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Resonant mode conversion in partially parity-time-symmetric waveguides
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Resonant mode conversions in partially parity-time (PT )-symmetric multimode waveguides are investigated.
First, the symmetry breaking and degeneracy splitting of linear eigenmodes are found numerically and ana-
lytically. Moreover, mode conversions in the nonconservative system are demonstrated using longitudinally
periodic modulation of the complex refractive index. The results show that, under the resonance condition,
conversions between the unbroken modes with the same topological charge can occur, with conversion frequency
being presented analytically. Finally, the influence of nonlinear effects on the resonant mode conversions is also
discussed. It is found that the mode conversions depend on the dynamic equilibrium of the modes in nonlinear
media, resulting in the conversions between the quadrupole modes in self-focusing medium, and the basic
modes with ring structure in defocusing medium can be achieved. These results are beneficial for our further
understanding of mode conversions in complex waveguides and can be applied to manipulation of the optical
beam.
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I. INTRODUCTION

Parity-time (PT ) symmetric systems have a remarkable
feature: the transition from a real to a complex eigenvalue
spectrum, referred to as PT -symmetry breaking, occurs at
a critical depth of the imaginary part of the potential [1,2].
This transition manifests itself in the qualitative modification
of wave evolution. In optics, PT -symmetric systems can be
realized by involving symmetric index guiding and an anti-
symmetric gain/loss profile and can support guided modes
with constant power upon propagation [3–7]. So far, a num-
ber of novel phenomena in optical PT -symmetric systems
have been reported, including switching operations, unidirec-
tional dynamics, nonreciprocal soliton scattering, asymmetric
amplification, jamming anomaly, photon-assisted tunneling,
and so on [8–19]. Furthermore, the concept of PT symme-
try has been extended to fractional systems, photonics, and
multimode fiber systems [20–25]. At the same time, in multi-
dimensions, symmetry breaking of solitons, stability of vortex
solitons, and topological states in partially PT -symmetric po-
tentials have also been investigated [26–31]. Here, the partial
PT symmetry means that the complex potential V is invariant
under complex conjugation and reflection in a single spatial
direction. In two-dimensions, it satisfies V ∗(x, y) = V (−x, y)
or V ∗(x, y) = V (x,−y) [26].

In the field of optics, Rabi oscillations are manifested as
resonant mode conversions. The longitudinally periodic mod-
ulation of the refractive index acts as an ac field, resulting
in various phenomena such as parametric amplification, the
inhibition of light tunneling, and the realization of optical iso-
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lation [32–35]. Notably, there exists a mathematical analogy
between the stimulated mode conversion process and Rabi
flopping, which refers to periodic transitions between two
stationary states of a quantum system driven by a resonant
external field [36–38]. In recent years, Rabi oscillations have
been widely investigated in a variety of optical and photonic
systems, including fibers [39,40], multimode waveguides
[41–43], coupled waveguides [44], waveguide arrays [45,46],
PT -symmetry waveguides [47], and two-dimensional modal
structures [48,49]. Additionally, Rabi oscillations of topo-
logical edge states and resonant mode conversions in the
fractional Schrödinger equation have been studied [50–52].
Recently, Rabi oscillations of azimuthons in weakly nonlinear
waveguides with weak longitudinally periodic modulation of
the refractive index and nonlinearity have been investigated
[53,54]. However, degeneracy splitting and resonant mode
conversion in partially PT symmetric multimode waveguide
has not been reported yet. Degeneracy splitting in this context
refers to the occurrence of the division of degenerate modes
into two distinct nondegenerate modes, characterized by dif-
fering topological structure, when gain/loss is introduced.

In this paper, we investigate resonant mode conversions
in partially PT -symmetric multimode waveguides under the
action of longitudinal modulation. First, the characteristics of
eigenmodes in a linear regime are discussed numerically and
analytically, including symmetry breaking and degeneracy
splitting. Moreover, with the aid of resonant coupled mode
theory with a biorthogonality condition, mode conversions
are demonstrated. The results show that, under the resonance
condition, conversions between unbroken modes with the
same topological charge and equal parity can occur. Finally,
the influence of nonlinear effects on mode conversions is
investigated. The results show that in a self-focusing medium,
the sine modes can be converted and the basic modes cannot
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undergo a conversion. Conversely, in a defocusing medium,
the basic modes can be converted and the sine modes cannot.

