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Relations between group, energy, and phase velocities of surface electromagnetic waves
in half-infinite bianisotropic homogeneous media
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This paper proves the equality of the group velocity and the energy velocity for surface electromagnetic
waves on the interface between two bianisotropic homogeneous half-infinite nonabsorbing dielectrics. It is also
shown that the projection of the energy velocity on the direction of propagation is equal to the phase velocity
provided that the material constants do not depend on the frequency. Moreover, this equality holds true locally,
i.e., the energy velocity along the direction of propagation coincides with the phase velocity at any distance from
the interface. The obtained relations holds true in magneto-optically active media as well. It is assumed that
the media are of generic crystallographic symmetry, so, when deriving the desired equalities, no simplifications
due to a specific crystallographic symmetry are used.
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I. INTRODUCTION

It is known that surface electromagnetic waves (SEWs)
exist on the interface between two homogeneous half-infinite
dielectric media with positive dielectric permittivity and mag-
netic permeability provided that at least one of them is
not optically isotropic. Examples of such waves were found
by explicit analytic calculations and numerically [1–17]. In
Refs. [18,19] by using the general properties of the surface
impedance of dielectrics it was shown that at most one SEW
emerges on the isotropic dielectric–anisotropic dielectric and
superconductor–anisotropic dielectric.

Apart from the phase velocity, important characteristics
of electromagnetic waves are the group and energy veloci-
ties. It was proved that the group velocity of bulk waves in
anisotropic homogeneous infinite nonabsorbing media coin-
cides with the energy velocity [20–23]. It was also shown
by explicit calculations that these velocities are equal for
plasmons on the metal–isotropic dielectric contact [24–26]
and in graphene between two isotropic dielectrics [27,28].
In Ref. [29] the equality was proved by variational method
for SEWs in nonbianisotropic stratified media bounded by
a perfectly conducting plane. (Note that SEWs cannot exist
in homogeneous substrates under such boundary conditions,
which follows from the general properties of the surface
impedance [19,30–33].) In addition, the equality of the two
velocities was proved for Bloch waves in allowed zones of
infinite anisotropic superlattices [34,35].

By the above-mentioned optical anisotropy, we refer to the
case where the dielectric permittivity and/or magnetic perme-
ability are not scalars but the electric displacement D does not
depend on the magnetic field H and the magnetic induction
B does not depend on the electric field E. At the same time
there exist media called bianisotropic where both D and B
depend on both E and H [36–41]. Such a cross-dependence
is attributed to the magnetoelectric effect and natural optical
activity [42,43]. Bianisotropy can markedly affect the prop-

agation of electromagnetic waves, including surface waves
[10,30,31,44,45]. For instance, two SEWs may emerge on the
interface between bianisotropic dielectrics whereas at most
one SEW may exist in the absence of bianisotropy, and the ve-
locities of SEWs propagating in mutually opposite directions
do not need to be equal in bianisotropic media [30,31]. The
velocities of bulk electromagnetic waves in bianisotropic me-
dia also can differ for mutually opposite directions [46–50].
On the other hand, the equality of the group and energy
velocities of bulk waves in homogeneous bianisotropic media
is preserved [51–53]. In Ref. [54] it was proved that this
equality is valid for bulk Bloch waves in allowed zones of
bianisotropic and/or magneto-optically active infinite super-
lattices. However, it is apparent that the already established
equalities of the group and energy velocities do not imply that
this equality is always valid, so it is necessary to investigate
each particular situation since the general conditions under
which these velocities coincide are unknown.

In this paper we prove the equality of the group and energy
velocities of SEWs which propagate on the interface between
two homogeneous half-infinite bianisotropic and/or magneto-
optically active media. At this stage the frequency dispersion
of material parameters is taken into account. Further, assum-
ing that the frequency dispersion may be disregarded, we
show that the projection of the group (energy) velocity on the
direction of propagation is equal to the phase velocity. Note
that in Ref. [55] an expression was given for the projection
of the energy velocity of a single evanescent mode on the
direction of its propagation in a bianisotropic medium but
this mode is not a true SEW because it does not satisfy the
boundary conditions. A true SEW is sought for as a linear
combination of evanescent modes and usually it involves two
modes in each medium unless all the media are isotropic or
their orientation is tied to elements of the crystallographic
symmetry [1–15].

