
|ψ (φ, τ )|2dφ = N. (9)

Here φ and τ are the angular coordinates along the ring and
the scaled time respectively. The length is normalized to the
radius of the ring R, while the energy and time are normalized
as h̄ωβ = h̄2/2mR2 and τ = ωβt , respectively. Since most of
the terms used in Eqs. (7) and (8) have been described in
earlier sections, only a brief discussion of the terms associated
with the fluctuations is presented here. The optical fluctuation
is taken into account through the term αin(τ ) and the thermal
fluctuation associated with the condensate is through ξ (φ, τ ),
which is related to the damping of the condensate � (scaled
with ωβ) according to the fluctuation-dissipation theory [55]
and to conserve the norm of the condensate in presence of this
fluctuation, the chemical potential μ is corrected at each time
step as [56]

�μ = (�τ )−1 ln

×
[∫

|ψ (φ, τ )|2dφ/

∫
|ψ (φ, τ + �τ )|2dφ

]
.

Here both the thermal and optical noise are considered to be
delta-correlated white noise, with the correlations [17,34,35]

〈ξ (φ, τ )ξ ∗(φ′, τ ′)〉 = 2�kBT

h̄ωβ

δ(φ − φ′)δ(τ − τ ′), (10)

〈αin(τ )α∗
in(τ ′)〉 = ωβδ(τ − τ ′). (11)

So the terms ξ (φ, τ ) and αin(τ ) can be modeled as

ξ (φ, τ ) =
√

2�kBT

h̄ωβdφdτ
N (0, 1, Nφ )N (0, 1, Nφ ), (12)

αin(τ ) = √
ωβ/dτN (0, 1, 1), (13)

where kB is the Boltzmann constant and T is the temperature
of the bath. Here N (0, 1, Nφ ) and N (0, 1, 1) are the sets of
random variables that are normally distributed, having zero
mean and unit variance. The third argument in N denotes
the size of the array, containing the random numbers that are
added in each time step with the prefactor while solving the
above-mentioned coupled differential equations. Additional
discussions of the measurement noise including the quantum
backaction have been provided in the Appendix A.

D. Simulation details

In this work, we have considered four different states of
the condensate, namely, persistent current, superposition state,
soliton, and two-soliton states moving with equal and op-
posite angular velocity. First, in Sec. III A, we demonstrate
the dynamics of a single persistent current and two coun-
terpropagating persistent currents in a superpositioned state.
Subsequently, in Sec. III B, we present the dynamics of a
bright soliton and the dynamics of a pair of solitons that
undergo multiple collisions. The dynamics of the persistent
current are captured by solving the coupled set of dynamical
equations [Eqs. (7) and (8)] numerically using the real-time
dynamics scheme. We use the Fourier pseudospectral method
[57] aided by the fourth-order Runge-Kutta scheme for the
temporal evolution of the condensate [58]. For persistent cur-
rent, we start the simulation by considering the initial state as
eiLpφ . However, to generate a soliton-like ground state, we first
evolve the condensate with the Gaussian state e−φ2/2, which
resembles the shape of a bright soliton, using the imaginary
time scheme based upon the Strang splitting Fourier method
[59]. Subsequently, the soliton initial state is modulated with
a phase eiLpφ to achieve the moving soliton state, which is
further evolved using the real-time scheme.

For all the simulation runs, the dynamics of condensate and
cavity are captured for a period of 5 s that gives a single trajec-
tory of the cavity field, which is later used to obtain the cavity
output spectrum through a Fourier transformation. From these
results, we can also obtain tmeas, the time required for the
measurement, and verify that it is much smaller than any rel-
evant dynamical timescale in the problem, and thus conclude
that the measurement is practically in real time. For enhanced
visualization, the cavity output spectrum is smoothed using
the moving average technique of a window size of 30 Hz.
The rotation measurement sensitivities have been calculated
by fitting the output spectrum near the frequency at which we
get the peaks with the appropriate shape. This process allows
us to reduce the effect of background noise coming from the
frequency away from the relevant ones in the calculation of
the sensitivity. For all the simulation runs, we have chosen the
dt as 10−7 where the space resolution dφ is set at 0.006.