The paper is organized as follows. In the next section, the
model and eigenmodes in a linear regime are presented. Under
resonant longitudinal modulation, mode conversion in a linear
regime is discussed in Sec. III. In Sec. IV, the influence of
nonlinear effects on mode conversion is studied. The main
results of the paper are summarized in Sec. V.

II. MODEL AND EIGENMODES IN A LINEAR REGIME

We consider light propagation in a multimode waveguide,
which can be governed by the nonlinear Schrödinger equa-
tion as follows:

i
∂ψ

∂z
= −1

2

(
∂2

∂x2
+ ∂2

∂y2

)
ψ − V (x, y, z)ψ − σ |ψ |2ψ.

(1)

Here, ψ = ψ (x, y, z) is the dimensionless field amplitude,
x and y are the transverse coordinates normalized by the
characteristic scale r0, and z is the longitudinal coordinate nor-
malized by k0r2

0 . The wave number in the medium is denoted
by k0 = 2πnb/λ0, where nb is the refractive index and λ0 is
the wavelength in vacuum. σ is the nonlinear Kerr coefficient.
V (x, y, z) = R(x, y, z) + iI (x, y, z) is a complex potential af-
fecting the propagation of the laser radiation. Its real part
describes the refractive index profile and the imaginary part
is the gain/loss distribution.

In this study, we consider a harmonic non-Hermitian
modulation along a super Gaussian multimode fiber by
the simultaneous modulation of the refractive index and
the gain/loss. Such modulations may be induced by doping
the fiber core, modulating the fiber core radius, and intro-
ducing some absorption, scattering, or transmission losses
[25]. The form of modulations are R(x, y, z) = prVr[1 +
μ sin(�z)] and I (x, y, z) = piVi[1+μ sin(�z+φ)], where
Vr =exp[−(x2+y2)5/w10] and Vi =Vr sin(πx/w) sin(πy/w),
with w being its width. Here, the parameter pr = δnk2

0r2
0/nb

is proportional to the real variation of the refractive in-
dex δn, pi stands for the gain/loss strength, and φ is the
possible phase shift between the harmonic modulation of
the refractive index and gain/loss. The real part R(x, y, z)
is symmetric in the transverse direction, while the imagi-
nary part I (x, y, z) is antisymmetric with respect to x and
y, respectively, constructing a partially parity-time-symmetric
complex waveguide [26]. Both R(x, y, z) and I (x, y, z) are
harmonically modulated with the frequency � and the am-
plitude μ � � in the longitudinal direction. Figure 1(a)
depicts the distribution plots of Vr and Vi, respectively. For
r0 = 16 µm and light beams at the wavelength λ0 = 800 nm
propagating in fused silica, a waveguide depth pr = 200 cor-
responds to a refractive index contrast of δn ∼ 9 × 10−3,
the distance z = 1 corresponds to a propagation distance
of 2.8 mm, and |ψ |2 = 1 corresponds to a peak intensity
of I0 ∼ 1.5 × 1015 W/m2, assuming a nonlinear coefficient
of n2 = 3 × 10−20 m2/W [53].

First, we consider the linear version of Eq. (1) without
the longitudinal modulation, i.e., σ = 0 and μ = 0, which
supports the linear eigenmodes in the complex waveguide.

FIG. 1. (a) Diagram of the complex potential. (b)–(e) Depen-
dence of the real parts βnm,r and the imaginary parts βnm,i of the
propagation constants on the gain/loss strength pi. Based on the
arrangement in descending order of β̃nm, in the absence of gain/loss
(pi = 0), they correspond to the following modes: the first-order
basic mode ũ00, teh first-order degenerate dipole modes ũ01,c and
ũ01,s, the first-order degenerate quadrupole modes ũ02,c and ũ02,s,
the second-order basic mode ũ10, the first-order degenerate hexapole
modes ũ03,c and ũ03,s, the second-order degenerate dipole modes ũ11,c

and ũ11,s, the first-order degenerate octopole modes ũ04,c and ũ04,s, the
second-order degenerate quadrupole modes ũ12,c and ũ12,s, and the
third-order basic mode ũ20. Here, σ = μ = 0, pr = 200, and w = 1.

