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Simple formula for the Jones product and the Pancharatnam connection in optics
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An inner (Hermitian) product of two polarization states describes the interference of polarized beams,
detection and production of polarized radiation, entanglement of polarized photons, etc. Here we pose the
question of expressing the inner product γ ≡ u1

†u2 of two Jones vectors (polarization states u1 and u2) explicitly
in terms of ellipticities (ε1, ε2) and tilts (τ1, τ2) of the associated polarization ellipses. To that end, we derive a
remarkably simple equation, γ = cos(τ2 − τ1) cos(ε2 − ε1) + i sin(τ2 − τ1) sin(ε2 + ε1). The Poincaré sphere
interpretation in terms of distance between polarization states is given, and the Pancharatnam phase is set to
arg(γ ) to show its invariance under the parity operation.
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I. INTRODUCTION

Applications of polarimetry in physics are broad, e.g., trap-
ping molecules [1], signal compression and multiplexing [2],
anisotropy sensing of random media via circularly polarized
light [3,4], novel metamaterial-based Poincaré sphere polar-
izers [5], and experimental manipulation of polarized light
[6], to name a few. Naturally, there is a vast interdisciplinary
literature on the subject (e.g., [6,7]). In this paper we are
concerned with the interference term � ≡ E1

†E2 (E denotes
the electric field) that arises whenever the interference of
coherent or partially coherent polarized waves occurs. This
expression also arises when a polarized wave E1 is received
(projected) by a detector in polarization state E2, and the
applications are broad, including lidar and radar polarimetric
detection problems [8,9]. In addition, various manifestations
of partially polarized light lead to a suitably chosen correlation
coefficient, i.e., degree of polarization, and insofar as the latter
has all the properties of an inner product in a space of random
functions, � plays a central role in the formalism [6,10]. In
this paper, however, we shall focus on the implications for the
geometric phase.

In polarization (classical or quantum) optics, normalized
polarization states are typically represented by a two-
dimensional complex Jones vector u = [cos(α), sin(α)eiφ]T

(u for unitary). The Jones (inner) product u†
1u2 then describes

the scaled interference term, including the emerging field of
interferometry with geometric phases [11]. The classic work
of Pancharatnam on the generalized interference of polarized
beams in anisotropic crystal optics [12,13] was also centered
on γ ≡ u1

†u2 ∼ E1
†E2 on the Poincaré sphere (see Fig. 1),

and subsequently, it was linked to geometric phases by Berry
[13–15]; for a historical account see [16,17].

As the Hermitian (scaled interference) product γ is of cen-
tral interest, we wish to derive here a closed-form expression
for it in terms of the Poincaré sphere variables, ellipticity
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ε and tilt τ , as illustrated in the left panel of Fig. 1. This is
important for several reasons because these parameters are the
most intuitive, provide a natural distance between polarization
states on the Poincaré sphere, and lead to a new and concrete
expression for geometric phases. However, to the best of our
knowledge, the question has never been asked. A surprisingly
simple answer is found in this paper and then used to explore
the phase symmetries.

II. DERIVATION OF AN EXPLICIT EXPRESSION
FOR THE INNER PRODUCT IN POLARIZATION SPACE

To fix notation, let E denote the electric field of a plane
wave, including the explicit time dependence with phase shifts
in the x and y components, e.g., as in [18]:

E = E0x cos(kz − ωt + φx )x̂ + E0y cos(kz − ωt + φy)ŷ, (1)

with E0 denoting the amplitudes.
The plane wave is then given by

E = Re

([
E0,xeiφx

E0,yeiφy

]
ei(kz−ωt )

)
. (2)

The Jones vector u is the complex unit magnitude (hence
u for unitary) two-component vector formed by electric-field
amplitudes and phases:

u ≡ 1√(
E2

0x + E2
0y

)
[

E0xeiφx

E0yeiφy

]
. (3)

The Jones vector can be expressed in any orthogonal ba-
sis e1 and e2 with the coefficients E = (e†

1E)e1 + (e†
2E)e2

for linear, circular, or elliptical polarizations. The tradi-
tional representation used throughout the literature is u =
[cos(α), sin(α)eiφ]T .

