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Phase-controlled robust quantum entanglement of remote mechanical oscillators
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Quantum entanglement between distant massive mechanical oscillators has played a central role in building
and engineering quantum devices for application in long-distance quantum communications, distributed quantum
sensing, and synchronized quantum processing. Here we propose to control quantum entanglement of two
spatially separated mechanical oscillators in a cascaded quantum system by applying two counterpropagating
pump fields. In particular, we find that by adjusting the phase difference of pump lasers, quantum entanglement
between such two mechanical oscillators can be significantly enhanced, together with improved robustness
against environmental thermal noise. Our work opens up a well-accessible way to manipulate and protect
mechanical entanglement, shedding light on a wide range of practical applications requiring robust purely
quantum resources.
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I. INTRODUCTION

Cavity optomechanics (COM), utilizing radiation-
pressure-mediated light-motion couplings [1–8], has
experienced rapid advances in recent years due to its
widespread applications in coherent microwave-to-light
conversion [9–11], quantum COM sensing [12–18], and
preparing purely quantum states of photons or phonons
[19–21], to name only a few. In a recent experiment,
macroscopic quantum correlations were even observed
between laser and a 40 kg mirror at room temperature
[22]. COM-based quantum entanglement [23–29], a
unique resource in diverse quantum technologies, has also
been demonstrated for optical fields [30,31] and various
mechanical oscillators [32–40]. In particular, quantum
entanglement between distant macroscopic mechanical
objects was achieved [36–39], which is a crucial step
towards important goals such as long-distance quantum
communications [41–43], distributed quantum sensing
[44–46], and synchronized quantum processing [47–49].
However, quantum entanglement is generally weak and easily
destroyed by random noise and thus it is highly desirable to
enhance and protect quantum-mechanical entanglement in
practice.

In this paper, we propose to control and enhance quantum
entanglement of two spatially separated mechanical oscilla-
tors in a cascaded quantum COM system by applying two
counterpropagating pump lasers. We note that by tuning
the phase difference of two pump lasers, one-way optical
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transmission was demonstrated in recent experiments [50,51].
Such a strategy was also utilized to realize photon blockade
[52,53], optical nonreciprocity [54,55], and particularly COM
entanglement [56,57]. Inspired by these works, here we show
that this strategy can also be applied to enhance and protect
quantum entanglement between two spatially separated oscil-
lators. We find that by adjusting the phase difference of pump
lasers, quantum entanglement between two such mechanical
oscillators can be significantly enhanced, together with im-
proved robustness against environmental thermal noise. Our
findings, well within the ability of current experiments and
well compatible with other existing ways to protect quan-
tum entanglement [58–68], shed light on making various
phase-controlled quantum COM systems for applications in
quantum information technologies.

This paper is organized as follows: In Sec. II, we intro-
duce the model of our cascaded COM system and study its
quantum dynamics in details. In Sec. III, we explore the
phase-controlled entanglement between distant mechanical
oscillators and examine its robustness against thermal noise.
Finally a brief summary is given in Sec. IV.

II. PHASE-CONTROLLED CASCADED CAVITY
OPTOMECHANICS SYSTEM: QUANTUM DYNAMICS

In this paper, we propose how to achieve coherent control
and enhancement of the entanglement between two remote
mechanical oscillators. Specifically, as shown in Fig. 1(a),
we consider a bidirectional cascaded COM system consisting
of two spatially separated Fabry-Pérot (FP) cavities and two
telecommunication fibers. Each FP cavity has a fixed mirror
and a movable mirror, thus supporting a pair of localized
optical and mechanical modes with fundamental frequencies
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FIG. 1. Robust entanglement between two long-distance mechanical oscillators. (a) Schematic diagram of a unidirectional cascaded COM
system composed of two spatially distant FP cavities and two telecommunication fibers. Each FP cavity supports an optical mode and a
mechanical mode, which are coupled through optical-radiation-pressure-mediated interactions. (b) Frequency spectrum of the cascaded COM
system in panel (a). (c) Cartoon diagram of the interaction between photons and phonons. (d) The parameters chosen for our numerical
calculations are experimentally feasible, which are partially selected from Refs. [69–73].