The linear eigenmodes with the propagation constant β are
sought for in the usual form

ψ (x, y, z) = u(x, y) exp(iβz), (2)

with the linear eigenmode u(x, y) satisfying the following
equation:

βu = −Hu. (3)

Here, H = H0 − ipiVi is a non-Hermitian operator, where
H0 = −(1/2)∇2

⊥ − prVr is Hermitian. Equation (3) is a lin-
ear steady-state eigenvalue problem of Eq. (1) when σ and
μ are set to zero. Especially, as pi = 0, it is an eigenvalue
problem for the Hermitian operator H0 and exists as a series
of stationary vortex solutions, ũnm = Rnm(r) exp(imθ ), with
the real propagation constant β̃nm, where Rnm(r) is the radial
wave function, m is the topological charge, and n is the radial
node number, which are integers [53,54]. In the case of m �= 0,
the real and imaginary parts of ũnm provide two degenerate
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FIG. 2. Intensity and phase distributions of the corresponding
linear eigenmodes at pi = 2. (a) The cosine mode u02,c, (b) the sine
mode u02,s, (c) the adjacent basic mode u10, (d) the cosine mode u12,c,
(e) the sine mode u12,s, and (f) the adjacent basic mode u20. Here, the
parameters are the same as those in Fig. 1.

(n + 1)th-order 2|m|-pole linear eigenmodes with the propa-
gation constant β̃nm as follows:

ũnm,c = Rnm(r) cos(mθ ), (4)

ũnm,s = Rnm(r) sin(mθ ). (5)

Here, for convenience, we refer to ũnm,c and ũnm,s as the cosine
and sine eigenmodes, respectively. Note that when m = 0, the
eigenmodes are nondegenerate and are called basic modes.
In general, Eq. (3) is an eigenvalue problem for the non-
Hermitian operator H and its eigenmode unm(x, y), with the
propagation constant (generally also complex) βnm = βnm,r +
iβnm,i, that can be solved using the plane-wave expansion
method [50,55].

Figures 1(b)–1(e) present examples to demonstrate the de-
pendence of the real parts βnm,r and the imaginary parts βnm,i

of propagation constants on the gain/loss strength pi. With
the presence of gain/loss (pi �= 0), the propagation constants
of eigenmodes exhibit different characteristics. For instance,
the propagation constants of eigenmodes unm,c and unm,s, with
nm = 01, 03, and 11, have equal real parts but opposite imag-
inary parts, as shown by the red curves in Fig. 1(b) and by
the green and red curves in Fig. 1(d). This indicates that the
degeneracy and symmetry of these eigenmodes are broken
with the appearance of gain/loss.

For the basic mode u00 and octopole modes u04,c and u04,s,
the imaginary parts of their propagation constants are always
equal to zero as pi increases, and the real parts remain un-
changed, as shown by the black curves in Fig. 1(b) and by
the magenta curves in Fig. 1(d). Hence, their symmetry and
degeneracy remain even in the presence of gain/loss.

As for quadrupole modes u02,c and u02,s, as well as u12,c

and u12,s, the real parts of the propagation constants split as pi

increases, while the imaginary parts remain zero, until the split
parts merge with the propagation constants of the adjacent
basic modes u10 and u20 at critical points pi = pcr

i ≈ 3.0378
and 2.4632, respectively, as shown in Figs. 1(c) and 1(e).
Thus, when pi < pcr

i , their symmetry remains but the degen-
eracy is split. Their intensity and phase distributions at pi = 2
(< pcr

i ) are shown in Fig. 2. It can be seen that the first-order
and second-order cosine quadrupole modes maintain their
profiles and topological charge, as shown in Figs. 2(a) and
2(d). However, the split sine quadrupole modes exhibit a bulge
in the central region, so their topological charge becomes zero
[see Figs. 2(b) and 2(e)], and the ring structures of the adja-
cent second-order and third-order basic modes are dividing,
as shown in Figs. 2(c) and 2(f), eventually resulting in their
profiles tending to be similar to each other.