We consider that the media are of generic crystallographic
symmetry and therefore we do not use any relations between
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material parameters which could be brought in by a particular
crystallographic symmetry. In other words, it is assumed that
the media have no elements of the crystallographic symmetry.

Our paper is organized as follows. In Sec. II a number of
general relations are given. Section III proves the equality
of the group and energy velocities. Section IV proves the
equality of the phase velocity and the projection of the energy
velocity on the direction of propagation and Sec. V sum-
marizes the results. The Appendix contains some additional
information.

II. GENERAL RELATIONS

The x and y components Ex,y and Hx,y of the electric E and
magnetic H field of a plane wave,(

E(r, t )
H(r, t )

)
=

(
E(z)
H(z)

)
ei(kxx+kyy−ωt ), (1)

may be found by solving a system of four ordinary differential
equations,

1

i

dξ

dz
= N̂ξ, (2)

where the vector column ξ involves Ex, Ey, Hx, and Hy

which may be ordered arbitrarily [18,44,56–58]. Following
Refs. [31,33,54] we put

ξ(z) =
(

u
v

)
, u =

(−Ey

Hy

)
, v =

(
Hx

Ex

)
. (3)

Bianisotropic nonabsorbing media are described by constitu-
tive connections [37–43] which we write in the form(

D
B

)
= �̂

(
E
H

)
, �̂ =

(
ε̂ κ̂

κ̂† μ̂

)
, (4)

where D is the electric displacement, B is the magnetic in-
duction, the tensors of dielectric permittivity ε̂ and magnetic
permeability μ̂ are assumed to be complex Hermitian in order
to allow for the magneto-optical activity, and κ̂ is a complex
nonsymmetric pseudotensor describing the bianisotropic cou-
pling. This coupling is due to the magnetoelectric effect and
natural optical activity. The symbol † denotes the Hermitian
conjugation.

With vector ξ defined by (3) the matrix N̂ may be expressed
in terms of the blocks �̂J , J = 1, 2, 4, of the Hermitian matrix

�̂ = �̂† = �̂�̂�̂−1 =
(

�̂1 �̂2

�̂†
2 �̂4

)
, (5)

where �̂ is a matrix which permutes the components of E and
H as well as the components of D and B in such a way that

�̂

(
E
H

)
=

(
ξ

φ

)
, �̂

(
D
B

)
=

(
ψ

ν

)
, (6)

where φ = (Hz Ez )t , ψ = (−Dy By Bx Dx )t , and ν = (Bz Dz )t ,
and the superscript t denotes the transposition [31,54]. In (5)
�̂1 and �̂4 are the upper 4 × 4 and lower 2 × 2 diagonal
blocks of �̂, respectively, and �̂2 is a 4 × 2 matrix with
elements (�̂2)i j = (�̂)i, j+4, i = 1, . . . , 4, j = 1, 2.

Below we will use basically the matrix N̂NN = T̂N̂ rather than
N̂, where

T̂ =
(

0̂ Î
Î 0̂

)
, (7)

and 0̂ and Î are zero and identity 2 × 2 matrices. In our paper
[54] an expression for the matrix N̂NN has been derived by
combining Maxwell’s equations represented in the form (A1)
and (A2) (see the Appendix), and relations (4)–(6), viz.,

N̂NN = ωÂ − B̂ − ω−1Ĉ, (8)

Â = �̂1 − �̂2�̂
−1
4 �̂†

2, (9)

B̂ = �̂2�̂
−1
4 Ĵt + Ĵ�̂−1

4 �̂†
2, Ĉ = Ĵ�̂−1

4 Ĵt , (10)

Ĵ = kxĴx + kyĴy, (11)

where Ĵx and Ĵy are 4 × 2 matrices,

Ĵx =
(

Î
0̂

)
, Ĵy =

(
0̂
K̂

)
, K̂ =

(
0 −1
1 0

)
. (12)

The Hermitian matrices Â, B̂, and Ĉ depend on the frequency
only through material constants. In the general case the ex-
plicit expressions of the elements of N̂NN in terms of material
constants are very involved but they simplify significantly
for certain geometries of propagation, especially in nonbian-
isotropic and magneto-optically inactive materials (see the
Appendix).