The term containing the physics of the generalized inter-
ference is the inner product γ of the two interfering arbitrary
polarization states (Jones vectors) u1 and u2 († denotes the
complex-conjugate transpose), which is given by

γ = u†
1u2, (4)
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FIG. 1. Polarization ellipse and Poincaré sphere. Ellipticity an-
gle ε = ± tan−1( b

a ), b � a, positive for right-handed polarizations
(RCPs), defined as clockwise rotation looking into the beam (e.g.,
[19]), and negative for left-handed ones (LCPs), ranging from −π/4
to π/4 from LCP to RCP. For linear polarization ε = 0. The angle of
the major axis with respect to the +x axis is the tilt angle τ , ranging
from −π/2 to π/2, consistent with the range of the inverse tangent
[20]. The Poincaré sphere angles at the associated point P are 2ε and
2τ , ranging from −π/2 to π/2 and −π to π , respectively.

and our task is to derive a closed-form expression of
γ (ε1, ε2, τ1, τ2) so that one can interpret it on the Poincaré
sphere, obtain another route to the Pancharatnam-Berry geo-
metric phase, and explore symmetry invariants in polarization
space.

To that end, the key is to realize that the Jones vector
expressed in terms of ellipticity, tilt, and phase must be a
rotation R(τ ) away from its expression in principal ellipticity
axes u = [cos(ε), sin(ε)], where

R(τ ) =
[

cos(τ ) − sin(τ )
sin(τ ) cos(τ )

]
(5)

is the rotation matrix. The general Jones vector is then
u(ε, τ, φ), where the arguments denote ellipticity, tilt, and
absolute phase, respectively [21]:

u(ε, 0, φ) =
[

cos(ε)
−i sin(ε)

]
eiφ. (6)

Then,

u(ε, τ, φ) = R(τ )u(ε, 0, φ). (7)

The inner product γ is then given by

γ ≡ u(ε1, τ1, φ1)†u(ε2, τ2, φ2). (8)

Substituting (7) into (8),

γ = u(ε1, 0, φ1)†R(τ1)†R(τ2)u(ε2, 0, φ2). (9)

Because R is a rotation matrix, it is unitary, and R(τ1)† =
R−1(τ1). The inverse is R−1(τ1) = R(−τ1). Hence,

R(τ1)†R(τ2) = R−1(τ1)R(τ2) = R(τ2 − τ1). (10)

Substituting (10) into (9) yields

γ = u(ε1, 0, φ1)†R(τ2 − τ1)u(ε2, 0, φ2). (11)

In matrix form, first treating the practically important case
of zero overall phase (but trivially generalized below), γ

equals[
cos(ε1)

−i sin(ε1)

]†[
cos(τ2 − τ1) − sin(τ2 − τ1)
sin(τ2 − τ1) cos(τ2 − τ1)

][
cos(ε2)

−i sin(ε2)

]
.

(12)

Matrix multiplication of the above, with elementary trigonom-
etry, leads to an elegant expression:

γ = cos(τ2 − τ1) cos(ε2 − ε1) + i sin(τ2 − τ1) sin(ε2 + ε1).

(13)

This is the sought-for expression for the Jones inner product
in terms of the ellipticities and tilts of the constituent Jones
vectors. Note the interesting lack of symmetry in the argu-
ments: three differences and one sum. Let us check a few
special cases: (1) For orthogonal polarization states, ε2 = −ε1

and τ2 = τ1 ± π
2 , with the plus or minus sign chosen to keep

the tilt in the range −π
2 to π

2 , the inner product vanishes,
γ = 0. (2) For identical polarizations, the inner product is
unity, γ = 1. (3) When both polarizations are linear, the inner
product is the dot product of the two lines, γ = cos(τ2 − τ1).
(4) For linearly polarized at tilt angle β and right-circular
polarization, γ = 1√

2
eiβ . We also performed a direct compu-

tational check on a fine mesh in the ε-τ polarization space,
leaving no doubt about the validity of Eq. (13).

With an eye on applications such as producing “magic”
ellipticity with high accuracy in order to trap molecules [1],
monitoring the orthogonality of polarimeters [6], and optimiz-
ing radar or lidar detection to “match” a given target as closely
as possible [20,22], we develop simple approximations for the
near-orthogonal and near-equal cases. In the former case, tilts
differ by nearly π

2 , τ2 = τ1 ± π
2 + δτ , and ellipticities are near

negatives of each other: ε2 = −ε1 + δε , with δε and δτ defined
as the deviations from the orthogonality of the polarization
states, with the latter being antipodal on the Poincaré sphere.
Then from Eq. (13) and these near-orthogonal conditions on
ε1, τ1 and ε2, τ2,