In order to illustrate these characteristics of the sym-
metry breaking and degeneracy splitting, we construct the
matrix representation H for the complex operator H by defin-
ing the matrix element Hab = β̃aδab − ipiṼ ab

i , where Ṽ ab
i =

〈ũa|Vi|ũb〉, with ũa and ũb taking all possible modes for H0.
Note that the matrix element Hab can be determined by the
propagation constants and modes for H0 and the imaginary
part Vi of the potential. Obviously, Ṽ aa

i = ∫∫
ũ2

nm,cVidxdy (or∫∫
ũ2

nm,sVidxdy) = 0 due to the antisymmetry of Vi. The other
values of Ṽ ab

i can be obtained by numerical calculation and
the partial list is as follows:

ũa

Ṽ ab
i ũb

ũn0 ũn1,c ũn1,s ũn2,c ũn2,s ũn3,c ũn3,s ũn4,c ũn4,s

ũn′0 0 0 0 0 N 0 0 0 0
ũn′1,c 0 0 N 0 0 0 N 0 0
ũn′1,s 0 N 0 0 0 N 0 0 0
ũn′2,c 0 0 0 0 0 0 0 0 N
ũn′2,s N 0 0 0 0 0 0 N 0
ũn′3,c 0 0 N 0 0 0 N 0 0
ũn′3,s 0 N 0 0 0 N 0 0 0
ũn′4,c 0 0 0 0 N 0 0 0 0
ũn′4,s 0 0 0 N 0 0 0 0 0

where n and n′ are integers, and “N” indicates that the value
of Ṽ ab

i is nonzero. Thus, the dependence of the propagation
constants for H on the gain/loss strength pi can be described
by eigenvalues of H or its submatrix [28].

Here, we consider the cases shown in Figs. 1(b), 1(c), and
1(e). Since three modes, ũ1,2,3, for H0 are involved, they can
be illustrated using a 3 × 3 submatrix. In these cases, the cor-
responding propagation constants β̃1,2,3 have two different sit-
uations. One is β̃1 > β̃2 = β̃3 and the other is β̃1 = β̃2 > β̃3.
Specifically, in Fig. 1(b), ũ1 = ũ00 is a basic mode, ũ2 = ũ01,c

and ũ3 = ũ01,s are degenerate modes, and the corresponding
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propagation constants are β̃1 = β̃00 and β̃2 = β̃3 = β̃01, re-
spectively. In Figs. 1(c) and 1(e), ũ1 = ũ02,c (ũ12,c) and ũ2 =
ũ02,s (ũ12,s) are degenerate modes, ũ3 = ũ10 (ũ20) is a ba-
sic mode, and the corresponding propagation constants are
β̃1 = β̃2 = β̃02 and β̃3 = β̃10 (β̃1 = β̃2 = β̃12 and β̃3 = β̃20),
respectively. In either case, there are Ṽ 12

i = Ṽ 13
i = 0 (see the

table above). Thus, one can obtain a 3 × 3 submatrix repre-
sentation of H as follows:

Hs =

⎡
⎢⎣

β̃1 0 0

0 β̃2 −ipiṼ 23
i

0 −ipiṼ 32
i β̃3

⎤
⎥⎦. (6)

Its eigenvalues are given by β1 = β̃1 and β2,3 = (β̃2 +
β̃3)/2 ± [(β̃2 − β̃3)2/4 − p2

i |Ṽ 23
i |2]1/2. Obviously, they can be

reduced to β1 = β̃1, β2 = β̃2, and β3 = β̃3 in the absence of
gain/loss.

For the case of Fig. 1(b), the propagation constants cor-
responding to eigenmodes u00, u01,c, and u01,s are given by
β00 = β̃00, β01,c = β̃01 + ipi|Ṽ 23

i |, and β01,s = β̃01 − ipi|Ṽ 23
i |,

where Ṽ 23
i = 〈ũ01,c|Vi|ũ01,s〉 �= 0. This means that with the

presence of gain/loss, the first-order basic mode remains un-
changed, as shown by the black curves in Fig. 1(b), and the
cosine and sine dipole eigenmodes are broken due to Ṽ 23

i �= 0,
as shown by the red curves in Fig. 1(b).