In what follows we will need an expression of the time-
averaged energy flux P(z) in terms of contractions of the
vector ξ (3) with derivatives of N̂NN with respect to kx,y. Inserting
in P = Re[E × H∗]/2,(−Ea

Ha

)
= Ĵaξ, a = x, y, (13)

as well as (
Hz

Ez

)
≡ φ = −�̂−1

4 (�̂†
2 + ω−1Ĵt )ξ (14)

obtained by using (4)–(6) and Maxwell’s equations (A2) for
ν = (Bz Dz )t , we find [54]

Pa(z) = −1

4
ξ† ∂N̂NN

∂ka
ξ, a = x, y. (15)

By (3) one has Pz(z) = ξ†T̂ξ/4.
In view of (5), (6), and (14) the time-averaged energy

W (z) = 1

4

(
E
H

)†
∂ (ω�̂)

∂ω

(
E
H

)
(16)

can be expressed in terms of ξ (3) and ∂N̂NN/∂ω at kx,y = const
[31,54],

W (z) = 1

4

(
ξ

φ

)†
∂ (ω�̂)

∂ω

(
ξ

φ

)
= 1

4
ξ† ∂N̂NN

∂ω
ξ. (17)

III. GROUP AND ENERGY VELOCITIES

Consider SEWs on the contact between two homogeneous
media 1 and 2 occupying the half spaces z > 0 and z < 0,
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respectively. The tangential components Ex,y and Hx,y are
continuous at z = 0.

The z dependence of the SEW field in media 1 and 2
is described by the vectors ξ(1)(z) and ξ(2)(z), respectively,
where

ξ( j)(z) =
∑

α=1,2

b( j)
α ξ( j)

α eip( j)
α z, j = 1, 2, (18)

ξ( j)
α and p( j)

α are the eigenvectors and corresponding eigenval-
ues of the matrices N̂( j), j = 1, 2, which are the N̂ matrices
of media j = 1 and j = 2, the eigenvalues p( j)

α are such that
Im(p(1)

α ) > 0 and Im(p(2)
α ) < 0, and the coefficient b( j)

α is the
amplitude of the mode α in the jth medium.

Due to N̂NN
( j) = N̂NN

( j)†
both p( j)

α and its complex conjugate

p( j)∗
α are eigenvalues of N̂( j) = T̂N̂NN

( j)
and

ξ
( j)†
β T̂ξ( j)

α = 0, (19)

when p( j)
β �= p( j)∗

α . Hence, in view of the SEW field structure

(18) and orthogonality (19), P( j)
z (z) = 0.

Let us prove that the components Vg,a = ∂ω/∂ka, a = x, y,
of the group velocity of the SEW are equal to the x and y
components of the energy velocity Ve,a = Pa/W , where Pa

and W are the space-averaged Pa(z) and W (z). To this end
we use the relation

ξ( j)† dN̂NN
( j)

dka
ξ( j) = −i

d

dz

(
ξ( j)†T̂

dξ( j)

dka

)
, (20)

where N̂NN
( j) = T̂N̂( j),

d

dka
= ∂

∂ka
+ ∂ω

∂ka

∂

∂ω
, (21)

with kb = const, a = x, and b = y, or vice versa. Equality (20)

follows from (2) and the fact that N̂NN
( j) = N̂NN

( j)†
.