III. RESULTS AND DISCUSSION

A. Persistent current

1. Rotational eigenstate

We consider a condensate comprised of N number of 23Na
atoms [1] each of mass m, confined in an annular trap gen-
erating a persistent current. Since the configuration we are
proposing has not yet been realized, we take parameters for
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FIG. 2. Persistent current: (a) angular profile of the condensate
density per particle for a persistent current rotational eigenstate.
(b) OAM state content of the condensate. Parameters used here are
�′ = 0.5, Lp = ±1, � = 0.0001, T = 10 nK, g/h̄ 
 2π × 0.02 Hz,
� = 10, N = 104, �̃ = −2π × 173 Hz, U0 = 2π × 212 Hz, γ0 =
2π × 2 MHz, Pin = 50 fW, �′ = 0.5, ωc = 2π × 1015 Hz, m = 23
amu, and R = 12 µm.

our simulations from a combination of experiments: on BECs
in cavities [36], ring BECs independent of cavities [1,7],
and OAM modes in cavities [60]. The initial macroscopic
condensate wave function, representing the rotational state of
persistent current, can be assumed to have the form of a plane
wave,

ψ (φ) =
√

N

2π
eiLpφ. (14)

Here eiLpφ is the phase factor, which presents a phase gradient
to the condensate of uniform density, and Lp represents the
winding number of the condensate, which is the quantity to
be detected.

As our present method can detect the magnitude as well
as the sign of the winding number of the persistent current, in
this section, we present the simulation results for two different
currents having winding numbers ±Lp for specific values of
the angular frequency of the rotating optical lattice �′. In
Fig. 2 we show the ground-state density profiles obtained for
Lp = ±1 with the rotation frequency �′ = 0.5, along with
the occupation of matter wave OAM states for both these
values of Lp. We emphasize that our minimally destructive
measurement does not yield condensate density or OAM
content—these can only be obtained from a fully destructive
measurement. They have been provided here as they can be
simulated and provide a more complete description of the
measurement.

We find that the condensate density profiles are quite sim-
ilar to each other and appear to be slightly modulated as a
result of the rotating optical lattice and the noise present in the
system [see Fig. 2(a)]. To illustrate the presence of different
matter wave OAM modes, we show the Fourier transformation
of the density of the persistent currents in frequency space
corresponding to Lp = ±1 in Fig. 2(b). Here, the side modes
at the position Lp ± 2l − �′/2 appear due to matter-wave
diffraction.

To probe the different OAM components present in the
condensate, we compute the spectrum of the output optical
field, which is transmitted through the cavity. Within the cav-
ity, the light field is modulated at the side mode frequencies
of the condensate ω′

c,d (�), Eq. (6) [34,36]. To reveal these

FIG. 3. Persistent current: (a) Noise spectra of the output phase
quadrature of the cavity field and (b) rotation measurement sensi-
tivity versus the system response frequency for different winding
numbers Lp = ±1. In panel (a), the gray-colored vertical dashed
line corresponds to the analytical predictions for the side modes for
�′ = 0 (provided as a reference to indicate the opposite direction
of shifts for Lp = ±1) and the orange and purple-colored vertical
dashed lines correspond to the analytical predictions for the side
modes for �′ = 0.5. In panel (b), the solid curves correspond to ζ�

[Eq. (16)], while the dashed curves correspond to ζ� [Eq. (17)]. Here
G = 2π × 7.5 kHz, |αs|2 = 0.024, and the optomechanical measure-
ment time (tmeas) is 9.4 ms. The other parameters used here are the
same as mentioned in Fig. 2.

side mode frequencies, we perform a Fourier transform of the
cavity field amplitude of the output field, which is related
to the intracavity field through the input-output relation of
cavity optomechanics as αout = −αin + √

γ0α [37]. For all
the analysis performed in the paper, we consider the phase
quadrature of the cavity transmission spectrum defined as

S(ω) = |Im[αout(ω)]|2. (15)