For the cases shown in Figs. 1(c) and 1(e), we only provide
a detailed explanation of Fig. 1(c). In this case, the propaga-
tion constants corresponding to eigenmodes u02,c, u02,s, and
u10 are determined by β02,c = β̃02, β02,s = (β̃02 + β̃10)/2 +
[(β̃02 − β̃10)2/4 − p2

i |Ṽ 23
i |2]1/2, and β10 = (β̃02 + β̃10)/2 −

[(β̃02 − β̃10)2/4 − p2
i |Ṽ 23

i |2]1/2, where Ṽ 23
i = 〈ũ02,s|Vi|ũ10〉 �=

0. It can be seen that with increasing the gain/loss, the
degenerate eigenvalue β̃02 splits into β02,c and β02,s, where
β02,c = β̃02 remains unchanged, while β02,s decreases and
β10 increases until they intersect at the critical point pi =
pcr

i ≡ (β̃02 − β̃10)/(2|Ṽ 23
i |) = 2.9766. The results are consis-

tent with the numerical results in Fig. 1(c).
Similarly, for the case of Fig. 1(e), the critical point is pcr

i =
(β̃12 − β̃20)/(2|Ṽ 23

i |) = 2.4216, which is approximately equal
to the result obtained from the numerical calculation in
Fig. 1(e).

III. CONVERSION BETWEEN LINEAR EIGENMODES

After understanding the characteristics of the linear
eigenmodes in the complex waveguide without longitudinal
modulation, we investigate the dynamics of these eigenmodes
in the presence of longitudinal modulation, where μ �= 0 and
σ = 0. It was found that during the dynamical evolution of
these eigenmodes, conversion between modes with the same
topological charge may occur. In the following, we only
consider conversion between unbroken quadrupole modes, as
well as basic modes.

Figure 3(a) presents an example to demonstrate the con-
version between the cosine modes u02,c and u12,c at pi = 2
for φ = 0. It can be seen that under resonant longitudinal
modulation with � = β02,c–β12,c, the initially incident mode
u02,c undergoes a conversion into the mode u12,c at z = z1

and then returns to its original mode u02,c at z = z2. This
completes one cycle of Rabi oscillation.

FIG. 3. Conversion between two cosine modes u02,c and u12,c at
pi = 2 in the linear regime. (a) Intensity distributions at z = 0, z1,
and z2, and (b) corresponding evolution of the weights |c1,2(z)|2,
where the solid curves are numerical results, and the dashed curves
are analytical results. Here, z1 = 6.716, z2 = 13.534, and β02,c =
182.1574 and β12,c = 155.9633 are the eigenvalues of u02,c and u12,c,
respectively, φ = 0, μ = 0.1, σ = 0, � = β02,c − β12,c, and the other
parameters are the same as those in Fig. 1.

In order to illustrate the mode conversion, we consider a
superposition of the two unbroken modes u1,2(x, y) with the
same topological charge

ψ (x, y, z) = c1(z)u1(x, y)eiβ1z + c2(z)u2(x, y)eiβ2z, (7)

where β1,2 are the corresponding propagation constants, and
|c1,2(z)|2 can be used to account for the weight of each mode
and can be calculated by

c1(z) = e−iβ1z

∫∫
u1(x, y)ψ (x, y, z)dxdy∫∫

u2
1(x, y)dxdy

,

c2(z) = e−iβ2z

∫∫
u2(x, y)ψ (x, y, z)dxdy∫∫

u2
2(x, y)dxdy

. (8)

Here, we have made use of the biorthogonality condition
in the non-Hermitian system,

∫∫
u1(x, y)u2(x, y)dxdy = 0, as

pi �= 0 [47,56].
By substituting Eq. (7) into Eq. (1) with σ = 0, multiplying

both sides by u1(x, y) and u2(x, y), respectively, integrating
over the transverse coordinates, and considering the resonance
condition � = β1 − β2, we can derive the following system of
equations:

dc1

dz
= iμ

[
prV

11
r sin(�z) + ipiV

11
i sin(�z+φ)

]
c1

+ iμ
[
prV

12
r sin(�z) + ipiV

12
i sin(�z+φ)

]
c2e−i�z,

dc2

dz
= iμ

[
prV

21
r sin(�z) + ipiV

21
i sin(�z+φ)

]
c1ei�z

+ iμ
[
prV

22
r sin(�z) + ipiV

22
i sin(�z+φ)

