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Perturbative nonlinear feedback forces for optical levitation experiments
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Feedback control can be used to generate well-determined nonlinear effective potentials in an optical trap,
a goal whose applications may range from nonequilibrium thermodynamics to the generation of non-Gaussian
states of mechanical motion. Here, we investigate the action of an effective feedback-generated quartic potential
on a levitated nanoparticle within the perturbation regime. The effects of feedback delay are discussed and
predictions from the perturbation theory of a Brownian particle subjected to a quartic anharmonicity are
experimentally verified.
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I. INTRODUCTION

Optical levitation of nanoparticles provides a robust setup
for both fundamental and applied physics [1,2], from classical
stochastic thermodynamics [3–6] to mesoscopic quantum sci-
ence [7–9]. In the typical levitated optomechanics experiment,
a dielectric particle is trapped in a tightly focused Gaussian
beam providing, to leading-order approximation, a confining
harmonic potential [10,11]. The particle undergoes Brownian
motion due to interaction with its surrounding medium and
measurements of its position correlation functions, notably the
autocorrelation and the associated power spectrum, allows for
the characterization of the trap’s parameters [11,12].

While the harmonic approximation is commonly employed
in optical trapping, the ability to engineer potential landscapes
beyond the quadratic approximation is central to optomechan-
ics. Nonlinear force landscapes are a valuable resource to
nonequilibrium Brownian machines [13,14], the preparation
of nonclassical and non-Gaussian quantum states [15], and
matter-wave interference experiments [16], to mention just
a few examples. Nonlinear potential landscapes also appear
in structured light optical tweezers [17], as in double-well
landscapes [18–21], structured light beams with pattern re-
vivals [22], cylindrical vector beams [23], and dark focus traps
[24,25].

In these nonlinear potential landscapes, to which we refer
here as nonlinear optical tweezers, a quantitative statistical
description of the stochastic particle motion is significantly
more complicated as it involves nonlinear stochastic differen-
tial equations. To make quantitative predictions regarding the
statistical correlators of the trapped particle’s motion, we can,
however, resort to perturbation theory [26].

A perturbative method for nonlinear optical tweezers has
been developed in [27], wherein it is possible to compute
corrections to the statistical moments of particle motion, in
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particular the position power spectrum. The purpose of the
present work is to experimentally validate these methods.
In standard Gaussian optical tweezers, the ratio between
linear and nonlinear spring constants cannot be varied inde-
pendently, given that both scale linearly with the trapping
power [28,29]. Thus, we turn to effective feedback potential
landscapes to implement nonlinear position-dependent forces
upon a levitated nanosphere. We implement the nonlinearity
via electric feedback and characterize its effects on the particle
motion.

This paper is organized as follows. In the next section,
we briefly review the perturbation theory for computing cor-
rections to the correlation functions of a trapped particle
under the influence of a nonlinear force, and generalize it
to include the effect of delayed forces. Since we deal with
artificial electric feedback potentials relying on measurements
and processing of the trapped particle’s position, they imply
an inherent delay to the nonlinear force and therefore account-
ing for the effects of this delay is essential to validating the
methods of [27]. We then describe the experimental setup used
to generate nonlinear potential landscapes through electric
feedback on the particle and numerically compute the effects
of delay, showing that within the range of parameters em-
ployed in our experiment, they are negligible. We implement
a cubic force (quartic potential) on the particle and, finally,
verify the perturbation theory by comparing the predicted
center frequency of the position power spectral density with
experimental results. We conclude with a brief discussion
of the applications of artificial nonlinear forces to levitated
optomechanics experiments.

II. THEORY

A. Formulation of the perturbation theory

We model the stochastic motion of a particle in a fluid at
thermal equilibrium at temperature Teff and under a force field
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�F (�r) using the Langevin equation,

�̈r(t ) = −�m �̇r(t ) + �F (�r(t ))/m +
√

C�η(t ), (1)

where m is the particle’s mass, �m = �/m, C = 2�kBTeff/m2

with � the drag coefficient, and �η(t ) is isotropic Gaussian
white noise, whose components satisfy

E[ηi(t )η j (t
′)] = δi jδ(t − t ′). (2)

Concentrating in the motion along the longitudinal z direction,
Eq. (1) reduces to a one-dimensional Langevin equation,

z̈(t ) = −�mż(t ) + Fz(z(t ))/m +
√

Cη(t ). (3)

For an approximately linear trapping force perturbed by non-
linear corrections, the steady-state position autocorrelation
A(t ) ≡ E[z(t )z(0)] can be perturbatively approximated. We
next summarize the perturbation theory outlined in [27] and
used throughout this work.

