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Tuning the probability detection of orbital-angular-momentum-entangled
photons in helical Ince-Gauss modes
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In this paper we provide a detailed theoretical and experimental analysis of the two-photon orbital-angular-
momentum-entangled state, generated by a type-I spontaneous parametric down conversion (SPDC) process,
when decomposed in terms of the helical Ince-Gauss (HIG) mode basis. By exploiting the unique characteristics
of this modal basis we show how the probability detection of the photon pair can be tuned with the ellipticity
parameter of the modes. We also show that on the HIG basis the SPDC state has the contribution of two different
symmetric Bell states, and it is possible to maximize the probability of each HIG symmetric Bell state separately
also by tuning the elipticity of the projected basis. The observed properties are confirmed experimentally by
implementing measurements of the HIG modal joint probability of the SPDC two-photon state and Bell-type
inequality violation experiments.
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I. INTRODUCTION

The study of entangled photon pairs has expanded
beyond traditional degrees of freedom like spin and polariza-
tion, leading to the exploration of alternative entanglement
degrees of freedom, such as energy-time entanglement
[1,2], momentum-position entanglement [3], and frequency-
transverse momentum entanglement [4], but photons pairs can
also be entangled in the orbital angular momentum (OAM)
degree of freedom [5,6].

In general, a two-photon OAM entangled state is generated
through parametric processes like spontaneous parametric
down conversion (SPDC) in nonlinear crystals, where a high-
energy photon is annihilated to produce two lower-energy
photons, when satisfying phase-matching conditions. The pro-
cess of type-I SPDC in its collinear configuration preserves
OAM when all the emitted wave vectors are collected in the
experimental setup [7–9], and then under these conditions the
spatial structure of the emitted photons can be expressed as
a coherent superposition of products of Laguerre-Gauss (LG)
Fock states, which satisfy OAM conservation [10–12].

Several detailed studies have been carried out of the two-
photon OAM entangled state projected on different modal
bases, such as Hermite-Gauss (HG) modes [13], Bessel-Gauss
modes [14], or Hermite-Laguerre-Gaussian modes [15]. Vari-
ous applications have also been developed from this entangled
state described in different modal bases [16–18]. Another
possibility to study OAM entangled two-photon states is to
use the helical Ince-Gauss (HIG) mode [19].

The Ince-Gauss (IG) mode is an exact, complete, and
orthogonal solution to the paraxial wave equation solved in
elliptical coordinates. Its transverse mode structure is defined
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by the discrete order p and degree m indices of the Ince
polynomials, and also by the ellipticity ε, which is a continu-
ous and dimensionless parameter that modulates the elliptical
shape of the transverse structure of the beam. A superposition
of the IG modes gives rise to the HIG mode basis, the main
characteristic of which is that it represents the transition basis
between the LG modes and the helical HG modes. The HIG
modes have unique properties; for instance, it has been proven
that it is possible to tune the OAM content of the modes
[20] by varying the ellipticity parameter, making this basis
an interesting scenario to study OAM entangled two-photon
states.

In this paper we provide a detailed study of the two-photon
OAM entangled state, produced by a type-I collinear SPDC
process when decomposed in terms of the HIG mode basis.
By doing so, we have found that the OAM entangled state
can be written as a sum of two different symmetric Bell
states, the probability coefficients of which are dependent on
the ellipticity that defines the HIG basis. This dependence of
the probability coefficients with the ellipticity of the basis
confirms that it is possible to tune the modal probability of
the state. Additionally, we demonstrate that it is possible to
maximize the probability of each HIG symmetric Bell state
separately, by adjusting the ellipticity of the selected basis. We
tested our predictions by performing measurements of HIG
modal joint probability of the SPDC two-photon state and
Bell-type inequality violation experiments. We believe our
results could be useful for quantum communication protocols
with high dimensional OAM entangled states.