]
c2, (9)

where V ab
r = ∫∫

uaVrubdxdy/
∫∫

u2
adxdy and V ab

i =∫∫
uaViubdxdy/

∫∫
u2

adxdy, with a, b = 1 and 2. By
employing the rotating-wave approximation and neglecting
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FIG. 4. Conversion between two sine modes u02,s and u12,s at
pi = 2 in the linear regime. (a) Intensity distributions at z = 0, z1,
and z2, and (b) corresponding evolution of the weights |c1,2(z)|2,
where the solid curves are numerical results, and the dashed curves
are analytical results. Here, z1 = 6.323, z2 = 12.741, and β02,s =
181.8987 and β12,s = 155.5644 are the eigenvalues of u02,s and u12,s,
respectively, φ = 0, μ = 0.1, σ = 0, � = β02,s − β12,s, and the other
parameters are the same as those in Fig. 1.

the terms containing e±i�z, e±i2�z, e±i(�z+φ), and
e±i(2�z+φ) [57], Eq. (9) can be simplified as

dc1

dz
= μ

2

(
prV

12
r + ipie

iφV 12
i

)
c2,

dc2

dz
= −μ

2

(
prV

21
r + ipie

−iφV 21
i

)
c1. (10)

Using Eq. (10), the frequency of mode conversion between
the two unbroken modes under resonant modulation is given
by

�R =μ

√(
prV 12

r +ipieiφV 12
i

)(
prV 21

r +ipie−iφV 21
i

)
. (11)

Especially, when pi = 0, the result is similar to that in
Ref. [41]. From Eq. (10), it can be shown that if �R includes
the imaginary part or is equal to zero, then mode conversion
does not occur.

Figure 3(b) presents the evolution of weights |c1,2(z)|2 cor-
responding to the cosine modes shown in Fig. 3(a). Initially, at
z = 0, we have c1(0) = 1 and c2(0) = 0. As the propagation
distance increases, the weight |c1(z)|2 gradually decreases un-
til it reaches its minimum at z = z1, indicating the occurrence
of mode conversion. Subsequently, with further propagation,
|c1(z)|2 increases, while |c2(z)|2 decreases until it reaches
its minimum at z = z2, resulting in the mode returning back
to its initial profile. The numerical result for the period is
Tc = z2 = 13.534, which is in agreement with the analytical
result obtained from Eq. (11), giving Tc = 2π/�R = 13.5995.

Furthermore, mode conversion can also be demonstrated
between the sine modes u02,s and u12,s, as well as the ba-
sic modes u10 and u20, as shown in Figs. 4 and 5, where
the numerical and analytical results of the period are Ts =
12.741 and 12.8345 and Tb = 24.747 and 24.8663, respec-
tively. However, it should be noted that mode conversion
between u02,c and u12,s, as well as u02,s and u12,c, does not

FIG. 5. Conversion between two basic modes u20 and u10 at
pi = 2 in the linear regime. (a) Intensity distributions at z = 0, z1, and
z2, and (b) corresponding evolution of the weights |c1,2(z)|2, where
the solid curves are numerical results, and the dashed curves are an-
alytical results. Here, z1 = 5.383, z2 = 10.946, and β10 = 180.1170
and β20 = 154.4388 are the eigenvalues of u10 and u20, respectively,
φ = π , μ = 0.1, σ = 0, � = β10 − β20, and the other parameters are
the same as those in Fig. 1.

occur due to different topological charges and distinct parities
(see Fig. 2).

It should be emphasized that mode conversion may occur
at the point where |c1(z)|2 or |c2(z)|2 reaches its minimum
value (generally, it is equal to zero or approximates to zero).
In the nonconservative system under study, the total weight
(or power), |c1(z)|2 + c2(z)|2, may not be equal to 1. For
the conversion from low-order modes to high-order modes,
the gain of the system plays a dominant role, resulting in the
weight being greater than 1, as shown in Fig. 4. Conversely,
for the conversion from high-order modes to low-order modes,
the loss plays a dominant role, causing its value to be less than
1, as shown in Fig. 5. This feature is distinct from that of a
conservative system [41].