Consider the force acting on the particle,

Fz(z) = −mω2
0z − Gfbz3, (4)

where the first term accounts for an optical trap with reso-
nance frequency ω0 and the second term is a small nonlinear
correction, which in the experiment originates from a feed-
back force on the particle proportional to the feedback gain
Gfb times a nonlinear function of the particle’s position. We
define the Green’s function,

G(t ) = sin(� t )

�
exp

(
− �mt

2

)
H (t ), (5)

where � =
√

ω2
0 − �2

m/4 and H (t ) is the Heaviside step func-
tion with H (t ) = 1 for t > 0 and H (t ) = 0 for t � 0. We
introduce the auxiliary variable (also referred to as the re-
sponse paths) z̃(s) and define the Wick sum bracket 〈(·)〉0:

〈z(t1) · · · z(tn)z̃(s1) · · · z̃(sm)〉0 = δnm

∑
σ

n∏
j=1

G(t j − sσ ( j) ),

(6)

where the sum goes over all permutations σ of indexes
{1, . . . , n}. The response variables z̃(s) can be understood
as auxiliary integration variables in a stochastic path inte-
gral defining the perturbation theory expansion; we refer
to [26,27] for details on stochastic perturbation methods.
Note that the second-order correlator is given by the Green’s
function, 〈z(t )z̃(s)〉0 = G(t − s). The perturbation theory is
summarized by the expression for the position autocorrelation
function,

A(t ) ≡ E[z(t )z(0)]

= 〈
z(t )z(0)e

C
2

∫
z̃2(s)dse

Gfb
m

∫
z̃3(t ′ )z(t ′ )dt ′ 〉

0, (7)

where the right-hand side is defined by expanding both expo-
nentials inside the brackets as a power series in C and in Gfb/m
and interchanging summations and integrations by applying
the Wick bracket 〈(·)〉0. Note that only brackets with an equal
number of z and z̃ variables are nonvanishing [26,27].

The first nonvanishing term in the expansion of Eq. (7) is

C

2

∫
〈z(t )z(0)z̃2(s)〉0 ds = C

∫
G(t − s)G(−s)ds, (8)

which gives the autocorrelation for the case of a linear force
Fz(x) = −mω2

0z,

A(t )(Gfb=0) = Ce−�m|t |/2(2� cos �|t | + �m sin �|t |)
�m�

(
�2

m + 4�2
) . (9)

The leading-order correction in the feedback gain reads

�A(t )

≡ C2Gfb

8m

∫
〈z̃2(s1)z̃2(s2)z̃(t1)z3(t1)z(t )z(0)〉0 ds1ds2dt1.

(10)

Expanding the brackets using (6) would produce a sum with
5! = 120 terms, but many of these vanish since 〈z̃(t1)z(t1)〉 =
G(0) = 0. Moreover, by symmetry of the integration vari-
ables s1 and s2, the contribution to the integral of the
nonvanishing terms is equal to the contribution of G(t −
t1)G(−s1)G(t1 − s1)G2(t1 − s2) or G(−t1)G(t − s1)G(t1 −
s1)G2(t1 − s2). Therefore, the integral in (10) is computed
by integrating these two terms over t1, s1, s2 and multiplying
both integrals by a multiplicity factor 23(3!) = 48. We note
that a diagrammatic expansion can be employed to organize
nonvanishing terms in the Wick sum; for more details, we
refer to [27].

From the autocorrelation function perturbation �A, we can
obtain the correction in the power spectral density (PSD) of
the particle motion by taking the Fourier transform [27],

�S = 3GfbC2

�mω2
0

ω2 − ω2
0[

�2
mω2 + (

ω2 − ω2
0

)2]2 . (11)

The PSD of the motion of a particle with unperturbed
resonance frequency ω0 subject to a frequency shift �� can
be expanded to first order as

C

�2
mω2 + [ω2 − (ω0 + ��)2]2

≈ C

�2
mω2 + (

ω2 − ω2
0

)2

+ 4Cω0��
ω2 − ω2

0[
�2

mω2 + (
ω2 − ω2

0

)2]2 . (12)

Comparing the first-order correction in Eq. (12) with the cor-
rection in Eq. (11), we conclude that the nonlinearity causes a
frequency shift given by