ωc and ωm, respectively. The two COM resonators are as-
sumed to have neither direct acoustic interaction nor near-field
optical couplings, and their cavity modes couple to each other
indirectly by the light field propagating in the fiber. In a frame
rotating at the driving frequency ωd , the effective Hamiltonian
of this cascaded COM system can be written as

Ĥ = Ĥ0 + Ĥint + Ĥdr,

Ĥ0 = h̄�câ†
1â1 + h̄�câ†

2â2 + h̄ωmb̂†
1b̂1 + h̄ωmb̂†

2b̂2,

Ĥint = −h̄g0â†
1â1(b̂†

1 + b̂1) − h̄g0â†
2â2(b̂†

2 + b̂2),

Ĥdr = ih̄(ε1â†
1e−iθ1 + ε2â†

2e−iθ2 − H.c.), (1)

where â j (â†
j ) and b̂ j (b̂†

j) ( j = 1, 2) are the annihilation
(creation) operators of the optical and mechanical modes,
respectively. �c = ωc − ωd denotes the optical detuning be-
tween the cavity mode and the driving field. Also, g0 =
(ωc/l )

√
h̄/mωm denotes the single-photon COM coupling

strength, with an effective mass m and cavity length l . The
phase and amplitude of the driving fields are given by θ j

and |ε j | = √
2κP/h̄ωd , where P is referred to as the input

laser power of the driving fields, and κ denotes the optical
decay rate. The vacuum input noise associated with the driven
laser have been included in the κ (see such treatments also in
Refs. [74–77]). The phase difference of the two pump lasers
is defined by �θ ≡ θ1 − θ2. Robust entanglement between
distant mechanical oscillators can be controlled by tuning this
phase difference �θ .

Considering the influence of system dissipations and
environmental input noise, the dynamic evolutions of the sys-
tem can be completely described by the quantum Langevin

equations (QLEs) as

˙̂a j = −(i�c + κ )â j + ig0â j (b̂
†
j + b̂ j ) + ε je

−iθ j

+
√

2ηκ âin
f , j +

√
2κ âin

j ,

˙̂b j = −(iωm + γm)b̂ j + ig0â†
j â j +

√
2γmb̂in

j , (2)

where κ and γm are the optical decay rate and the mechanical
damping rate, respectively. âin

j and b̂in
j denote the input vac-

uum noise operators for the optical and mechanical modes,
which have zero-mean values and are characterized by the
following correlation functions [78]:〈

âin
j (t )âin,†

j′ (t ′)
〉 = δ j j′δ(t − t ′),〈

b̂in
j (t )b̂in,†

j′ (t ′)
〉 = (nm, j + 1)δ j j′δ(t − t ′),〈

b̂in,†
j (t )b̂in

j′ (t
′)
〉 = nm, jδ j j′δ(t − t ′), (3)

where nm, j = [exp(h̄ωm/kBT ) − 1]−1 is the mean thermal
excitation number of the mechanical mode, kB denotes the
Boltzmann constant, and T is the bath temperature of the
mechanical mode. For our bidirectional cascaded system,
the operator âin

f ,1 denotes the input field of the first cavity, and
the operator âin

f ,2 denotes that of the second cavity. As shown
in Fig. 1(a), the laser driven from the 1st cavity excites the
optical mode of the first cavity and then couples out of the
cavity to the fiber, leading to the output field âout

1 which is
in turn injected into the second cavity after propagating for a
distance in the fiber. Consequently, this injected light (from
the former cavity) can excite the optical mode of the second
cavity. In contrast, this left-to-right order is reversed when
driving the system from the opposite direction (i.e., the output
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field âout
2 of the second cavity is injected into the first cavity),

see also Ref. [40]. Based on this property of the bidirectional
cascaded systems [79–84] and the input-output relations, we
have

âin
f ,1 = âout

2 eiϕ, âin
f ,2 = âout

1 eiϕ,

âout
1 = ε1e−iθ1 −

√
2κ â1,

âout
2 = ε2e−iθ2 −

√
2κ â2, (4)

where the phase ϕ is the cumulative phase delay caused by
the propagation of light between the two FP cavities, which is
given by

ϕ ≡ ωdt = 2π
nL

λ
, (5)

where t is the propagating time, and L is the length of
the fibers between the two FP cavities. Moreover, η ∈ [0, 1]
accounts for the imperfect couplings between the two FP
cavities. The parameter η = 1 corresponds to a lossless uni-
directional coupling between the two FP cavities, whereas
η = 0 describes two independent FP cavities.