II. INCE-GAUSS MODES

We start with the paraxial wave equation (PWE), given by

∇2
t u(�r) + 2ik

∂

∂z
u(�r) = 0, (1)
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FIG. 1. Transverse intensity distributions of even and odd Ince-
Gauss modes with ε = 3 and various p and m values.

where the transverse Laplacian is ∇2
t = ∂2

∂x2 + ∂2

∂y2 , k is the
wave number, and u(�r) represents the complex amplitude of
the optical wave along the propagation direction z.

By solving Eq. (1) in different coordinate systems we ob-
tain different families of solutions, for instance, LG and HG
modes are families of solutions to the PWE in cylindrical
(r, φ, z) and Cartesian (x, y, z) coordinates, respectively. In
our case we are interested in the solutions to the PWE in
elliptical coordinates (ξ, η, z), namely the even and odd Ince-
Gauss modes (z = 0) [19]:

IGe
p,m(�r, ε) = CCm

p (iξ, ε)Cm
p (η, ε)e

−r2

ω2 (0) , (2)

IGo
p,m(�r, ε) = SSm

p (iξ, ε)Sm
p (η, ε)e

−r2

ω2 (0) , (3)

where Cm
p and Sm

p are solutions of the Ince differential
equations known as the even and odd Ince polynomials, re-
spectively, of order p and degree m. The modal parameters p
and m are integer numbers, always have the same parity, and
meet 0 < m < p for even functions and 1 < m < p for odd
functions. The ellipticity ε is a positive and continuous pa-
rameter, which determines the elliptical structure of the beam.
It is defined as ε = 2 f 2

0 /ω2
0, where f0 and ω0 are physical

scale parameters of the mode at z = 0, known as the semifocal
separation and the beam width respectively. The transverse
profile of an Ince-Gauss mode can take on a variety of shapes
as seen in Fig. 1.

The ellipticity of the Ince-Gauss modes is quite a unique
parameter; it can take continuous values, contrary to p and
m, and even more, since the elliptic coordinates can approxi-
mate to cylindrical and Cartesian coordinates, the relation of
Ince-Gauss modes with the Hermite and Laguerre Gaussian
modes is given via the ellipticity; larger absolute values result
in a more pronounced elliptical profile, while smaller values
indicate a closer approximation to a circular shape. So, in the
limit ε → 0 the elliptic coordinates tend to the circular cylin-
drical coordinates and the even and odd Ince-Gauss modes
tend to the even and odd Laguerre-Gauss modes, with the
indices relations m = l and p = 2n + l . In the opposite limit,
when ε → ∞ the elliptic coordinates tend to the Cartesian
coordinates, with the even and odd Ince-Gauss modes tending
to Hermite-Gauss modes with the indices relations nx = m
and ny = p − m for even Ince-Gauss, and nx = m − 1 and
ny = p − m + 1 for odd Ince-Gauss. A example of this transi-
tion is shown in Fig. 2 for the even IG mode p = 7, m = 3.

LG Even HG

IG Even
p=7, m=3

ε → 0

→ → →

l=3, n=2 nx=3, ny=4

ε → ∞ε=2 ε=8

FIG. 2. By varying the ellipticity of the IG modes we can make
the transition from the even and odd LG to the HG modes. As an
example, when ε → 0, the mode IGe

7,3 tends to LGe
3,2, and when ε →

∞, the mode IGe
7,3 tends to HG3,4.

As is the case for the LG and HG families of modes, the IG
modes satisfy an orthonormality condition, given by∫∫ ∞

−∞
IGσ

p,m(�r, ε)IGσ ′,∗
p′,m′ (�r, ε′)dS = δσσ ′δpp′δmm′ , (4)

where σ is the parity of the mode (e, o). Importantly, note that
the ellipticity parameter is not present in the orthonormality
condition of the IG modes.