Experimentally, this spectrum can be obtained via a homo-
dyne measurement of the cavity output with respect to the
local oscillator of the cavity input. Figure 3(a) depicts the
phase quadrature of the cavity transmission spectrum as a
function of the response frequency of the system for two
different situations (the same as in Fig. 2), i.e., for the winding
numbers Lp = ±1. The spectrum clearly shows two distinct
peaks at the locations corresponding to the side mode frequen-
cies ω′

c,d (�) for Lp = ±1. The numerically simulated peak
positions match quite well with the analytical predictions of
Eq. (6).
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Next, we compute the sensitivity of detecting Lp for a
fixed value of angular frequency of rotating optical lattice �′,
defined as

ζ� = S(ω)

∂S(ω)/∂�

√
tmeas, (16)

and also the sensitivity of measuring the rotation of the optical
lattice � for a fixed value of Lp defined as

ζ� = S(ω)

∂S(ω)/∂ (h̄�′)
√

tmeas. (17)

Here t−1
meas = 8(αsG)2/γ0 is the optomechanical measurement

rate, G = U0

√
N/2

√
2 [34], and � = h̄Lp is the angular

momentum of the condensate. In Fig. 3(b), we show the sen-
sitivities ζ� and ζ�, respectively, as functions of the system
rotation frequency. The sensitivities of detecting the conden-
sate winding number Lp and rotation of the optical lattice
� are optimized near the side mode frequencies ω′

c,d (�).
For the detection of Lp the optimal sensitivities of ≈10−37

kg m2 s−1 Hz−1/2 compare well with our earlier work [34],
indicating also that all relevant sources of noise have been
accounted for.

To demonstrate that our method is effective at detecting
two neighboring winding numbers, we further compute the
cavity output spectrum for Lp = ±2 as shown in Fig. 4(a),
where the peaks are spectrally distinct from the peaks for the
case of Lp = ±1 [Fig. 3(a)]. The corresponding sensitivities
of measurement are illustrated in Fig. 4(b).

After discussing the cavity spectra and sensitivities for
the persistent current, in what follows, we present a detailed
behavior of these quantities for the situation when we have the
presence of the superposition of two persistent current states.

2. Two-state superposition

As our method allows us to detect both the magnitude and
sign of the winding number associated with the persistent
current, in this section we illustrate the capability of detecting
winding numbers of two counterpropagating persistent cur-
rents for two different scenarios: one having equal magnitude
but opposite signs, and the other involving different magni-
tudes and opposite signs. For these cases, we consider the
initial state as

ψ (φ) =
√

N

4π
(eiLp1φ + eiLp2φ ), (18)

which is a superposition state of two plane waves having
winding numbers Lp1 and Lp2, respectively.
Figure 5 shows the condensate density profile and matter-
wave OAM distribution of the condensate wave function,
representing the superposition of two counterpropagating per-
sistent currents having winding numbers Lp1 = 1 and Lp2 =
−1. The increased modulation in condensate density is ex-
pected due to the superposition involving constructive and
destructive interference of the two components of the superpo-
sition. The OAM distribution shows the dominant states that
correspond to Lp = 0 and ±2�, respectively, and these peaks
serve as evidence for the interference between Lp1 = 1 and
Lp2 = −1 currents. Due to this interference, the occupation of
other modes is relatively high compared with Fig. 2(b).

FIG. 4. Persistent current: (a) Noise spectra of the output phase
quadrature of the cavity field, (b) Rotation measurement sensitivity
as a function of the system response frequency for Lp = ±2. In
panel (a), the gray-colored vertical dashed line corresponds to the
analytical predictions for the side modes for �′ = 0 and the orange
and purple-colored vertical dashed line corresponds to the analytical
predictions for the side modes for �′ = 0.5. In panel (b), the solid
curves correspond to ζ� [Eq. (16)], while the dashed curves corre-
spond to ζ� [Eq. (17)]. Here G = 2π × 7.5 kHz, |αs|2 = 0.024, and
the optomechanical measurement time (tmeas) is 9.4 ms. The other set
of parameters used here are the same as mentioned in Fig. 2.