γ = ∓ sin(δτ ) cos(2ε1 − δε ) ± i cos(δτ ) sin(δε )

= ∓
(

δτ − 1

3!
δ3
τ + · · ·

)

×
(

cos(2ε1) + δε sin(2ε1) − δ2
ε

1

2!
cos(2ε1) + · · ·

)

± i

(
1 − 1

2!
δ2
τ + · · ·

)(
δε − 1

3!
δ3
ε + · · ·

)

= Re(γ ) + Im(γ )

= ∓
(

δτ cos(2ε1) + δτ δε sin(2ε1) + · · ·
)

± i

(
δε − δ2

τ δε

1

2!
− δ3

ε

1

3!
+ · · ·

)
. (14)

Interestingly, to first order, ellipticity and tilt contributions
decouple, yielding

γ ≈ ∓ cos(2ε1)δτ ± iδε, (15)

with the ellipticity “error” alone being responsible for the
imaginary part.
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For the near-parallel case with small tilt difference δτ =
τ2 − τ1 and small ellipticity difference δε = ε2 − ε1,

γ = cos(δτ ) cos(δε ) + i sin(δτ ) sin(2ε1 + δε ). (16)

Expanding Eq. (16) in Taylor series about the parallel arrange-
ment yields

γ =
(

1 − 1

2
δ2
τ + . . .

)(
1 − 1

2
δ2
ε + . . .

)

+ i

(
δτ + 1

3!
δ3
τ . . .

)
(sin(2ε1) + 2 cos(2ε1)δε + . . .)

(17)

The near-equal inner product to second order is

γ ≈ 1 + iδτ sin(2ε1) − 1
2δ2

τ − 1
2δ2

ε + iδτ δε2 cos(2ε1), (18)

and to first order, it reduces to γ ≈ 1 + iδτ sin(2ε1), so only
the tilt deviation contributes. This simple result is good news
for laboratory and field experiments as geometric alignment is
typically easier to monitor.

III. THE PANCHARATNAM CONNECTION

To place our results within the broader context of geometric
phases in physics, we now prove that the Pancharatnam phase
(one maximizing interference) is given by the argument of
expression (13). To that end, we return to the traditional rep-
resentation u = [cos(α), sin(α)eiφ]T for calculating the inner
product γ because convenient expressions for the Poincaré
coordinates in terms of α and φ are available in, e.g., [7] (their
Fig. 3.2.2, in particular). Thus,

u†
1u2 = [cos(α1) sin(α1)e−iφ1 ]

[
cos(α2)

sin(α2)eiφ2

]

= cos(α1) cos(α2) + sin(α1) sin(α2)ei(φ2−φ1 ). (19)

A generic polarization state u = [cos(α), sin(α)eiφ]T corre-
sponds to a point P on the Poincaré sphere with a great-circle
arc (geodesic) length of 2α and phase φ, measured from the
equatorial plane as in Fig. 2 (see also [7]). To obtain explicit
expressions for the Pancharatnam connection (an expression
coined by Berry [23] for the rule of comparing phases), we
next work towards the polar form of the inner product in
Eq. (19). The goal is to confirm that arg(γ ) is the Pancharat-
nam phase between the two polarization states u1 and u2 on
the Poincaré sphere. The details are supplied in Appendix A,
where spherical trigonometry and other identities are used to
identify the relevant phases, guided by the expectation that c,
the geodesic (great circle) arc length between u1 and u2 on
the sphere (the symbol used in [12,16]), will appear in the
final result as it did in Pancharatnam’s work. Indeed, from

FIG. 2. A sketch of Jones vectors on the Poincaré sphere. Two
polarization states (points) u1 and u2 form the shaded triangle with
the great-circle arcs 2α1 and 2α2, emanating from the third (ref-
erence) point: linear horizontal polarization. These arcs subtend
angles 2α1 and 2α2 with respect to the associated circular sectors,
centered at the sphere origin. The corresponding phases φ1 and
φ2 are measured from the equatorial plane as indicated by arrows.
Although this plot deals with two polarization states, the triangle
is needed to invoke the spherical law of cosines. Then, as detailed
in Appendix A, the arc length c between u1 and u2 is given by
cos(c) = cos(2α1) cos(2α2) + sin(2α1) sin(2α2) cos(φ2 − φ1). Once
derived, the result |u†

1u2| = cos(c/2) is seen to be independent of the
coordinate system and valid for any pair of points on the sphere.