Now, as these modes are complete families of solutions
to the PWE, we are able to express any IG mode as a finite
superposition of either LG modes or HG modes. However, we
are only interested in the former case, expressed as

IGσ
p,m(�r, ε) =

∑
l,n

Dσ
ln(ε)LGσ

l,n(�r), (5)

where Dσ
ln(ε) are the weights of the Laguerre-Gauss expan-

sion. The LG modes that make up the superposition of a
specific IG mode must meet the constraint p = 2n + l , so
the number of terms in Eq. (5) is given by the value of p,
having a total of p − � p

2 	 + 1 terms. These coefficients meet
the condition

∑
l,n Dσ2

ln (ε) = 1 and depend explicitly on the
ellipticity and the parity; therefore by changing the ellipticity
of the IG modes the expansion coefficients are also changing,
giving more or less weight to each LG component. The Dσ

ln(ε)
coefficients can be obtained as in Ref. [19].

An important property of LG modes is that they carry
integer values of OAM, due to their azimuthal angular de-
pendence eilφ [10,21,22], while the HG and IG beams do not
have such angular dependence. In order to build IG modes
with a rotating phase we must define the HIG modes as a
superposition of even and odd IG, given by

(HIG)±p,m(�r, ε) = 1√
2

[
IGe

p,m(�r, ε) ± iIGo
p,m(�r, ε)

]
. (6)

For the HIG, the number of elliptical rings is given by 1 +
(p − m)/2, and each ring splits in single nodes as the ellip-
ticity increases, as shown in Fig. 3. The sign ± of the spatial
function defines the phase rotating direction, where the + sign
rotates the phase counterclockwise, and the − sign rotates the
phase clockwise. For the HIG modes the value of m = 0 is not
allowed, since the odd mode IGo

p,m is not defined for this case.
Similar to the even and odd IG modes, as ε → 0, the HIGs

modes transform into corresponding LG modes, with the cen-
tral singularities of the modes shifting towards the center of
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FIG. 3. Superposition of even and odd IG modes gives the
HIG modes. As an example (HIG)±7,3(�r, 8) = 1√

2
[IGe

7,3(�r, 8) +
iIGo

7,3(�r, 8)] is shown. The phase rotates counterclockwise, as is the
positive case of the HIG mode.

the beam. On the other hand, when ε → ∞, the HIG modes
take the form of helical Hermite-Gauss modes.

III. SPDC TWO-PHOTON OAM ENTANGLED STATE
IN THE HIG BASIS

The formalism used so far has been classical, however it
is possible to study the paraxial electromagnetic field with
quantum field theory. The transverse electromagnetic field
is quantized by expanding the fields in any complete set of
transverse vector modal functions that represents the state of
the radiation field [12]. So we can represent a single-photon
number state created in a LG mode with l of sign ± and
n modal numbers as a LG Fock state |L±

l,n〉. These states
are eigenvectors to the paraxial OAM operator L̂z, also de-
rived based on the paraxial approximation, with eigenvalue
±h̄l [10,21]. So the OAM content of the LG Fock states is
〈L±

l,n| L̂z |L±
l,n〉 = ±h̄l . We can also represent a single-photon

number state created in a HIG mode with p, m, and ε modal
numbers as a HIG Fock state |I±,ε

p,m 〉; these states fulfill exactly
the same properties that were described in the previous sec-
tion. We can calculate the OAM content of these states with
L̂z [20]:

〈
I±,ε

p,m

∣∣ L̂z

∣∣I±,ε
p,m

〉 = ±
∑
l,n

h̄lDe
ln(ε)Do

ln(ε). (7)

The main feature of this quantity is that there is no integer
part of OAM, giving rise to fractional expectation values of
OAM per photon, which change with the ellipticity parameter.
The OAM of the HIG modes for ε → 0 is equal to the value
of m, since index relations to the LG modes are m = l and

p = 2n + l; therefore, in this limit there are different HIG
states for which the OAM value is exactly the same, but as the
ellipticity increases, these values become detached from each
other.