Figures 6(a) and 6(b) show the noise spectra of the output
phase quadrature as a function of response frequency for
Lp1 = 1, Lp2 = −1 and Lp1 = 1, Lp2 = −2, respectively. The
peaks detected in the output spectrum represent the side mode

FIG. 5. Persistent current superposition: (a) Condensate density
profile per particle with Lp1 = 1, Lp2 = −1, (b) OAM distribution of
the condensate. Here Pin = 0.7 pW and the other parameters used are
the same as in Fig. 2.
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FIG. 6. Persistent current superposition: Left column for Lp1 = 1 and Lp2 = −1 and right column for Lp1 = 1 and Lp2 = −2. (a), (b) Noise
spectrum of the output phase quadrature versus response frequency. (c), (d) Rotation measurement sensitivity versus response frequency.
The solid curves correspond to ζ� [Eq. (16)], while the dashed curves correspond to ζ� [Eq. (17)]. The vertical dashed lines correspond to
analytical predictions for Lp1 ± 2l − �′/2 and Lp2 ± 2l − �′/2. Here, G = 2π × 7.5 kHz, |αs|2 = 0.33 and the optomechanical measurement
time (tmeas) is 2.1 ms. The other parameters used are the same as in Fig. 5.

frequencies [ω′
c,d (�)] of the two persistent currents in the

superposition state. Additionally, some extra peaks are vis-
ible, which result from the interference between these two
currents. The values of the winding numbers of the constituent
persistent currents were determined uniquely by locating the
dominant peaks (which yield Lp1) and the outermost peaks
(which yield Lp2). In implementing this procedure, careful
selection of input optical power plays a pivotal role, since
it not only determines the visibility of peaks in the output
spectrum but also regulates the operation of the system in
the linear-response regime. The increased noise in the cavity
output spectra of Figs. 6(a) and 6(b), as compared with the
single persistent current cases [Figs. 3(a) and 4(a)] is the con-
sequence of employing higher input optical power. A detailed
discussion on the effect of higher input optical power on the
cavity output spectrum can be found in Refs. [35,61].

B. Soliton

1. Single soliton

A soliton refers to a self-bound localized state that
propagates in a medium without any dispersion, and this lo-
calization is a result of the attractive interaction among the
atoms constituting the soliton, as considered experimentally
[62] as well as theoretically [63]. In the present work, we

study the dynamics of a matter-wave soliton forming due to
the condensation of N number of 7Li atoms having a negative
scattering length, leading to an attractive interatomic interac-
tion. In particular, we detect the rotation of this soliton in the
ring trap, where the optical lattice is rotating with an angular
frequency �. This allows us to measure the winding number
associated with the soliton rotation.

For this case we first obtain the ground state as a bright
soliton [ψbs(φ)] using the imaginary time scheme with an
initial state as a Gaussian wave packet centered at φ = 0.
Following this we impart the angular motion in the bright
soliton by adding a phase proportional to Lp. The resultant
bright soliton will have the form as

ψ (φ) = ψbs(φ)eiLpφ. (19)

Figure 7(a) shows the nondispersive propagation of the
bright soliton within the ring structure. The slight modulation
in the density profiles of soliton can be attributed to the pres-
ence of the rotating optical lattice probe. Figure 7(b) shows the
matter wave distribution of the solitonic state, and we find a
pronounced concentration of OAM states close to Lp = 1 and
Lp ± 2� − �′/2 (with �′ = 0.5). These multiple modes in the
OAM distribution account for the complex internal dynamics
of soliton. The occupancy in these states (corresponding to the
side mode frequencies) is heightened in comparison to other
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FIG. 7. Soliton: (a) Temporal evolution of density profiles of
soliton, (b) OAM distribution of the soliton for �′ = 0.5, Lp = 1.
Here N = 6000, as = −27.6a0, where a0 is the Bohr radius, m =
7.01 amu, and Pin = 0.4 pW, and all other parameters are same as in
Fig. 2.

states [Figs. 2(b) and 5(b)], clearly indicating the occurrence
of Bragg diffraction due to the presence of the optical lattice
potential.