The dynamics of QLEs (2) involve the nonlinear COM
interactions, and thus it is difficult to solve directly. Under the
conditions of the strong driving fields, an arbitrary operator
for this cascaded COM system can be expanded into the form
of the sum of the steady-state mean and a small quantum
fluctuation around it, i.e.,

â j = α j + δâ j, b̂ j = β j + δb̂ j . (6)

By substituting Eq. (6) into Eq. (2) based on the above
assumptions, the first-order inhomogeneous differential equa-
tions can be obtained for steady-state mean values, i.e.,

α̇1 = −(i� + κ )α1 + ε1e−iθ1

+
√

2ηκ{ε2e−iθ2 −
√

2κα2}eiϕ,

α̇2 = −(i� + κ )α2 + ε2e−iθ2

+
√

2ηκ{ε1e−iθ1 −
√

2κα1}eiϕ,

β̇ j = −(iωm + γm)β j + ig0|α j |2, (7)

where � = �c − g0(β∗
j + β j ) is the effective optical de-

tuning. The corresponding linearized QLEs for quantum
fluctuations are given by

δ ˙̂a1 = −(i� + κ )δâ1 + ig0α1(δb̂†
1 + δb̂1)

− 2κ
√

ηeiϕδâ2 +
√

2κ âin
1 ,

δ ˙̂a2 = −(i� + κ )δâ2 + ig0α2(δb̂†
2 + δb̂2)

− 2κ
√

ηeiϕδâ1 +
√

2κ âin
2 ,

δ ˙̂b j = −(iωm + γm)δb̂ j + ig0(α∗
j δâ j + α jδâ†

j ) +
√

2γmb̂in
j .

(8)

From the linearized QLEs above, one can obtain the corre-
sponding linearized system Hamiltonian:

Ĥ lin = �(δâ†
1δâ1 + δâ†

2δâ2) + ωm(δb̂†
1δb̂1 + δb̂†

2δb̂2)

− g0(α1δâ†
1 + α∗

1δâ1)(δb̂†
1 + δb̂1)

− g0(α2δâ†
2 + α∗

2δâ2)(δb̂†
2 + δb̂2)

− 2iκ
√

ηδâ†
1δâ2eiϕ − 2iκ

√
ηδâ1δâ†

2eiϕ. (9)

The optical and mechanical modes are coupled via two kinds
of interactions: (i) a parametric down-conversion-type process
characterized by δâ†

jδb̂†
j + δâ jδb̂ j and (ii) a beam-splitter-type

process characterized by δâ†
jδb̂ j + δâ jδb̂†

j :

Ĥ lin
0 = �(δâ†

1δâ1 + δâ†
2δâ2) + ωm(δb̂†

1δb̂1 + δb̂†
2δb̂2),

Ĥ lin
i = −g0(α1δâ†

1 + α∗
1δâ1)(δb̂†

1 + δb̂1)

− g0(α2δâ†
2 + α∗

2δâ2)(δb̂†
2 + δb̂2)

− 2iκ
√

ηδâ†
1δâ2eiϕ − 2iκ

√
ηδâ1δâ†

2eiϕ. (10)

In a rotating frame defined by the transformation opera-
tor Û (t ) = exp(−iĤ lin

0 t ), the transformed linearized system
Hamiltonian becomes

Ĥ lin
I = Û †(t )Ĥ lin

i Û (t ),

Ĥ lin
I = −g0

{
α1δâ†

1δb̂†
1ei(�+ωm )t + α1δâ†

1δb̂1ei(�−ωm )t
}

− g0
{
α∗

1δâ1δb̂†
1e−i(�−ωm )t + α∗

1δâ1δb̂1e−i(�+ωm )t
}

− g0
{
α2δâ†

2δb̂†
2ei(�+ωm )t + α2δâ†

2δb̂2ei(�−ωm )t
}

− g0
{
α∗

2δâ2δb̂†
2e−i(�−ωm )t + α∗

2δâ2δb̂2e−i(�+ωm )t
}

− 2iκ
√

ηδâ†
1δâ2eiϕ − 2iκ

√
ηδâ1δâ†

2eiϕ. (11)