��

2π
= 3kbTeff

4πm2ω3
0

Gfb ≡ κGfb. (13)

We see that effectively, the nonlinear perturbation mani-
fests as a shift in the PSD central frequency scaling linearly
with the feedback gain Gfb and with a slope given by the
constant κ . This is valid for small Gfb,

Gfb 	 m2ω4
0

2kbTeff
. (14)

The right-hand side of (14) can be used to delimit the validity
region of perturbation theory. The shift �� in the central
frequency of the PSD is the experimental signature which we
use as an indicator of the effect of nonlinear perturbations. It
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is worth noticing that the shift described by (13) also includes
intrinsic nonlinearities of the tweezer, which arise due to an-
harmonicities of the trapping potential [28]. Note, however,
that only relative shifts to the original resonance frequency
(with the cubic feedback off, but in the presence of the intrin-
sic nonlinearities) are measured. Thus, our experiment is not
sensitive to the intrinsic anharmonicities of the trap, but only
to those affected by the cubic feedback.

B. Delayed nonlinearities

Besides nonlinear force perturbations, we will be interested
in delayed forces. Artificially produced feedback forces will
naturally be subject to electronic delay. Accounting for the
effects of such delays in perturbation theory allows us to
understand the limits of validity of Eq. (7) for modeling the
artificial feedback forces. More broadly, understanding the
role of delays might also enable the study of perturbative
nonlinear non-Markovian stochastic dynamics [30].

We consider the generalized Langevin equation,

z̈(t ) = −�mż(t ) − ω2
0z(t ) − Gfb

m
z3(t − τ ) +

√
C η(t ), (15)

where τ > 0 is a fixed (constant) time delay. Note the delayed
position can be written in terms of a memory kernel,

z(t − τ ) =
∫

z(s)K (t − s) ds, (16)

where

K (t − s) = δ(t − τ − s). (17)

The perturbation expansion for τ = 0 [Eq. (7)] can then be
generalized to

A(t, τ ) ≡ E[z(t )z(0)]

= 〈
z(t )z(0)e

C
2

∫
z̃2(s)dse

Gfb
m

∫
z̃(t ′ )z3(t ′−τ )dt ′ 〉

0. (18)

Expanding the exponentials in power series and using the
Wick sum as defined in (6), the leading correction to the auto-
correlation function (9) is given by the following integrals:

�A(t, τ ) ∝
∫

G(t − t1)G(−s1)G(t1 − s1 − τ )

× G2(t1 − s2 − τ )dt1ds1ds2

+
∫

G(−t1)G(t − s1)G(t1 − s1 − τ )

× G2(t1 − s2 − τ )dt1ds1ds2. (19)

We note that both integrals are multiplied by the constant
3GfbC2/m, which we omit to avoid cluttering the notation.
Evaluating the integrals leads to the corrected autocorrelation
function to first order in the perturbation,

A(t, τ ) = Ce−�m|t |/2(2� cos �|t | + �m sin �|t |)
�m�

(
�2

m + 4�2
) + 3C2Gfbe−�m|t |/2

64m�3
m�4ω6

0

(
e�mτ/2

[
8�m�4 − 4ω2

0�
2
m�2(|t | − τ )

]
cos[�(|t | − τ )]

+ e�mτ/2
[
8�m�3ω2

0(|t | − τ ) + 8�5 + 4�2
mω2

0� + 6�2
m�3

]
sin[�(|t | − τ )]

+ e−�mτ/2
{
�2

(
2�2

m� − 8�3
)

sin[�(|t | + τ )] + 8�m�4 cos[�(|t | + τ )]
}) + O

(
G2

fb,C3
)
. (20)

The quantity A(0, τ ) can be experimentally obtained from the
area under the PSD of the particle’s motion, which in turn can
be related to the mean occupation number of the mechanical
modes. In what follows, we use these expressions to account
for the effects of delay in the artificially generated nonlinear
forces and to show that perturbation theory in the absence of
delay provides a good approximation to current experiments.