To detect the rotation of the soliton confined in the ring
trap, we have calculated the noise spectra of the output phase
quadrature of the cavity field for two different values of the
winding number Lp = ±1 separately and have presented it as
a function of the system response frequency in Fig. 8(a). The
increased number of peaks in the output spectra, compared
with the case of persistent current, accounts for the multimode
dynamics inherent in the soliton profile. Remarkably, these
two cases (Lp = ±1) yield distinct cavity output spectra, and
by locating the dominating peaks in the spectrum, we can
detect the sign and magnitude of the rotation of soliton in
the ring. Here also, the dashed lines indicate the side mode
frequencies obtained through the analytical prediction, and the
numerically obtained results align closely enough with them
to allow identification.

Figure 8(b) shows the rotation measurement sensitivities
for the two above-discussed scenarios. We can achieve the
best sensitivity to the rotation measurements near the side-
mode frequencies of the condensate. Along with these, we can
also get better sensitivities around the frequencies correspond-
ing to the other neighboring modes, which was not possible

FIG. 8. Soliton: (a) Noise spectra of the output phase quadrature
of the cavity field as a function of the system response frequency
for �′ = 0.5, Lp = 1 (orange) and Lp = −1 (purple). The vertical
dashed line corresponds to the analytical predictions for the side
modes of Lp = ±1 [Eq. (6)]. (b) Rotation measurement sensitivi-
ties as a function of system response frequency. The solid curves
correspond to ζ� [Eq. (16)], while the dashed curves correspond
to ζ� [Eq. (17)]. Here G = 2π × 5.8 kHz and |αs|2 = 0.192, and
the optomechanical measurement time (tmeas) is 6.2 ms. The other
parameters used here are the same as in Fig. 7.

for the persistent current. This broader detection capability
can help for a more detailed understanding of the system’s
behavior.

2. Collisional dynamics of counter-propagating solitons

In this section, we extend the analysis of detecting the
rotation to a pair of solitons exhibiting multiple collisions
[64]. These collisions depend on the effective interaction
originating from the interference of two waves in the superpo-
sitioned state. We obtain the ground state of the bright soliton
[ψbs(φ)] starting with the initial state as the Gaussian wave
packet centered at φ = 0 by implementing the imaginary time
scheme. To generate the superpositioned state of the solitons
we put these bright solitons centered at −π/2 and π/2 and
the resultant form can be written as

ψ (φ) = ψbs(φ − π/2)eiLp1φ + eiθψbs(φ + π/2)eiLp2φ. (20)

The above equation conveys that, initially, the pair of
solitons are located at −π/2 and π/2, respectively, and
the specific nature of the collision is established by setting
the value of phase θ between the two solitons equal to π .
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FIG. 9. Soliton collision: (a) Temporal evolution of a pair of
solitons showing out-of-phase collisions, (b) OAM distribution of the
solitons. Here N = 6000, Pin = 0.4 pW, �′ = 0.3 and other parame-
ters used are same as Fig. 7.

Subsequently, we set up the individual soliton with dis-
tinct winding numbers Lp1 = −1 and Lp2 = 1, for which the
solitons initially move towards each other, experiencing a
repulsive collision as they move away from each other.

Figure 9(a) shows the temporal evolution of a pair of
solitons exhibiting multiple collisions over time in the ring
structure in the presence of a rotating optical lattice. Due
to the phase difference of π between the wave packets, the
interference is destructive, resulting in the formation of a zero-
density point. A similar phase-dependent collision of a pair of
solitons was seen in the experiment of Ref. [64]. Figure 9(b)
shows the OAM distribution of the condensate containing the
pair of solitons, which gives information about the side-mode
generation as in earlier cases.

The noise spectrum of the phase quadrature of the cavity
field is shown in Fig. 10(a). The peaks for the side modes
corresponding to Lp1 = −1 and Lp2 = 1 are distinct and dom-
inating, and yield information about the condensate winding
number. The sensitivity of the rotation measurements is plot-
ted in Fig. 10(b) as a function of the response frequency of
the system and the best sensitivities are achieved near the side
mode frequencies.