If � = ωm, we have

Ĥ lin
I = −g0{α1δâ†

1δb̂†
1e2iωmt + α1δâ†

1δb̂1}
− g0{α∗

1δâ1δb̂†
1 + α∗

1δâ1δb̂1e−2iωmt }
− g0{α2δâ†

2δb̂†
2e2iωmt + α2δâ†

2δb̂2}
− g0{α∗

2δâ2δb̂†
2 + α∗

2δâ2δb̂2e−2iωmt }
− 2iκ

√
ηδâ†

1δâ2eiϕ − 2iκ
√

ηδâ1δâ†
2eiϕ. (12)

Discarding the high-frequency terms, we obtain

Ĥ lin
I ≈ −g0(α1δâ†

1δb̂1 + α∗
1δâ1δb̂†

1)

− g0(α2δâ†
2δb̂2 + α∗

2δâ2δb̂†
2)

− 2iκ
√

ηδâ†
1δâ2eiϕ − 2iκ

√
ηδâ1δâ†

2eiϕ. (13)

If � = −ωm, we have

Ĥ lin
I = −g0{α1δâ†

1δb̂†
1 + α1δâ†

1δb̂1e−2iωmt }
− g0{α∗

1δâ1δb̂†
1e2iωmt + α∗

1δâ1δb̂1}
− g0{α2δâ†

2δb̂†
2 + α2δâ†

2δb̂2e−2iωmt }
− g0{α∗

2δâ2δb̂†
2e2iωmt + α∗

2δâ2δb̂2}
− 2iκ

√
ηδâ†

1δâ2eiϕ − 2iκ
√

ηδâ1δâ†
2eiϕ. (14)
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Discarding the high-frequency terms, we obtain

Ĥ lin
I ≈ −g0(α1δâ†

1δb̂†
1 + α∗

1δâ1δb̂1)

− g0(α2δâ†
2δb̂†

2 + α∗
2δâ2δb̂2)

− 2iκ
√

ηδâ†
1δâ2eiϕ − 2iκ

√
ηδâ1δâ†

2eiϕ. (15)

Therefore, � = ωm corresponds to the red-detuned
regime, and � = −ωm corresponds to the blue-detuned
regime.

Then, we can obtain the steady-state mean values of the
optical and mechanical modes by setting all the derivatives in
Eq. (7) as zero, which are given by

α1 = ε1e−iθ1 + √
2ηκ{ε2e−iθ2 − √

2κα2}eiϕ

i� + κ
,

α2 = ε2e−iθ2 + √
2ηκ{ε1e−iθ1 − √

2κα1}eiϕ

i� + κ
,

β j = ig0|α j |2
iωm + γm

. (16)

Explicitly, Nj ≡ |α j |2 denotes the intracavity photon number.
It is seen that the value of Nj is determined not only by the
cumulative phase delay ϕ but also by the phase difference �θ ,
which provides an efficient way to regulate the field intensity
and the COM interaction coherently.

By defining the optical and mechanical quadrature fluctua-
tion operators as

δX̂a, j = 1√
2

(δâa, j + δâ†
a, j ), δŶa, j = i√

2
(δâ†

a, j − δâa, j ),

δX̂b, j = 1√
2

(δb̂b, j + δb̂†
b, j ), δŶb, j = i√

2
(δb̂†

b, j − δb̂b, j ),

(17)

and the associated input noise operators as

X̂ in
a, j = 1√

2

(
âin

a, j + âin,†
a, j

)
, Ŷ in

a, j = i√
2

(
âin,†

a, j − âin
a, j

)
,

X̂ in
b, j = 1√

2

(
b̂in

b, j + b̂in,†
b, j

)
, Ŷ in

b, j = i√
2

(
b̂in,†

b, j − b̂in
b, j

)
, (18)

the corresponding linearized QLEs can be written clearly in a
compact form as

u̇(t ) = Au(t ) + v(t ), (19)

where u and v are vectors of the quadrature fluctuation op-
erators and the input noise operators, respectively, which are
defined by

uT (t ) = (δX̂a,1, δŶa,1, δX̂a,2, δŶa,2, δX̂b,1, δŶb,1, δX̂b,2, δŶb,2),

vT (t ) = (
X̂ in

a,1, Ŷ in
a,1, X̂ in

a,2, Ŷ in
a,2, X̂ in

b,1, Ŷ in
b,1, X̂ in

b,2, Ŷ in
b,2

)
. (20)