The above results indicate that the conversion period T can
be determined by T = 2π/�R, where �R is given by Eq. (11).
Figure 6 shows dependence of the conversion period T on
the modulation phase shift φ for different gain/loss strengths
pi. From it, one can see that for the cosine modes u02,c and
u12,c, the parameters φ and pi only have a little effect on
the conversion period. However, for the sine modes u02,s and
u12,s, as well as the basic modes u10 and u20, the parameter φ

has the opposite effect for a given pi. For the former, φ has
an inhibitory effect on the conversion period, which reaches
its maximum at φ = π . On the other hand, for the latter, it
plays a facilitating role, and the conversion period reaches its
minimum at φ = π .

IV. INFLUENCE OF NONLINEAR EFFECT
ON LINEAR MODE CONVERSION

In this section, we investigate the influence of the nonlinear
effect on mode conversion dynamics. Similarly, we consider a
superposition of two unbroken eigenmodes as given in Eq. (7)
and numerically calculate the weight of each mode using
Eq. (8).
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FIG. 6. Relationship of the conversion period T and the modula-
tion phase shift φ for different gain/loss strengths pi, where Tc, Ts,
and Tb are the conversion period between the cosine modes u02,c and
u12,c, the sine modes u02,s and u12,s, and the basic modes u10 and u20,
respectively. Here, μ = 0.1, σ = 0, and the other parameters are the
same as those in Fig. 1.

First, we demonstrate the conversion dynamics of the sine
modes u02,s and u12,s under the combined effect of longi-
tudinal modulation and nonlinearity. We start with u02,s as
the initial input and allow it to evolve from z = 0 to z = z1

in a nonlinear medium without any longitudinal modulation.
Then, at z = z1, we introduce longitudinal modulation with a
resonant frequency of � = β02,s–β12,s and let it evolve further
to z = z3. Finally, at z = z3, we switch off the longitudi-
nal modulation and continue its evolution in the nonlinear
medium. The dynamical evolutions in both self-focusing (σ =
1) and defocusing (σ = −1) media are shown in Figs. 7 and
8, respectively.

One can see that in the absence of longitudinal modulation,
the initial input exhibits oscillatory behavior from z = 0 to

FIG. 7. Conversion between the sine modes u02,s and u12,s at pi =
2 in a self-focusing medium. (a) Intensity distributions at z = z1, z2,
z3, and z4; (b) corresponding evolution of the weighs |c1,2(z)|2. Here,
μ = 0 as 0 � z < z1 and z3 < z � z4; μ = 0.1 as z1 � z � z3, and
z1 = 6.535, z2 = 13.028, z3 = 19.486, z4 = 26.411, σ = 1, and the
other parameters are the same as those in Fig. 4.

FIG. 8. Conversion between the sine modes u02,s and u12,s at
pi = 2 in defocusing medium. (a) Intensity distributions at z = z1,
z2, z3 and z4; (b) corresponding evolution of the weights |c1,2(z)|2.
Here, μ = 0 as 0 � z < z1 and z3 < z � z4; μ = 0.1 as z1 � z � z3,
and z1 = 3.435, z2 = 10.183, z3 = 16.702, z4 = 20, σ = −1, and the
other parameters are the same as those in Fig. 4.

z = z1 under the influence of nonlinearity [see Figs. 7(e) and
8(e)]. Here, z1 is chosen as the point of maximum oscillation
since its shape at z = z1 closely resembles the initial profile, as
shown in Figs. 7(a) and 8(a). Upon introducing resonant lon-
gitudinal modulation at z = z1, the weight |c1(z)|2 decreases
until it reaches its minimum value at z = z2, indicating the
conversion from u02,s to u12,s, as shown in Figs. 7(b) and 8(b).
With further propagation, |c1(z)|2 increases while |c2(z)|2 de-
creases until it reaches its minimum value at z = z3; however,
the scenario is different. For the self-focusing medium, it
does not fully return to the initial profile at z = z3, but after
switching off the longitudinal modulation at z = z3, it returns
fully back to the initial profile at z = z4 due to its oscillatory
behavior, as shown in Figs. 7(c) and 7(d). However, for the
defocusing medium, it cannot return back to the initial profile,
as shown in Figs. 8(c) and 8(d).