III. EXPERIMENT

A simplified schematic of the experimental setup is shown
in Fig. 1. A CW laser at 780 nm (Toptica DL-Pro) is am-
plified using a tapered amplifier (Toptica BoosTa) producing
up to 1.5 W at the output of a single-mode fiber, yielding
a high-quality Gaussian beam. The beam is expanded to
overfill an aspheric lens of numerical aperture NA = 0.77
(LightPath 355330) mounted inside a vacuum chamber, which
provides a tightly focused Gaussian beam to form the optical
trap. A solution of silica spheres of diameter 2R = 143 nm
(MicroParticles GmbH) is monodispersed in ethanol and de-
livered into the optical trap using a nebulizer. Once a single
particle is trapped, the pressure in the chamber is reduced to
10 mbar. The trapped particle’s axial center-of-mass (COM)

motion, z(t ), is recorded by collecting forward scattered light
with an aspheric lens of numerical aperture NA = 0.50, and
directing it to a photodiode (Thorlabs PDA100A2), generating
an electric signal proportional to z(t ).

The signal from the detector is sent to a wide bandpass
filter, amplified, and then input into an field-programmable
gate array (FPGA). The FPGA introduces a tunable delay,
raises the signal to the third power, and multiplies it by a
tunable gain. The output signal is then amplified once again
and applied to the mount of the trapping lens, producing a
voltage difference with respect to the mount of the collection
lens, which is grounded. This generates an electric force at
the particle position given by Gfbz3(t − τ ), where τ is the
total delay introduced by the electronics and Gfb is the overall
feedback gain. For more details on the generated electric field
and electronics, see Appendices A and B.

The electronics naturally introduce a delay to the ap-
plied position-dependent electric forces, which could lead to
deviations from the predictions of the perturbation theory
discussed in Sec. II A. To qualitatively understand the effects
of a delayed feedback nonlinear force, we have exaggerated
the electronic delay τ applying a cubic force of the form
Gfbx3(t − τ ) for τ = (2π/4ω0) = T/4 and τ = 6π/4ω0 =
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FIG. 1. Experimental setup. A silica nanoparticle is trapped by
an optical tweezer in vacuum. The forward scattered light is collected
and sent to a photodiode, producing a signal proportional to the parti-
cle’s axial coordinate, z(t ). An FPGA processes the signal to produce
a voltage that induces a force on the trapped particle proportional to
z3(t − τ ). Amplification prior to and after the FPGA enhances the
maximum resolution of its analog-to-digital converter, enabling the
exploration of a broader range of values for the applied electrical
force. The x direction pictured in the scheme is parallel to the optical
table.

3T/4, and subsequently measured the PSDs of the particle
motion along the longitudinal direction. The results can be
seen in Fig. 2(a), in comparison to the PSD of the trapped
particle in the absence of nonlinear feedback. We see that
depending on the delay, the particle undergoes cooling (τ =
T/4) or heating (τ = 3T/4). This can be understood as the
nonlinear analog of cold damping, where the delayed feed-
back signal acquires a force component proportional to the
velocity [31–33].

We can quantify the effect of delay for the case of our
experiment using the theory described in Sec. II B. To do that,

we have simulated the particle dynamics under the influence
of a delayed feedback cubic force for two different values
of the feedback gain Gfb within the regime of perturbation
theory. For each simulation, we extract the particle motion
traces and compute the position variance, from which the
effective temperature Teff of the mechanical oscillator can be
obtained. The results are plotted in Fig. 2(b) as a function of τ ,
in comparison to the theoretical prediction given by Eq. (20).
The simulations confirm the qualitative cooling and heating
results shown in Fig. 2 and are in good agreement with the
perturbation theory with the inclusion of delay. Notably, for
the electronic delay in our experiment, characterized to be
τ = (0.518 ± 0.074) × 10−6 s, we verify that the expected
cooling and heating effects due to a delayed nonlinear feed-
back provide a correction to the autocorrelation at the level
of 1.10% and are buried within experimental uncertainties.
With this analysis, we conclude that any effect associated
to electronic delay in our experiment is negligible and the
perturbation theory in the absence of delay can be used to
model the effect of nonlinear perturbations.

We next proceed to verify the perturbation theory as de-
scribed in Sec. II A (without delay, τ = 0). We apply an
effective quartic perturbation to the optical potential by acting
on the trapped particle with a cubic force which was gener-
ated, as previously described, from the position measurement
feedback. PSDs of particle motion under the influence of
the cubic feedback force with positive and negative feedback
gains can be seen in Fig. 3(a). These measurements qual-
itatively confirm the effect of the cubic force predicted by
perturbation theory as a shift in the PSD central frequency.
Note the shift depends on the sign of the feedback gain, in
accordance to Eq. (13), indicating an effective hardening or
softening of the optical trap due to the cubic actuation.