The corresponding coefficient matrix A is given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κ � −Jc,1 Js,1 −�im
1 0 0 0

−� −κ −Js,1 −Jc,1 �re
1 0 0 0

−Jc,2 Js,2 −κ � 0 0 −�im
2 0

−Js,2 −Jc,2 −� −κ 0 0 �re
2 0

0 0 0 0 −γm ωm 0 0

�re
1 �im

1 0 0 −ωm −γm 0 0

0 0 0 0 0 0 −γm ωm

0 0 �re
2 �im

2 0 0 −ωm −γm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

with the components

�re
1 = 2g0Re[α1], �im

1 = 2g0Im[α1],

�re
2 = 2g0Re[α2], �im

2 = 2g0Im[α2],

Jc,1 = Jc,2 = 2κ
√

η cos (ϕ),

Js,1 = Js,2 = 2κ
√

η sin (ϕ).

Also, the solution of the linearized QLEs (19) can be
obtained as

û(t ) = M(t )û(0) +
∫ t

0
dτM(τ )v̂(t − τ ), (22)

where

M(t ) = exp (At ). (23)

The system is stable only when all real part of the eigenval-
ues of A is negative, as characterized by the Routh-Hurwitz

criterion [85]. When all the stability conditions are fulfilled,
we can obtain M(∞) = 0 in the steady state, and

ûi(∞) =
∫ ∞

0
dτ

∑
k

Mik (τ )v̂k (t − τ ). (24)

Due to the linearized dynamics and the Gaussian nature of the
quantum noise, the steady state of the quantum fluctuations
of this system can finally evolve into a quadripartite zero-
mean Gaussian state, which is fully characterized by an 8 × 8
correlation matrix (CM) V with its components

Vkl = 〈ûk (∞)ûl (∞) + ûl (∞)ûk (∞)〉/2. (25)

By substituting Eq. (24) into Eq. (25) and using the fact that
the eight components of v̂(t ) are not correlated with each
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other, the steady-state CM V is obtained by

V =
∫ ∞

0
dτM(τ )DMT(τ ), (26)

where

D = Diag[κ, κ, κ, κ, γm(2nm + 1), γm(2nm + 1),

γm(2nm + 1), γm(2nm + 1)] (27)

is a diffusion matrix, which is obtained by using

〈v̂k (τ )v̂l (τ
′) + v̂l (τ

′)v̂k (τ )〉/2 = Dklδ(τ − τ ′). (28)

When the stability condition is satisfied, the dynamics of the
steady-state CM V fulfills the Lyapunov equation [23]:

AV + VAT = −D. (29)

Equation (29) is a linear equation and allows us to derive CM
V for any values of the relevant parameters. However, the
analytical expression of V is too complicated and thus is not
reported here.

III. RESULTS AND DISCUSSIONS

For quantifying bipartite entanglement between the two
mechanical modes in a multimode continuous variable sys-
tem, we can adopt the logarithmic negativity EN as an
effective measure, which can be defined as [86]

EN = max[0,− ln(2ν−)], (30)

where

ν− = 2−1/2{�(V ′) − [�(V ′)2 − 4 det V ′]1/2}1/2, (31)

with

�(V ′) = det A + det B − 2 det C. (32)

Here, ν− is the smallest symplectic eigenvalue of the partial
transpose of a reduced 4 × 4 CM V ′. The reduced CM V ′
contains the entries of V , and it can be directly derived by
choosing the rows and columns of the interesting mode. The
reduced CM V ′ can be obtained in a 2 × 2 block form,

V ′ =
(
A C
CT B

)
. (33)

Equation (30) indicates that the entanglement between the two
mechanical modes can emerge only when ν− < 1/2, which
is equivalent to Simon’s necessary and sufficient entangle-
ment nonpositive partial transpose criterion (or the related
Peres-Horodecki criterion) for certifying entanglement of
two-mode system in Gaussian states [87].