FIG. 9. Conversion between the basic modes u10 and u20 at pi =
2 in the self-focusing medium. (a) Intensity distributions at z = 0,
z1, z2 and z3; (b) corresponding evolution of the weights |c1,2(z)|2.
Here, μ = 0.1 as 0 � z < z2; μ = 0 as z > z2, and z1 = 5.792, z2 =
9.452, z3 = 15, σ = 1, φ = 0, and the other parameters are the same
as those in Fig. 5.
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FIG. 10. Conversion between the basic modes u10 and u20 at pi =
2 in the defocusing medium. (a) Intensity distributions at z = z1, z2,
z3, and z4; (b) corresponding evolution of the weights |c1,2(z)|2. Here,
μ = 0 as 0 � z < z1 and z3 < z � z4; μ = 0.1 as z1 � z � z3, and
z1 = 5.725, z2 = 12.810, z3 = 19.569, z4 = 25.567, σ = −1, φ = 0,
and the other parameters are the same as those in Fig. 5.

Additionally, we demonstrated the conversion dynamics of
the basic modes u10 and u20 under the action of longitudi-
nal modulation for different nonlinear effects, as shown in
Figs. 9 and 10. Here, we use u10 as the initial input and set
the longitudinal modulation frequency to be � = β10–β20.
Notably, there is no mode conversion between the basic modes
u10 and u20 in the nonlinear self-focusing medium, as shown
in Fig. 9.

However, in defocusing medium, mode conversion can
occur, as shown in Fig. 10. Similar to the mode conversion
between the sine modes u02,s and u12,s in the self-focusing
medium (see Fig. 7), the initial input u10 exhibits little
oscillation from z = 0 to z = z1 under the influence of
nonlinearity, as shown in Figs. 10(a) and 10(e). With the
introduction of resonant longitudinal modulation at z = z1,
it undergoes a conversion and transforms into u20 at z = z2,
where |c1(z)|2 reaches its minimum value [see Fig. 10(b)].
Subsequently, |c1(z)|2 increases while |c2(z)|2 decreases until
|c2(z)|2 reaches its minimum value at z = z3. However, at
the position, it has not fully returned to the initial profile
[see Fig. 10(c)]. Only upon switching off the longitudinal
modulation does it return back to the initial profile at the point
of maximum oscillation [see Fig. 10(d)].

It should be emphasized that in the above results, we
first demonstrated the evolution dynamics of liner eigen-
modes in the presence of nonlinearity and found that the sine

quadrupole modes and the basic modes with ring structure
display oscillatory behavior in self-focusing and defocusing
media, respectively. This means that they can attain a dynamic
equilibrium between the nonlinearity and complex potential
during propagation, resulting in the occurrence of conversion
when resonant longitudinal modulation is introduced. How-
ever, the sine quadrupole modes in defocusing medium, as
well as basic modes in self-focusing medium, are unable to
achieve this dynamic balance, and as a result, conversion does
not take place.

V. CONCLUSIONS

In conclusion, we have investigated resonant mode con-
versions in partially parity-time-symmetric multimode waveg-
uides under the action of longitudinal periodic modulation.
First, the linear version of the system was numerically solved,
and the symmetry breaking and degeneracy splitting of lin-
ear eigenmodes in the complex waveguides were discussed
in detail. The results have shown that, with the presence of
gain/loss, the symmetry of degenerate dipole and hexapole
eigenmodes is always broken, while the degenerate cosine
and sine quadrupole eigenmodes will split, where the co-
sine modes retain their symmetry and topological charge,
and the sine modes have zero topological charge and merge
with the adjacent basic modes at a critical point. Based on
these characteristics and with the aid of resonant coupled
mode theory with a biorthogonality condition, mode conver-
sions in the nonconservative system have been demonstrated.
The results have shown that, under the resonance condition,
conversions between the unbroken modes with the same topo-
logical charge and equal parity can occur, and the numerical
and analytical results are in good agreement. Finally, the in-
fluence of nonlinear effects on the mode conversions was also
discussed. The results have found that the mode conversions
depend on dynamic equilibrium of the modes in nonlinear me-
dia, resulting in the conversions between the sine quadrupole
modes in the self-focusing medium, as well as the basic modes
with ring structure in the defocusing medium, being achieved.
These results are beneficial for our further understanding of
mode conversions in complex waveguides and can be applied
to manipulation of the optical beam.
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