C. The ring Bose-Einstein condensate as a rotation sensor

In this section, we take the converse approach to that of
our analysis above to characterize the ring BEC as a rotation
sensor. We assume Lp is known for the BEC persistent current
state and investigate how the magnitude and sign of �′ can be
measured. Here, �′ now represents some unknown rotation
of the laboratory that we desire to measure. As can be seen
in the cavity spectra of Fig. 11 for various �′ = 0.4–0.01
for Lp = 1, the magnitude as well as the sign of �′ can be
determined using this technique. We find that the side-mode
peaks corresponding to ±�′ are quite distinctly resolvable for
Lp = 1 for �′ � 0.1. At this point, we wish to mention that as
we consider the rotation frequency above this threshold value,
the rotation sensitivity comes in at about 10 mrad s−1 Hz−1/2,
which is not as good as observed in the cold atom sensors,
which operate at about 100 nrad s−1 Hz−1/2 [65]. This indi-
cates a limitation of our setup as a rotation sensor.

FIG. 10. Soliton collision: (a) Noise spectra of the output phase
quadrature of the cavity field as a function of the system response
frequency for �′ = 0.3. The dashed lines indicate the analytical
predictions for the side-mode frequencies of Lp1 = −1 and Lp2 = 1,
respectively [Eq. (6)]. (b) Rotation measurement sensitivities as a
function of system response frequency. The solid curves correspond
to ζ� [Eq. (16)], while the dashed curves correspond to ζ� [Eq. (17)].
Here G = 2π × 5.8 kHz and |αs|2 = 0.192, and the optomechanical
measurement time (tmeas) is 6.2 ms. The other parameters used here
are the same as in Fig. 9.

D. Fidelity

To demonstrate that our technique is minimally destructive
and to quantify measurement backaction on the condensate
[66], we have calculated the variation of fidelity of condensate
wave function over time, which is defined as

F (t ) =
∫ 2π

0
[ψ∗(φ, t )ψ (φ, 0)]2dφ. (21)

Figure 12 depicts the variation of fidelity for the above-
mentioned four cases. Fidelity remains close to unity for the
persistent current case [Fig. 12(a)] with the slight gradual de-
cline attributed to the measurement backaction and other noise
inherent to the system. In the case of soliton [Fig. 12(c)], the
fidelity shows oscillatory behavior with time, and this is linked
to the rotational motion of the soliton in the ring, particularly
when the soliton’s spatial position deviates from its initial
state. So a meaningful calculation of fidelity occurs only at
those times when the soliton realigns with the initial state,
characterized by a similar density and phase distribution. At
these specific times (represented by the dots), the fidelity stays
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FIG. 11. Persistent current: Noise spectra of the output phase quadrature of the cavity field with Lp = 1 for different lattice rotation.
(a) �′ = 0.4, (b) �′ = 0.3, (c) �′ = 0.2, (d) �′ = 0.1, (e) �′ = 0.05, and (f) �′ = 0.01. The gray-colored vertical dashed line corresponds to
the analytical predictions for the side modes for �′ = 0 and the orange and purple-colored vertical dashed lines correspond to the analytical
predictions for the side modes corresponding to the nonzero value of �′ with Lp = 1 [Eq. (6)]. The other parameters used here are the same as
mentioned in Fig. 2.

close to unity, which confirms that our method is minimally
destructive.

FIG. 12. Variation of fidelity with time for (a) persistent current,
(b) two-state superposition of persistent current, (c) soliton, and (d) a
pair of solitons. The parameters used are the same as Fig. 2 for panels
(a) and (b) and Fig. 7 for panels (c) and (d).

A similar variation of fidelity emerges in the case of the
superposition of persistent currents [Fig. 12(b)] and the pair
of solitons [Fig. 12(d)]. However, along with the effect of the
rotation, the superpositioned states are more prone to noise,
as a result, the interference pattern becomes complicated. Due
to this, the fidelity decreases gradually with time and the
best fidelity observed, represented by the dots is near to 0.5
up to 1 s. It should be noted that this decrease in fidelity
does not imply that our method is totally destructive, which
is the case for the absorption imaging technique, used in
demonstrated experiments so far, for the detection of rotation
[1,6,7,10,20,28].