A type-I collinear SPDC process generates photon pairs
entangled in their OAM degree of freedom [5,6,22]. If we
focus on the case where the nonlinear crystal is pumped
with a Gaussian beam (lp = 0) and the experimental setup
allows for the collection of all of the emitted wave vectors,
then the conservation law for the OAM of the signal and the
idler photons ls = −li ≡ l is fulfilled. With this condition,
the entangled state generated by the SPDC process can be
decomposed into a coherent superposition of LG Fock states,
which satisfy OAM conservation, as given by

|
SPDC〉 =
∑

l,ns,ni

Cl,−l
ns,ni

( ∣∣L+
l,ns

〉
s

∣∣L−
l,ni

〉
i
+ ∣∣L−

l,ns

〉
s

∣∣L+
l,ni

〉
i

)
, (8)

where the coefficient |Cl,−l
ns,ni

|2 represents the joint probability
of finding one photon in the LG Fock state with positive
helicity and the other with negative helicity [23]. Such state
represents an increase in the dimension of the Hilbert space,
in contrast with polarization entangled states, as it can be as
large as l indices are taken [24].

Now, in this paper we seek to describe the two-photon
OAM entangled state in terms of HIG Fock states, as these
constitute a complete orthonormal basis. To do so, we make
a change of basis by projecting the SPDC state into the HIG
Fock states with the same p and m parameters, but with dis-
tinct ellipticity for each photon. The latter is possible since the
family of IG solutions is orthogonal with respect to the modal
numbers and parity of the state, but not to ellipticity [Eq. (4)].
To proceed with this calculation we take advantage of the fact
that the HIG modes are a coherent and finite superposition of
the LG modes [Eq. (5)], the expansion coefficients of which
are explicit functions of the ellipticity. Since it is not of our
interest to study cross correlations of the HIG states, we are
going to consider that cross correlations between eigenstates
ns and ni are small enough to neglect them, leaving only ns =
ni ≡ n states. This is realized experimentally by reducing the
size of the signal and idler beam, compared to the size of the
pump beam [23].

When performing the change of basis to HIG Fock states,
we find that there is a probability of finding both down con-
verted photons with the same helicity, which does not happen
in the LG basis [Eq. (8)]. Thereby, we can describe the SPDC
state as a superposition of the symmetric HIG Bell states |
+〉
and |�+〉, as

|
SPDC〉 =
∑
p,m

[
Fp,m

(∣∣I+,εs
p,m

〉
s

∣∣I−,εi
p,m

〉
i
+ ∣∣I−,εs

p,m

〉
s

∣∣I+,εi
p,m

〉
i

) + Gp,m
(∣∣I+,εs

p,m

〉
s

∣∣I+,εi
p,m

〉
i
+ ∣∣I−,εs

p,m

〉
s

∣∣I−,εi
p,m

〉
i

)]
, (9)

where expansion coefficients are given by

Fp,m = 1

2

∑
l,n

Cl,−l
n,n

[
De

ln(εs)De
ln(εi ) + Do

ln(εs)Do
ln(εi )

]
, (10)

Gp,m = 1

2

∑
l,n

Cl,−l
n,n

[
De

ln(εs)De
ln(εi) − Do

ln(εs)Do
ln(εi )

]
. (11)

Both coefficients, Fp,m and Gp,m, are truncated by the Dσ
ln

terms, such that p = 2n + l , then the number of terms is given
by the value of p, having a total of p − � p

2 	 + 1 terms. It is
also noteworthy that when εs,i → 0 then Gp,m → 0, Fp,m →∑

l,n Cl,−l
n,n , and |I±,ε

p,m 〉 → |L±
l,n〉, and the photon-pair entangled

state in the OAM basis of Eq. (8) is recovered. Figure 4 shows
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FIG. 4. Density plots of the Fp,m and Gp,m coefficients in terms
of the photons ellipticity, for different HIG modes.

the normalized squared absolute value of these coefficients for
various p and m modal numbers.

Equation (9) represents the two-photon OAM entangled
state generated by a collinear type-I SPDC process, described
on the HIG basis. This description is our main result given all
its relevant properties, as explained below. First, it is notewor-
thy that the contribution of the |�+〉 state has never been taken
into account [18,25] and even when the maximum value for
|Fp,m|2 is always greater than the maximum value of |Gp,m|2,
for any p and m values, the contribution of the |�+〉 state is
not negligible at all since, as is shown in the next section,
it is possible to measure the correlations generated by such
state.