In this cascaded COM system, the optical and mechani-
cal modes are coupled together through the optomechanical
interaction. As shown in Fig. 1(a), two FP cavities are con-
nected by the input-output relationships of driving fields in
the telecommunication fibers [i.e., see Eq. (4)], forming an
indirect coupling and interaction. This indirect interaction is
well represented by the dotted line in Fig. 1(c). Therefore, the
two mechanical modes are indirectly coupled together through
the input-output relationships of driving fields in the telecom-
munication fibers, and there is an indirect interaction, which
can induce entanglement between the two mechanical modes

(u
ni

ts
 o

f π
)

FIG. 2. Phase-controlled robust entanglement between two long-
distance mechanical oscillators by tuning phase difference �θ of
driving fields. (a) The logarithmic negativity EN versus the scaled
optical detuning �/ωm, with ϕ = 0.8π , and �θ = 0.18π , 0.22π ,
or 0.25π . Compared with the phase difference �θ = 0.18π , the
maximum value of EN can be enhanced for approximately three times
through tuning phase difference �θ = 0.25π . (b) Density plot of the
logarithmic negativity EN as a function of the scaled optical detuning
�/ωm and the phase difference �θ . In the inset, EN is plotted as a
function of �θ in polar coordinates with different values of �/ωm.

(see also Ref. [40]). This is the source of entanglement in
the cascaded COM system. As already confirmed in previous
works, quantum entanglement created under the red-detuned
condition is more stable than that in the blue-detuning regime
(see, e.g., Ref. [24]).

In Fig. 2, we first explore how to regulate the behavior
of the entanglement between the two mechanical oscilla-
tors by tuning the phase difference �θ of the two driving
lasers. In our numerical calculation, for ensuring the stabil-
ity and experimental feasibility of this compound system,
the parameters are moderately chosen for two identical FP
cavities [69–73]: ωm/2π = 88.54 MHz, κ/2π = 45 MHz,
γm/2π = 2.2 kHz, λ = 780 nm, P = 15 mW, l = 100 mm,
η = 1, ϕ = 0.8π , T = 100 mK, and m = 20 ng. Specifically,
as shown in Fig. 2(a), the logarithmic negativity EN is plotted
as a function of the scaled optical detuning �/ωm for dif-
ferent values of the phase difference �θ . It is seen that the
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FIG. 3. The influence of the mechanical oscillator frequency and the input laser power on entanglement. (a) The logarithmic negativity
EN as a function of the scaled optical detuning �/ωm for different mechanical oscillator frequencies ωm. (b) Density plot of the logarithmic
negativity EN as a function of the mechanical oscillator frequency ωm and the scaled optical detuning �/ωm. Here we have chosen the phase
difference �θ = 0.2π and the input laser power P = 15 mW. Compared with the mechanical oscillator frequency ωm/2π = 100 MHz, the
maximum value of EN can be enhanced effectively by selecting the mechanical oscillator frequency ωm/2π = 90 MHz. (c) The logarithmic
negativity EN as a function of the mechanical oscillators frequency ωm for different phase difference �θ of driving fields. (d) The logarithmic
negativity EN as a function of the scaled optical detuning �/ωm for different input laser power P. (e) Density plot of the logarithmic negativity
EN as a function of the input laser power P and the scaled optical detuning �/ωm. Here we have chosen the phase difference �θ = 0.25π and
the mechanical oscillator frequency ωm/2π = 90 MHz. (f) The logarithmic negativity EN as a function of the input laser power P for different
phase difference �θ of driving fields. The other parameters are selected as listed in the table of Fig. 1(d).