To quantitatively compare the frequency shifts with the
predictions from perturbation theory, we acquired the lon-
gitudinal motion PSD for different values of feedback gain

(a) (b)

FIG. 2. Effect of a delayed nonlinearity. (a) Longitudinal position PSDs for the reference measurement ( ) in comparison to cubic
feedback forces at a gain of Gfb = 5.31 × 106 N/m3 and delays of τ = T/4 ( ) and τ = 3T/4 ( ). Here, T represents the period of the
particle motion along the longitudinal direction. These comparisons reveal how the introduction of a delayed cubic force can either cool or
heat the particle motion. (b) Numerically simulated effective temperature Teff of particle motion as a function of the delay in the cubic feedback
force, displaying cooling and heating in accordance with the predictions of nonlinear delayed perturbation theory described in Sec. II B. With
this analysis, we conclude that the electronic delay present in our experiment, measured to be τ/T = 0.042 ± 0.006, can be safely neglected.
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(a) (b)

FIG. 3. Verifying the predictions of perturbation theory. (a) PSDs of the trapped particle’s longitudinal motion under cubic force, displaying
central frequency shifts. The data were taken at 293 K and a pressure of 10 mbar. The reference PSD ( ) has a central frequency of 77.8 kHz
and a shift of ±1.4 kHz was measured for Gfb = ±1.2 × 106 N/m3. (b) Frequency shifts as a function of Gfb, verifying the prediction of
perturbation theory given by Eq. (13) (dashed line). The gray-shaded region marks the regime of validity for perturbation theory described in
Eq. (14). Each point corresponds to 250 seconds of data acquisition at 500 kHz divided into 1000 traces and organized into batches of 5 traces
each. All data points were collected using the same nanoparticle.

Gfb. Note that all parameters going into κ [see Eq. (13)] are
obtained from additional setup characterizations, leaving no
free parameters to adjust the theory to the data. For instance,
the trap central frequency ω0 and mechanical damping �m

are obtained from Lorentzian fits of the unperturbed PSD, the
nanoparticle mass m is calculated from the diameter provided
by the manufacturer and from the density of silica, and the
applied feedback gain Gfb is obtained after the calibration
of the detector, electrode, and other intermediate electronic
elements, as described in more detail in Appendix B. The
particle is taken to be at ambient temperature Teff = 293 K;
note that a 5 K variation in temperature yields a 2% variation
in theoretical prediction.

Once these characterizations have been performed, the cen-
tral frequencies of the perturbed PSDs—and, consequently,
the associated shifts—can be obtained by a Lorentzian fit as
a function of feedback gain and compared to the theoretical
predictions. The result of these measurements is shown in
Fig. 3(b), in comparison to the theoretical prediction given in
Eq. (13) for our experimental parameters.

Good agreement between the data and the theoretical pre-
diction was observed within the perturbation regime, indicated
by the nonshaded region of the plot. Note, also, that out-
side the regime of perturbation theory [gray-shaded regions
in Fig. 3(b)], the measured shifts systematically fall slightly
below the predicted first-order correction, consistent with the
second-order correction scaling of O(G2

fb) [27]. Note that the
error bars in Fig. 3(b) are larger for negative feedback in com-
parison to positive feedback gains. We attribute this to the fact
that the intrinsic nonlinearity of the optical trap introduces an
effective negative feedback gain (Goptical ≈ 106 N/m3), shift-
ing the regime of validity of perturbation to the right, towards
positive gains [28]. Finally, the experimentally obtained angu-

lar coefficient κe was measured to be

κe = (5.46 ± 0.10) × 10−4 Hzm3N−1, (21)

which compares to the theoretical prediction given the param-
eters for our experiment,

κt = 5.69 × 10−4 Hzm3N−1. (22)

IV. CONCLUSIONS

In conclusion, we have implemented a cubic nonlinear
force based on position measurement feedback acting on
an underdamped levitated nanoparticle. Effects of the cubic
force on the particle’s stochastic dynamics have been ex-
perimentally studied. In particular, shifts introduced in the
particle motion power spectrum due to the presence of the
cubic feedback force have been measured. We have verified
that these shifts are in accordance with the predictions of
the stochastic path-integral perturbation theory for nonlinear
optical tweezers introduced in [27]. To account for the exper-
imental imperfections due to electronic delay in the feedback,
we have also extended the perturbation theory and showed
that for feedback schemes currently available in levitated op-
tomechanics experiments, the effects of electronic delay can
be made negligible.