Appendix A,

|u†
1u2| = cos(c/2). (20)

This result is frame independent, and its plausibility can be
seen at once by choosing u1 and u2 to lie on the equator
(linear polarizations), for example, and employing spherical
symmetry (see also [24]). To avoid confusion we note that
the discussion here and in Fig. 2 is about the Pancharatnam
connection and only two polarization states are involved. The
triangle in Fig. 2 is needed to take advantage of the spherical
law of cosines detailed in Appendix A. It is the application of
the spherical law of cosines that instantly brings the geodesic
arc length c connecting u1 and u2 into (20), as shown in Fig. 2
[25]. To see the emergence of the Pancharatnam phase within
the Jones formalism, observe that if one appends, in addition
to polarization-defining phases, a dynamic phase θ as u1 →
eiθ u1, the inner product transforms as γ = u†

1u2 → γ e−iθ (ro-
tating phasor). We then ask, Given two polarization states u1

and u2, what is the value of θ that maximizes the total inten-
sity of their superposition? The answer is θ = arg(u†

1u2) ≡ δ,
which is the classical Pancharatnam phase (connection), as
demonstrated below. To show this, we calculate the phase of
the inner product from its real and imaginary parts in Eq. (19)
as follows:

arg(u†
1u2) = tan−1

(
Im(u†

1u2)

Re(u†
1u2)

)
= tan−1

(
sin(α1) sin(α2) sin(φ2 − φ1)

cos(α1) cos(α2) + sin(α1) sin(α2) cos(φ2 − φ1)

)
≡ 


2
, (21)

and the thus-defined phase 
 should be compared with
the Pancharatnam phase δ occurring in the generalized-

interference term 2 cos( c
2 ) cos(δ) of [12,23]. The capital-letter

notation is because of the solid-angle interpretation of 
 on
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the Poincaré sphere as sketched in Fig. 2: it is the solid angle
subtended by a spherical triangle with side lengths 2α1 and
2α2 and angle φ2 − φ1 in between the two sides. This can be
surmised by direct comparison of Eq. (21) with the expression
for the spherical excess of a triangle, E ≡ A + B + C − π ,
with A, B, and C denoting the angles of a spherical triangle,
measured in radians. Recall that E equals the triangle area on
a unit sphere and the relevant formula is given in Appendix A.

Thus, the argument of the Jones scalar product is the solid
angle subtended by the triangle on the Poincaré sphere, with
the vertices being the two Jones vectors and the (reference)
horizontal linear polarization, all connected by geodesics
(great-circle arcs). This Pancharatnam phase is still related
to the connection between two polarization states and is dis-
tinct from the broader Berry geometric phase, with the latter
applying to any closed circuit and any number of states on
the sphere. To facilitate comparison with similar results in the
literature (e.g., [12,13,16,17]) we write γ as

u†
1u2 = cos

( c

2

)
ei 


2 . (22)

When two unit intensity polarized beams interfere, their
total intensity is given by (u1 + u2)†(u1 + u2) = u†

1u1 +
u†

2u2 + u†
1u2 + u†

2u1, with the interference term u†
1u2 +

u†
2u1 = 2Re(u†

1u2). By Eq. (22), for two Jones vectors
with the dynamical phase eiθ on u1 in Eq. (19), we
obtain 2Re(u†

1u2) = 2Re[cos( c
2 )ei 


2 e−iθ ] = 2 cos( c
2 ) cos( 


2 −
θ ). On the other hand, Pancharatnam [12] obtained the fol-
lowing interference term expression: 2 cos( c

2 ) cos(δ). Thus,
direct comparison of the two at θ = 0 yields 


2 = δ, with
δ being the classic Pancharatnam’s phase [12] between two
polarization states. Interference is maximized when the dy-
namical phase difference θ = 


2 = δ. In the expression γ e−iθ

this compensates for the δ = 

2 arising solely from the dif-

ference in the two polarization states. Thus, the maximum
interference occurs at θ = arg(u†

1u2) = δ as claimed.
As was discovered by Pancharatnam, this phase δ is ge-

ometric insofar as it is nontransitive (path dependent): for
uA in phase with uB, and uB in phase with uC , uA and uC

are, in general, not in phase [12,14]. To recap, the Jones-
product magnitude equals the cosine of half the great-arc
length (geodesic) c between the Jones vectors, and its argu-
ment matches Pancharatnam’s geometric phase δ.