We can also notice that the coefficients in Eq. (9) vary with
the ellipticity; therefore, as we illustrate in the following sec-
tions, by tuning the ellipticity of the HIG modes, in which the
photon pairs are projected, it is possible to tune the probability
of detection of each of the HIG Fock states.

Furthermore, the ellipticity values that maximize the prob-
ability of finding both photons with equal helicity (|Fp,m|2) are
the same values that minimize the opposite case (|Gp,m|2), as
seen in Fig. 4. Then, after postselection (that means fixing p,
m, and εs,i) it is possible to maximize the probability |Fp,m|2
(|Gp,m|2), thus selecting a |
+〉 (|�+〉) Bell state component.

In summary, after postselection it is possible to tune the
probability of finding the photon-pair state in a specific HIG
Bell state, by varying the ellipticity of the projected mode.
Also, it is possible to maximize the contribution between |
+〉
or |�+〉, by finding which value of εs and εi maximizes either
|Fp,m|2 or |Gp,m|2, which depends on the desired case accord-
ing to Eqs. (10) and (11). In this way, the unique ellipticity
parameter and its effect on tuning the probability detection of
HIG modes could find application in quantum communication
protocols, making the HIG modes an interesting alternative

405 nm

810 nm

BBO

BS

KEM SLM

SMF

SMF

FIG. 5. Schematic sketch of our type-I collinear SPDC source,
with the pump beam at 405 nm. The experiment requires modulating
both photons with one SLM. This was achieved with a knife edge
mirror (KEM).

to the standard OAM basis such as LG modes. In the next
section, the existence of such tuning and of both states is
experimentally demonstrated.

IV. EXPERIMENTS

To experimentally verify the tuning of the joint probabil-
ity, we build a type-I collinear SPDC source. In Fig. 5 we
show a schematic sketch of our experimental arrangement,
where a 405-nm continuous wave laser beam was coupled
into a single-mode fiber in order to obtain a clean Gaussian
beam (lp = 0) as the pump beam. Then, the down converted
photons are filtered with a 500-nm long pass filter, followed
by a band-pass filter centered at 810 nm, with a width of
�λ = 10 nm. The filtered photons are separated with a 50:50
beam splitter (BS) and then projected to the desired HIG
states by using a knife edge mirror and single spatial light
modulator (SLM) with split screen in order to project the
desired modes independently for each photon. The image of
the crystal is mapped into the SLM with a telescope and finally
a demagnifier telescope is used to reduce the incoming beam
to the core size of the single mode fiber (SMF). With the
experimental technique presented in Ref. [26], we display the
desired holograms of the HIG modes in the SLM, thus we are
able to project the down converted photons into any specific
HIG spatial mode. To measure the joint probabilities, we tune
the ellipticity in a range from 0 to 10.

A. Both photons with distinct helicity

We start our experimental analysis by tuning the proba-
bility of finding the entangled state in the HIG mode basis,
considering that each photon has different helicity, which is
given by |Fp,m|2. First, it is worth pointing out some charac-
teristics of this probability. As we take greater p and m values,
the modal probability decreases for values εs �= εi. Then, as εs

takes values far from εi, the coefficients Dσ
ln(εs) and Dσ

ln(εi )
tend to be more and more distinct from each other, such as
Dσ

ln(εs) < Dσ
ln(εi), and their product is smaller than in the

εs = εi case. This behavior is stronger for greater values of p,
as the terms of the sum on Eq. (10) increase with this index.
This effect is a characteristic of the HIG states, not related
to the nature of the entangled state generated by the SPDC
process, which was already discussed [25].
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(a) (d)
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(c)
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Normalized 
coincidence counts
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FIG. 6. Normalized probabilities |Fp,m|2 for the HIG modes with
(a) p = 9, m = 5; (b) p = 13, m = 7; and (c) p = 15, m = 9. As
higher orders are taken, the εsi value that maximizes the joint proba-
bility moves to higher values. The insets show the transverse intensity
of each projected mode for the εsi values that maximize the corre-
sponding probability. The contour lines (d), (e), (f) εs = εi ≡ εsi are
shown aside their corresponding probability function, together with
the experimental data.