IV. SUMMARY AND CONCLUSIONS

We have theoretically considered minimally destructive, in
situ, and real-time measurement of ring BEC rotation by cou-
pling it to a cavity-carrying optical OAM. Unlike our previous
proposal [34,35], which could only determine the magnitude
and not the sign of the rotation, our present work enables the
detection of both quantities. This is accomplished by rotating
the optical lattice arising from the interference of the optical
beams in the cavity.

We have analyzed the system using a few quantized light-
matter modes as well as a mean-field (for the condensate)
and classical (for the electromagnetic field) model. We have
demonstrated the lattice rotation technique on persistent cur-
rent rotational eigenstates, counter-rotating superpositions,
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and a soliton singly or in collision with a second soliton.
Our conclusions are evinced by numerical simulations of con-
densate density profiles (which characterize the measurement
fidelity) and OAM content, optical transmission spectra from
the cavity, and measurement sensitivities for condensate as
well as lattice rotation as a function of the system response
frequency. We find that the proposed technique can clearly
distinguish between co- and counter-rotating excitations on
the ring condensate. The predictions of the few-mode and
multimode models are in good agreement with each other. We
have also found the critical lattice rotation frequency above
which our proposed technique is clearly able to lattice rota-
tion, indicating the use of the ring BEC as a rotation sensor.

We expect the technique proposed by us to be of interest
in the context of a wide class of experiments where the mea-
surement of ring condensate rotation is of interest, such as
superfluid hydrodynamics, atomtronics, and soliton interfer-
ometry, as well as for rotation sensing.
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APPENDIX A: MEASUREMENT NOISE

In this Appendix we emphasize the nature of the measure-
ment proposed in this paper, its concomitant noise, and its
context with reference to our earlier work on the same system.
First, we note that minimally destructive real-time measure-
ment of the density dynamics of a BEC by observation of the
cavity optical output is an established experimental procedure
[36,67]. In these experiments the fundamental noise consists
of the shot noise of the measuring optical field, quantum
backaction which can be understood as the disturbance caused
to the condensate by the laser shot noise, leading to degrada-
tion of optical phase readout precision at high cavity driving
powers [37], intrinsic condensate quantum fluctuations, and
thermal noise due to the nonzero temperature of the BEC. In
these works, the theoretical framework typically consists of a
few-mode (the cavity optical mode plus the matter wave linear
momentum side modes) quantum-mechanical model, which
show good agreement with the experimental data. The mea-
surement quantum backaction can be calculated from such
models.

Second, in our previous work following the similar line of
the above-mentioned work in the ring BEC in a cavity [34],
we proposed a few mode quantum model. There, along with
other noise effects, we calculated the quantum backaction
and indicated how the measurement can be made minimally
destructive by operating at the standard quantum limit [37].
Further we computed the measurement time tmeas and sys-
tematically showed it to be much smaller than the timescales

associated with persistent current flow, thus making the mea-
surement practically real time.

Third, for our present model, we consider all—rather
than few—of the modes of the condensate on the ring. As
we regard the dynamics of the condensate in the mean-field
approximation, we wish to mention two important points of
our model. First, taking the mean-field limit only means that
the quantum correlations in the condensate are neglected.
However, each atom in the condensate is still treated quantum
mechanically. The function ψ (φ, τ ) which solves our
nonlinear Schrödinger equation of Eq. (7), is the condensate
wave function, a quantum-mechanical object [68]. We
emphasize that ψ (φ, τ ) is quantum in nature because it
describes the single-particle wave function of each atom
in the condensate, and only in the quantum-mechanical
regime can a single atom be described as a wave. Second, we
note that the occurrence of backaction does not require the
presence of correlations—even a single atom can experience
backaction.