We anticipate that nonlinear electric feedback potentials
will find a number of applications in levitated optomechanics
experiments, both in the classical stochastic and quantum
regimes. For instance, delayed nonlinear feedback can be used
to engineer a nonconservative system with nonlinear damping
of the van der Pol type [34]. Finally, weak measurements
of a levitated optomechanical system in a cavity might al-
low for feedback-induced nonlinear dynamics in the quantum
regime [35]—the nonclassical version of feedback-induced
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FIG. 4. Electric potential generated by the electrodes’ geometry
for a slice in the xz plane passing through the optical axis. The
contour shows the internal structure of the optical setup, with the
black dot marking the average position of the trapped particle, about
1.59 mm away from the flat base of the trapping lens.

nonlinear forces. In combination with recent advances in lev-
itated quantum control experiments [33,36], weak nonlinear
feedback could then enable the preparation of non-Gaussian
states beyond the nonlinearities naturally present in optical
potentials [16,37].

Code and data for this paper are available; see Ref. [38].
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APPENDIX A: ELECTRIC FIELD SIMULATION

One of the experiment’s central assumptions is that the
electric force acting upon the trapped particle is proportional
to the voltage applied to the electrodes and does not depend
on its position. Moreover, due to symmetry around the op-
tical axis, we expect the components of the electric force
orthogonal to the optical axis to be negligible. To verify these
assumptions, a simulation of the electric potential and electric
field generated by the geometry of the optical setup was con-
ducted using COMSOL MULTIPHYSICS software (version 5.4).

In Fig. 4, the electrical potential between the electrodes is
shown for a slice in the xz plane, where the internal contour of
the optical setup is displayed for clarity. The left electrode,
which contains the trapping lens, is set at 1 V relative to
the right one, which holds the collection lens. The black dot
denotes the average position of the trapped particle, 1.59 mm
away from the flat base of the aspheric lens. Figures 5(a)
and 5(b) show the electric field components in the vicinity
of the particle. Considering an average amplitude of 100 nm
for the COM motion, the simulation shows a percent change
of roughly 0.01% for the z component of the electric field.
Moreover, the x and y components are four to five orders of
magnitude smaller than the z component, thus providing a firm
foundation for our assumptions.

APPENDIX B: ELECTRONICS

In order to apply the feedback signal, essential steps were
undertaken regarding the implementation of an electronic
setup aimed at preprocessing the detection signal. First, it
was crucial to address a strong DC component present in
the signal obtained from the photodetector. To prevent sat-
uration of the Red Pitaya RF input used in the experiment,

(a) (b)

FIG. 5. The (a) z and (b) x, y components of the electric field in the vicinity of the trapped particle. The dashed line denotes the average
position of the particle.
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(a)

(c)

(b)

(d
eg

)

FIG. 6. Filter design. (a) PSDs obtained from simulations of a tweezed nanoparticle (�z/2π = 81.5 kHz and �m = 1.3 × 104 s−1) under
the influence of a cubic force. Three scenarios were considered: second-order Butterworth filter with 1 kHz bandwidth ( ), 10 kHz bandwidth
( ), and, lastly, with no filter ( ). (b) Bode diagrams of a highly selective Butterworth filter ( ) and of a passive RC filter ( ); both
circuits were simulated using LTspice XVII. (c) Results from the FPGA program. The dashed line represents the input, which is a triangular
wave with a frequency of 81 kHz. The solid line corresponds to the output, which is proportional to the input raised to the third power.

an analog bandpass filter was implemented for its capability
to effectively remove both DC and high-frequency compo-
nents. While it is common to opt for a Butterworth filter
based on the Sallen-Key topology [39], it is important to
highlight that this choice introduces an undesirable phase
effect.

As demonstrated by simulation results showed in Fig. 6(a),
the addition of a Butterworth filter results in a shift of the
PSD central frequency, which deviates from the theoretical
prediction presented in [27]. To overcome this problem a
passive RC filter is used along with a noninverter amplifier.
As evident from Fig. 6(b), the comparison of the Bode di-

agrams for both topologies illustrates that the passive filter
will have minimal impact on the signal phase, while simul-
taneously maintaining a flat band over a wider frequency
range.