The second main characteristic of |Fp,m|2 is that it reaches
its maximum value when εs = εi ≡ εsi, having a global max-
imum in some specific εsi, which varies depending on the
HIG mode. For modes with the lowest m value (i.e., m = 1
or 2, according to the parity of the state), for a given p,
the probability for εsi monotonically decreases; this decay
becomes more pronounced for higher m modes. On the other
hand, for modes with the highest m value (i.e., m = p), for a
given p, the probability for εsi monotonically increases. For
the cases when m is between its minimum and maximum
possible values, for some p given, the εsi value that maxi-
mizes the joint probability lies at a specific value between
zero and infinity, this value increases along with the order
of the mode. If the modal number p is fixed, the εsi value
that maximizes the joint probability increases along with m.
In contrast, if we fix the modal number m, the εsi value that
maximizes the joint probability decreases when the modal
number p increases. This behavior is depicted in Fig. 6 for
some HIG modes, along with corresponding experimental
measurements.

(a)

(c)

(b)

FIG. 7. Expectation value of OAM divided by h̄ [Eq. (7)], for
the HIG modes in a single-photon number state. The experimen-
tal discrepancy line is placed at the beginning of the ellipticity
range in which the experimental and theoretical data agree, as in
Figs. 6(d)–6(f).

The tuning of probability from Fig. 6 is related to the
coincidence counts, when varying the ellipticity of the two
holograms on which the photons are projected. The ex-
perimental contour lines are shown in Figs. 6(d)–6(f). The
measurements for low ε values does not match with the
theoretical curves. A explanation for this is given by the de-
scription of the OAM content for the IG Fock states [Eq. (7)].
Let us take the example of measuring the state with the mode
p = 13, m = 7. To measure a photon in a specific HIG mode,
we transfer the opposite amount of OAM with the SLM,
in order to couple it into a SMF. For this mode and low
ellipticity values, we need to transfer an approximate OAM
value of 7, but there are other HIG modes that also carry
such an OAM value for this ε value, shown in Fig. 7(b), from
which the amount of OAM is nearly the same for different
modes. Qualitatively, the interval where the experimental data
do not match with the theoretical description [ε ∈ (0, 2)] is
the same interval where the HIG Fock states share nearly the
same amount of OAM. This happens also experimentally in
the p = 9, m = 5, and in the p = 15, m = 9 case [Figs. 7(a)
and 7(c)].

These discrepancies given by cross correlated terms could
affect the use of Eq. (9) in quantum communications, since it
might compromise the security of the protocol. This behavior
can be improved by using modulated amplitude in the SLMs,
as has been done before for other families of spatial light
modes [27].

The behavior of the joint probability as an ellipticity func-
tion is attributed to the SPDC’s OAM spectrum, as the Cl,−l

n,n
coefficients limit the products of the Dln(εsi ) coefficients in
Eq. (10), which endows this characteristic that prefers certain
values εsi with which the maximum probability is found.

B. Both photons with equal helicity

We just analyzed the tuning of the probability of finding
both photons with distinct helicity, when the SPDC state is
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(a)

(b)

(c)

p=
11

, m
=5

p=
12

, m
=4

p=
15

, m
=7

(d)

(e)

(f)

Normalized 
coincidence counts

FIG. 8. Normalized probabilities |Gp,m|2 for the HIG modes with
(a) p = 11, m = 5; (b) p = 12, m = 4; and (c) p = 15, m = 7. As
higher orders are taken, the values εs and εi that maximize the joint
probability move to higher values. The insets show the transverse
intensity of each projected mode for the εs and εi values that max-
imize the corresponding probability. The contour lines (d), (e), (f)
are fixed at the εs value that maximizes the probability. These are
shown aside their corresponding probability function, together with
the experimental data.

described in terms of the HIG modes. This case is a natu-
ral extension of the standard decomposition in the LG basis
[Eq. (8)]. Now, we are interested in tuning the probabil-
ity of finding both photons with the same helicity, in HIG
Fock states, which is given by |Gp,m|2. Once again there
are some characteristics of this probability that need to be
highlighted.