Putting together all the observations made above, we find
our mean-field equations [Eqs. (7) and (8)] incorporate all
relevant sources of noise in the following way. The shot noise
in the measuring laser is modeled by αin. It couples in to the
intracavity field α via Eq. (8). This noisy field α then disturbs
(couples to) the condensate wave function ψ through the
second term on the right-hand side of Eq. (7). The perturbed
condensate wave function adds noise back to the cavity field
α through the expectation value 〈cos2(�φ)〉τ in Eq. (8). Fi-
nally, through the input-output relation αout = −αin + √

γ0α,
the cavity output αout picks up this noise from the cavity
mode α, thus leading to degradation of phase readout preci-
sion at high optical powers, which is the effect of quantum
backaction in optomechanics [37]. The intrinsic fluctuations
of the condensate variables are contained in ψ (φ, τ ) and the
effects of nonzero temperature are represented by ξ (φ, τ ) in
Eq. (7). Thus, our mean-field model contains all sources of
noise relevant to the measurement [66].

APPENDIX B: CHIRALITY DETECTION AND ROTATION
SENSING AT HIGH ROTATION RATE

OF OPTICAL LATTICE

In this Appendix, we present the simulation results per-
taining to the chirality detection and rotational sensitivity
measurement for the situation when the condensate is subject
to high rotation along with the optical trap.

1. Persistent current

The corresponding results for persistent current are shown
in Figs. 13(a)–13(c) depicts the condensate density profiles for
increasing the rotation frequency of the optical lattice for Lp =
1. We note that for �′ = 2Lp, the side mode frequencies ω′

c ≡
ω′

d = ±2� [Fig. 13(b)]. The corresponding OAM distributions
are presented in Figs. 13(d)–13(f). When �′ = 2 for Lp = 1
[Fig. 13(e)], the occupancies of the Lp ± 2� modes are nearly
equal and decreased by an order of magnitude from the other
cases.

Figures 13(g)–13(i) show the noise spectra of the phase
quadrature of the cavity transmission for the above-mentioned
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FIG. 13. Persistent current: [(a)–(c)] Density profiles of persistent current for Lp = 1. [(d)–(f)] OAM states of the condensate for Lp = 1.
[(g)–(i)] Noise spectrum of the output phase quadrature versus response frequency. The vertical dashed line corresponds to the analytical
predictions for the side modes (colors are used in the same way as in Fig. 3). [(j)–(l)] Rotation measurement sensitivity as a function of system
response frequency. The solid curves correspond to ζ� [Eq. (16)], while the dashed curves correspond to ζ� [Eq. (17)]. Here Pin = 50 fW and
�′ = 1, 2, and 3 respectively. The remaining set of parameters are the same as in Fig. 2.

three cases �′ = 1, 2, and 3, respectively. When �′/2 �= Lp,
we get distinct peaks for Lp = 1 and Lp = −1 and the infor-
mation about the winding number can be detected. Otherwise,
we obtain a single degenerate peak in the output spectrum

(when �′/2 = Lp) and by using this relation between �′ and
Lp, the magnitude and sign of the winding number of the
persistent current can be obtained. The corresponding rotation
measurement sensitivities are shown in Figs. 13(j)–13(l) and
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FIG. 14. Soliton: [(a)–(c)] Density profiles of soliton for Lp = 1. [(d)–(f)] OAM states of the condensate for Lp = 1. [(g)–(i)] Power
spectrum of the imaginary part of cavity field versus response frequency. The vertical dashed line corresponds to the analytical predictions for
the side modes (colors are used in the same way as in Fig. 3). [(j)–(l)] Rotation measurement sensitivities as a function of system response
frequency. The solid curves correspond to ζ� [Eq. (16)], while the dashed curves correspond to ζ� [Eq. (17)]. Here Pin = 0.4 pW and �′ = 1,
2, and 3 respectively. The remaining set of parameters are the same as in Fig. 7.
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the best sensitivities are obtained near the side mode frequen-
cies as in earlier cases.

2. Soliton

The rotation of soliton in the ring structure is
presented in Figs. 14(a)–14(c), corresponding to �′ = 1,
2, and 3, respectively, and the corresponding orbital

angular-momentum distribution are shown in Figs. 14(d)–
14(f). The noise spectra of the phase quadrature of the cavity
field for these three cases are shown in Figs. 14(g)–14(i), re-
spectively. Due to the multimode nature of the soliton, a larger
number of peaks is observed, as discussed earlier in Sec. III B;
nonetheless, by locating and measuring the dominating peaks,
the information about the winding number can be extracted
accurately.
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