COM entanglement is present within a finite interval of �

around �/ωm � 1.4. When tuning the phase difference �θ

of the driving fields, the logarithmic negativity EN can be
well modulated or even enhanced with respect to some spe-
cific values of phase difference �θ . For example, it is found
that such mechanical entanglement can reach the maximum
value for an optimal phase difference �θ = 0.25π , which is
enhanced by about three times in comparison with that of the
case �θ = 0.18π . To more clearly see this effect, we also
show the dependence of the logarithmic negativity EN on the
scaled optical detuning �/ωm and the phase difference �θ

in Fig. 2(b). It is seen that EN is monotonically increasing
with the increase of �θ ranging from 0.18π to 0.25π . Be-
sides, it should be stressed that, for other values of �θ , the
system is unstable and thus entanglement cannot emerge in
this case.

In Fig. 3, we further investigate the influence of the phase
difference �θ on mechanical entanglement generation for dif-
ferent values of mechanical frequencies ωm and pump powers
P. As shown in Figs. 3(a)–3(c), we first present the depen-
dence of the logarithmic negativity EN on phase difference
�θ and mechanical frequency ωm, with P = 15 mW. It is
seen that the profiles of EN are characterized by sharp peaks
with maximum values EN � 0.11 for ωm/2π = 90 MHz and
EN � 0.07 for ωm/2π = 100 MHz [see Fig. 3(a)]. Also, for
the same value of �θ (e.g., �θ = 0.2π ), the maximum value

of EN tends to be suppressed when increasing the frequency of
the mechanical oscillators [see Fig. 3(b)]. Figure 3(c) shows
that, for the same value of mechanical frequency, EN can be
considerably enhanced by tuning phase difference �θ . These
results indicate that when using mechanical oscillators with
high frequencies, the mechanical entanglement is more dif-
ficult to be generated. However, by choosing a proper phase
difference of the driving fields, the degree of mechanical
entanglement can be improved, which is beneficial for the
entanglement generation with high-frequency mechanical os-
cillators. In Figs. 3(d)–3(f), we show the dependence of the
logarithmic negativity EN on phase difference �θ and the
pump power P, with ωm/2π = 90 MHz. It is seen that by
increasing the pump power P, the mechanical entanglement
can be enhanced directly [see Figs. 3(d) and 3(e)]. Moreover,
similar to the case we discussed above, when tuning the phase
difference of the driving fields, one can further improve the
mechanical entanglement [see Fig. 3(f)].

Finally, we show the influence of the phase difference �θ

on mechanical entanglement generation for different values of
bath temperature T . For this purpose, we plot the logarithmic
negativity EN as a function of the bath temperature T in Fig. 4,
with �θ = π/5 or π/4. The inserted figure shows the depen-
dence of the logarithmic negativity EN on bath temperature T
and scaled optical detuning �/ωm. It is seen that the mechan-
ical entanglement is fragile to thermal noise, and it tends to be
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FIG. 4. The influence of thermal effects on entanglement. The
logarithmic negativity EN as a function of the environment temper-
ature T for different phase difference �θ of driving fields, with
the scaled optical detuning �/ωm = 1.4, in the panel. Density plot
of the logarithmic negativity EN as a function of the environment
temperature T and the scaled optical detuning �/ωm, with the phase
difference �θ = π/4, in the inset.

destroyed when the bath temperature increases. However, it is
also seen that, under the same condition of bath temperature
T , the mechanical entanglement could become more robust to
thermal noise with respect to some specific values of phase
difference. Thus, our proposed scheme holds the promise to
be useful for protecting the fragile entanglement from thermal
noise.

IV. CONCLUSION

In summary, we have investigated how to generate and
manipulate the entanglement between two distant mechanical
oscillators through adjusting the phase difference of the driv-
ing lasers in a cascaded COM system. We find that, by tuning
the phase difference of the driving lasers, one can significantly
enhance the degree of the mechanical entanglement, as well as
improve the robustness of such entanglement against thermal
noise. Our work, shedding a light on protecting and improving
the performance of various quantum devices in practical noisy
environment, provides an opportunity to realize a number of
entanglement-enabled quantum technology, such as quantum
computing [88–90], quantum sensing [91–94], and quantum
networking [95–98]. In a broader view, we envision that our
work can be extended to study various other quantum effects
based on cascaded systems, such as synchronization [80–82],
squeezing [76,99], and photon blockade [77,100,101].
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