If we fix the modal number m, the εs and εi values, that
maximize the joint probability, decrease when the modal num-

ber p increases. In contrast, if we fix the modal number m, the
εs and εi values that maximize the joint probability decrease
when the modal number p increases. An example is depicted
in Fig. 8, along with experimental results.

As it is shown, in the helical Ince-Gauss basis the photon-
pair entangled state does not behave as in the Laguerre-Gauss
basis. In the LG case the expectation value of finding both
photons with the same helicity in the state is null, but in
the helical Ince-Gauss basis the probability of finding both
photons with the same helicity does not vanish. This is due
to the fact that the expansion coefficients for the helical Ince-
Gauss beams differ for the different parities De

ln �= Do
ln, except

in the limit ε → 0, where we recover the zero probability as
described in the LG case.

C. Bell test

Finally we seek to demonstrate that the SPDC state cer-
tainly is composed of the two HIG Bell states |
+〉 and
|�+〉, as seen in Eq. (9). The entanglement and steering of
the component state |
+〉 have already been confirmed [25].
However, since the contribution of the state |�+〉 has never
been taken into account, we must verify the existence of such
state.

In order to confirm the existence of the component states
and its entanglement we perform a Bell test to violate
the Clauser-Horne-Shimony-Holt (CHSH)–Bell inequality,
which is a variant of Bell’s inequality, in the same experi-
mental manner as has been done for the other OAM basis
[6,13–15,25,27–29]. This inequality is formulated for binary
measurements, where the outcomes of the measurements are
represented by binary values [30].

To do so, we measure the correlations of the signal and
idler photons on a superposition state by defining a HIG Bloch
sphere [25] where the poles of the sphere are HIG modes, and
each point on the equator represents a specific superposition
with a well-defined phase represented by

|θ〉 = 1√
2

(
eiθ

∣∣I+,ε
p,m

〉 + e−iθ
∣∣I−,ε

p,m

〉 )
, (12)

so the angles of Eq. (12) work as the detector settings to
calculate the Bell parameter [6]:

S = |E (θs, θi ) − E (θs, θ
′
i ) + E (θ ′

s, θi ) + E (θ ′
s, θ

′
i )|, (13)

where the correlation function is given by

E (θs, θi ) = C(θs, θi ) + C(θs + π/2, θi + π/2) − C(θs + π/2, θi ) − C(θs, θi + π/2)

C(θs, θi ) + C(θs + π/2, θi + π/2) + C(θs + π/2, θi ) + C(θs, θi + π/2)
. (14)

If the value of S is greater than 2, then the Bell inequality is
violated, which confirms the entanglement of the state.

The joint probability C(θs, θi ) is calculated with the desired
entangled state. For instance, projecting the superposition

states 〈θs| and 〈θi|, on the state |
+〉, and squaring its absolute
value,

C(θs, θi ) = | 〈θs| 〈θi| |
+〉 |2 = cos2(θi − θs), (15)
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substituting this into E (θs, θi ) [Eq. (14)], and then in S
[Eq. (13)], we find that the set of angles that maximize S
to 2

√
2 for the state |
+〉 is θs = 0◦, θi = 22.5◦, θ ′

s = 45◦,
θ ′

i = 67.5◦.
Analogously, projecting the superposition states 〈θs| and

〈θi|, on the state |�+〉, and squaring its absolute value,

C(θs, θi ) = | 〈θs| 〈θi| |�+〉 |2 = cos2(θi + θs), (16)

where we find that the set of angles that maximize S to
2
√

2 for the state |�+〉 is θs = 90◦, θi = 22.5◦, θ ′
s = 45◦,

θ ′
i = 67.5◦.

It is noteworthy that the set of angles that maximize the
Bell parameter for the state |
+〉 is the angles from which a
minimum of S is found for the state |�+〉, and vice versa. So
by using the correct set of angles, it is possible to confirm
the contribution and the entanglement of each component
state.