Let us now use Eq. (13) and briefly examine the phase
δ evolution. The case of nearby polarization states leads to
γ ≈ 1 + iδτ sin(2ε) to first order. Therefore, δ = arg(γ ) =
tan−1[sin(2ε)δτ ] ≈ sin(2ε)dτ , with d denoting the differen-
tial. Hence, the Pancharatnam phase does not accrue along
the meridians (τ = const) or locally along the equator where
sin(2ε) = 0. If one takes the entire equator, the solid-angle
formula for the general Pancharatnam-Berry phase (solid an-
gle subtended by the upper hemisphere) gives π rather than
zero for the total accumulated phase. The discrepancy is re-
solved by noting that there is a singularity at the antipodal
point where the π discontinuity occurs [11,26–28]. This is
where the horizontal component of a linearly polarized wave
flips as the vertical polarization state is crossed. A similar
argument leads to Pancharatnam phases not accumulating lo-
cally along meridians.

IV. CONCLUDING REMARKS

To conclude, let us return to our equation γ =
e−θ [cos(τ2 − τ1) cos(ε2 − ε1) + i sin(τ2 − τ1) sin(ε2 + ε1)].
Because of its explicit dependence on the ellipsometric
variables, Eq. (13) is likely to bring intuition and insights not
easily found otherwise. For example, geometric phases were
obtained in [15,23] by requiring that γ be real valued. Let us
use Eq. (13) to inquire under what conditions Im(γ ) vanishes,
and they are clear at once: either ε1 = ε2 = 0 or τ1 = τ2.
Note the lack of symmetry in the two variables: unlike the
case of tilts, ε1 = ε2 does not suffice. Ellipticities must vanish
separately. While the former condition corresponds to linearly
polarized states (equator on the Poincaré sphere), the latter is
less obvious: two aligned but otherwise arbitrary polarization
ellipses (Poincaré meridians).

This last case of aligned ellipses (meridian arcs) pro-
vides a simple illustration of how Eq. (13) satisfies |u†

1u2| =
cos(c/2). The left side is |u†

1u2| = cos(ε2 − ε1), and 2ε2 −
2ε1 is the arc length between u1 and u2 lying on the
same meridian of the Poincaré sphere so that cos( c

2 ) =
cos( 2ε2−2ε1

2 ) = cos(ε2 − ε1).
More broadly, Eq. (13) allows one to bypass tedious al-

gebra and spherical trigonometry and work directly with the
intuitive ellipticities and tilts, e.g., to compute the required
phase directly via θ = arg(u†

1u2). This requires no loops, no
triplet of states, and no solid angles to characterize the Pan-
charatnam phase and supplies a concrete expression for the
Pancharatnam connection.

As a specific application, we use Eq. (13) to explore sym-
metries of geometric phase by employing recent results on
symmetries in polarization space reported in Ref. [18], which
did not address the topic of geometric phase. Beginning with
Eq. (13), we observe that reversing the sign of both ε1 and ε2

transforms γ to γ ∗. This corresponds to flipping the geometric
phase. Flipping of the geometric phase also occurs when the
signs of τ1 and τ2 are reversed, and γ transforms to γ ∗. When
both ellipticities and tilts change sign, γ and the geometric
phase remain invariant.

Next, these symmetry properties of the geometric phase
can be related to space-time reflection symmetries within the
Jones formalism, which was explored in [18]. Specifically,
results derived in [18] show that the parity operator P flips
the handedness and tilt of the polarization ellipse (up to a
π rotation). These results can be shown to imply that (see
Appendix B) Pu(ε, τ ) = −u(−ε,−τ ). In conjunction with
our Eq. (13) this, in turn, implies that the geometric phase
is an invariant of a parity operator. Similar reasoning can
be used for time reversal. The imaginary part of the Jones
product flips, and so does the geometric phase. Such results
based on Eq. (13) are likely to stimulate further developments
in geometric-phase interferometry by allowing one to design
phases with desired properties.