The addition of a noninverting amplifier after the band-
pass filter enables the utilization of the full resolution of
the analog-to-digital converter (ADC) on the Red Pitaya
board. Furthermore, a second amplifier is incorporated af-
ter the FPGA, facilitating the generation of voltage values
approximately 10 times higher than the board’s limit. Upon
characterization of both amplifiers, we found that the gains,
A1 and A2, before and after the FPGA were measured as

(b)(a)

FIG. 7. Electrode calibration. (a) PSD obtained from a trapped nanoparticle at 10 mbar and Teff = 293 K under the action of a sinusoidal
drive (voltage amplitude V0 = 10 V and frequency ωdr/2π = 90 kHz). (b) Calibration curve for electrodes used to map the applied voltage to
the resulting force applied on the nanoparticle.
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11.00 V/V and 11.27 V/V, respectively. These values will be
necessary for the calibration of the overall feedback gain Gfb,
detailed in Appendix C.

In Fig. 6(c), we illustrate an example of input and out-
put signals of the Red Pitaya. In order to implement the
nonlinear function, we employed fixed-point arithmetic—a
method for representing fractional numbers within a specified
range. This approach enables us to execute complex math-
ematical operations without suffering from information loss
[40], as is often the case with binary representation. Further-
more, it offers a straightforward means to extend the code to
implement higher-order polynomial functions.

APPENDIX C: CALIBRATION OF APPLIED FORCE

To validate the theoretical predictions outlined in [27],
it was necessary to calibrate the overall feedback gain Gfb,
defined as

Gfb = CNV A2Ad A3
1C

3
mV , (C1)

where A1 and A2 represent the gains originating from the elec-
tronic amplifiers, Ad is the tunable digital gain defined within
the FPGA, CmV is the calibration factor which converts the
measured voltage into corresponding displacement in meters,
and CNV is the transduction coefficient that establishes the
connection between the applied voltage across the electrodes
and the resulting force applied to the particle; see Appendix B
for further details.

To calibrate the photodetector, 1000 traces of 0.1 seconds
were collected. The PSD of the time traces is fitted by a

Lorentzian distribution,

SVV (ω) = D

�2
mω2 + (

ω2 − ω2
0

)2 , (C2)

where D = 2�mkBTeffC2
mV /m; this takes into consideration

that SVV (ω) = C2
mV Szz(ω) [12]. This procedure led to a cal-

ibration factor of CmV = (1.504 ± 0.073) × 104 V/m. After
calibration of the detector, we proceed to determine the
transduction coefficient, denoted as CNV . To obtain CNV ,
we subjected the particle to a series of sinusoidal sig-
nals with varying amplitudes and measured the particle’s
response in the position PSD [41]. For a particle sub-
jected to Eq. (3), the total PSD ST

zz(ω) in the presence
of an electric drive, Fel (t ) = F0 cos(ωdrt ), can be expressed
as [41]

ST
zz(ω) = Szz(ω) + Sel

zz (ω)

= 2�mkBTeff

m
[(

ω2 − ω2
0

)2 + �2
mω2

]

+ F 2
0 τel sinc2[(ω − ωdr )τel ]

m2
[(

ω2 − ω2
0

)2 + �2
mω2

] , (C3)

with τel being the duration of the measure. In Fig. 7(a),
we display one of the PSDs used for the electrode
calibration. The resulting calibration curve is presented
in Fig. 7(b), which yields a transduction coefficient
CNV = (3.06 ± 0.13) × 10−15 N/m. All measurements de-
scribed in the main text were performed with the same
nanoparticle.

[1] J. Millen, T. S. Monteiro, R. Pettit, and A. N. Vamivakas,
Optomechanics with levitated particles, Rep. Prog. Phys. 83,
026401 (2020).

[2] C. Gonzalez-Ballestero, M. Aspelmeyer, L. Novotny, R.
Quidant, and O. Romero-Isart, Levitodynamics: Levitation
and control of microscopic objects in vacuum, Science 374,
eabg3027 (2021).

[3] J. Gieseler and J. Millen, Levitated nanoparticles for mi-
croscopic thermodynamics—A review, Entropy 20, 326
(2018).

[4] J. Gieseler, R. Quidant, C. Dellago, and L. Novotny, Dynamic
relaxation of a levitated nanoparticle from a nonequilibrium
steady state, Nat. Nanotechnol. 9, 358 (2014).

[5] V. Svak, J. Flajšmanová, L. Chvátal, M. Šiler, A. Jonáš, J. Jezěk,
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