To calculate the Bell parameter S for the photon-pair
state, given by SPDC [Eq. (8)], it is convenient to write
Eq. (12) in terms of the even and odd Laguerre-Gauss Fock
states:

|θ〉 = cos(θ )
∑
l,n

De
ln(ε)

∣∣Le
l,n

〉 − sin(θ )
∑
l,n

Do
ln(ε)

∣∣Lo
l,n

〉
.

(17)
Then, the joint probability of finding the entangled state
| 〈θs| 〈θi| |
SPDC〉 |2 is given by

C(θs, θi ) = |2 cos(θs) cos(θi )
∑
l,n

Cl,−l
n,n De

ln(εs)De
ln(εi )

+ 2 sin(θs) sin(θi )
∑
l,n

Cl,−l
n,n Do

ln(εs)Do
ln(εi)|2.

(18)

As expected, when ε → 0, this joint probability becomes
C(θs, θi ) ∝ cos2(θi − θs) as in Eq. (15).

By substituting Eq. (18) in Eq. (14), in order to obtain the
Bell parameter, we can graph S as a function of εs and εi. In
Fig. 9 we fixed the set of angles that maximize the inequality
for the states |
+〉 and |�+〉. As it is shown, most of the
ellipticity values maximize the Bell parameter S for the case
where the entanglement is given by |
+〉, which corresponds
to the same values that maximize the probability of finding
such state. For the angles that maximize the inequality for
the state |�+〉, there are narrower regions of ellipticities for
which the Bell inequality is violated. However, even if there
are fewer values that maximize this case, this still verifies
the form of the state given in Eq. (9). The yellow circles in
Fig. 9 show the ellipticities in which the Bell parameter was
experimentally calculated. These results are shown in Tables I
and II.

(a)

(b)

(c)

(d)

(e)

(f)

p=9, m=5 p=11, m=5

p=13, m=7 p=12, m=4

p=15, m=9

S for angles that maximize:

p=15, m=7

FIG. 9. S value as a function of εs and εs for the same HIG Fock
states as in Figs. 6 and 8. The first column corresponds to S calculated
in angles that maximize the violation of the |
+〉 state. The second
column corresponds to S calculated in angles that maximize the
violation of the |�+〉. The red transparent plane is placed at S = 2.
The yellow circle on each graph represents the εs and εi values in
which the test was experimentally made.

TABLE I. Experimental values of S, measured with angles that
maximize the Bell parameter of |
+〉, for the same modes as in
Fig. 6.

Quantum numbers Expt. S Violation by σ

p = 9, m = 5, εsi = 3.5 2.56 ± 0.06 9
p = 13, m = 7, εsi = 5.0 2.30 ± 0.07 4
p = 15, m = 9, εsi = 7.0 2.33 ± 0.09 4

TABLE II. Experimental values of S, measured with angles that
maximize the Bell parameter of |�+〉, for the same modes as in
Fig. 8.

Quantum numbers Expt. S Violation by σ

p = 11, m = 5, εs = 1.0, εi = 7.5 2.43 ± 0.07 6
p = 12, m = 4, εs = 0.5, εi = 5.5 2.29 ± 0.09 3
p = 15, m = 7, εs = 2.2, εi = 8 2.21 ± 0.08 3
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V. CONCLUSIONS

We have provided a detailed theoretical-experimental de-
scription of the two-photon OAM entangled state, generated
by a SPDC type-I collinear process, described in terms of the
helical Ince-Gauss mode basis. In this paper we found two
main results.

(1) The two-photon OAM entangled state |
SPDC〉 is com-
posed of a superposition of two symmetric Bell states, namely
|
+〉 and |�+〉, the probabilities of which can be indepen-
dently selected by adjusting the ellipticity of the HIG mode
basis in which the state is being projected. The contribution
of each of these entangled states to the total SPDC state has

been verified through the violation of CHSH-Bell inequalities
(S > 2).

(2) It is possible to modulate the joint probability of de-
tecting both down converted photons also by changing the
ellipticity parameter of the HIG modes used for state projec-
tion. This behavior has been proved by implementing detailed
measurements of HIG modal joint probability.
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