Sometimes desired (magic) ellipticities are known from
elsewhere, e.g., in traps [1], and the small-angle approxima-
tions as given by (18) can be used to evaluate experimental
precision. Another example is matching a receiver polar-
ization to detect a given incident polarization state [22].
Also, when the applications at hand include randomness so
that γ acquires stochastic character, Eq. (13) allows direct
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calculations of γ distributions from those prescribed for the
ellipticities and tilts. Then, the cross-correlation coefficient,
having all the properties of an inner product in the abstract
space of random functions, can also be related to the Jones
product.
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APPENDIX A: ON THE POINCARÉ SPHERE
INTERPRETATION OF THE JONES-PRODUCT

MAGNITUDE AND PHASE

Our task here is to interpret the magnitude of the Jones
product u†

1u2 on the Poincaré sphere for a completely general
pair of states. Taking the absolute magnitude of Eq. (19) yields

|u†
1u2| = | cos(α1) cos(α2) + sin(α1) sin(α2)ei(φ2−φ1 )|. (A1)

Using trigonometric identities for double angles, sin2(x) =
1
2 [1 − cos(2x)] and so on, reduces (A1) to

|u†
1u2| = [

1
2 + 1

2 cos(2α1) cos(2α2)

+ 1
2 sin(2α1) sin(2α2) cos(φ2 − φ1)

] 1
2 . (A2)

To interpret Eq. (A2) geometrically, we now em-
ploy the spherical law of cosines: cos(c) = cos(a) cos(b) +
sin(a) sin(b) cos(C), with c denoting the side opposite
of angle C. The right-hand side of (A2) is of the
form [ 1

2 + 1
2 cos(a) cos(b) + 1

2 sin(a) sin(b) cos(C)]
1
2 , with

a ≡ 2α1, φ2 − φ1 ≡ C, etc. This brings in the sought-after
half arc of a great circle c connecting u1 and u2 on the
Poincaré sphere as shown in Fig. 2. Thus,

|u†
1u2| = (

1
2 + 1

2 cos(c)
) 1

2 = cos(c/2). (A3)

To the best of our knowledge, this is the simplest yet general
derivation of |u†

1u2| = cos(c/2).
Next, to interpret the phase in Eq. (21), we appeal to the

formula for spherical excess E (see, e.g., [29], Article 103.2).
To compare this formula with Eq. (21) at a glance, we take
tan−1 of both sides of Article 103.2 of [29] to obtain

tan−1

(
sin(a/2) sin(b/2) sin(C)

cos(a/2) cos(b/2) + sin(a/2) sin(b/2) cos(C)

)
= E

2
.

(A4)

As E also equals the solid angle subtended by the shaded
triangle in Fig. 2 for a unit sphere, the argument of the Jones
scalar product is then the solid angle subtended by the triangle
on the Poincaré sphere.

APPENDIX B: PARITY OPERATOR IN THE ELLIPTICITY
AND TILT SPACE

According to [18], the parity operator in the horizontal-
vertical polarization basis is given by the Jones matrix:

P =
(−1 0

0 1

)
, (B1)

and we seek an algebraic expression for the action of the parity
operator P on a general Jones vector (spinor).

The Jones vector as a function of ellipticity and tilt is
given by

u(ε, τ ) = R(τ )u(ε, 0), (B2)

where the rotation matrix is

R(τ ) =
(

cos(τ ) − sin(τ )
sin(τ ) cos(τ )

)
. (B3)

The Jones vector in principal axes is

u(ε, 0) =
(

cos(ε)
−i sin(ε)

)
. (B4)

The effect of the parity operator P on the rotation matrix is
found simply as

PR(τ ) =
(−1 0

0 1

)(
cos(τ ) − sin(τ )
sin(τ ) cos(τ )

)

=
(− cos(τ ) sin(τ )

sin(τ ) cos(τ )

)

=
(

cos(τ ) sin(τ )
− sin(τ ) cos(τ )

)(−1 0
0 1

)

= R(−τ )P. (B5)

Moreover, P acting on u(ε, τ ) gives

Pu(ε, τ ) = R(−τ )Pu(ε, 0), (B6)

and P acting on u(ε, 0) is

Pu(ε, 0) =
(−1 0

0 1

)(
cos(ε)

−i sin(ε)

)

=
(− cos(ε)

−i sin(ε)

)

= −
(

cos(ε)
−i sin(−ε)

)
= −u(−ε, 0). (B7)

Therefore,

Pu(ε, τ ) = R(−τ )Pu(ε, 0)

= −R(−τ )u(−ε, 0)

= −u(−ε,−τ ). (B8)

While the Jones vector is generally changed by the parity
operation, Eq. (13) shows that the two-state quantities, γ =
u1

†u2 and its argument (geometric phase), are unchanged by
the parity operation.
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