In (21), ∂ω
∂ka

= − ∂ϒ
∂ka

/ ∂ϒ
∂ω

, where ϒ(ω, ka) = 0 is the disper-

sion equation with kb = const, so ξ(1) = ξ(2) and dξ(1)/dka =
dξ(2)/dka at z = 0. Since ξ(1) → 0 as z → +∞ and ξ(2) → 0
as z → −∞, we obtain∫ +∞

0
ξ(1)† dN̂NN

(1)

dka
ξ(1)dz = iξ(1)†T̂

dξ(1)

dka

∣∣∣∣∣
z=0

= iξ(2)†T̂
dξ(2)

dka

∣∣∣∣∣
z=0

= i
∫ 0

−∞

d

dz

(
ξ(2)†T̂

dξ(2)

dka

)
dz

= −
∫ 0

−∞
ξ(2)† dN̂NN

(2)

dka
ξ(2)dz. (22)

Hence, due to (15) and (17) the substitution of (21) in∫ +∞

0
ξ(1)† dN̂NN

(1)

dka
ξ(1)dz +

∫ 0

−∞
ξ(2)† dN̂NN

(2)

dka
ξ(2)dz = 0 (23)

yields

Vg,a = Pa

W
= Ve,a, a = x, y, (24)

where Pa = P
(1)
a + P

(2)
a and W = W

(1) + W
(2)

,

P
( j)
a = −1

4

∫ z( j)
u

z( j)
l

ξ( j)† ∂N̂NN
( j)

∂ka
ξ( j)dz, (25)

W
( j) = 1

4

∫ z( j)
u

z( j)
l

ξ( j)† ∂N̂NN
( j)

∂ω
ξ( j)dz, (26)

the integration limits are z(1)
l = 0 and z(1)

u = +∞ whereas
z(2)

l = −∞ and z(2)
u = 0.

Thus (24) proves the equality of the group and energy
velocities of SEWs.

IV. ENERGY AND PHASE VELOCITIES

Let us show that the projection of the SEW group velocity
on the direction of propagation equals the SEW phase velocity
if the material constants do not depend on the frequency.
Suppose that wave (1) propagates along the axis X . Letting
ky = 0 in the matrix Ĵ (11), we change the notation k|| = kx

and write N̂NN (8) in the form

N̂NN = ωÂ − k||B̂ − k2
||

ω
Ĉ, (27)

where B̂ and Ĉ are still given by (10) but Ĵ is replaced by
the matrix Ĵx (12). Correspondingly, the component P|| = Px

(15), which now is the energy flux along the direction of
propagation, reads as

P|| = −1

4
ξ† ∂N̂NN

∂k||
ξ† = 1

4
ξ†

(
B̂ + 2

k||
ω

Ĉ
)

ξ. (28)

If the material constants do not depend on the frequency,
then

∂N̂NN

∂ω
= Â + k2

||
ω2

Ĉ, (29)

and one can notice that

B̂ + 2
k||
ω

Ĉ = vph

(
Â + k2

||
ω2

Ĉ − 1

ω
N̂NN

)
, (30)

where vph = ω/k‖ is the phase velocity, so due to (17)

P||
W

= vph − 1

4k‖W
ξ†N̂NNξ. (31)

Assume that

ξ(z) =
∑

α=1,2

bαξαeipαz, (32)

where ξα and pα are the eigenvectors and eigenvalues of the
matrix N̂ and either Im(pα ) > 0, α = 1, 2, or Im(pα ) < 0,
α = 1, 2. In this case pα �= p∗

β , α, β = 1, 2 in (32) and, by
virtue of (19),

ξ†N̂NNξ =
2∑

α,β=1

b∗
βbα pαei(pα−p∗

β )zξ†
βT̂ξα = 0. (33)

As a result, for the field (32)

P||
W

= vph = const (34)

023514-3



A. N. DARINSKII PHYSICAL REVIEW A 109, 023514 (2024)

over the depth of the medium.
Thus the sought equality follows from (24) and (34) and

the fact that the SEW field (17) in each of the two media is
structured similarly to ξ(z) (32),

∂ω

∂k||
= P||

W
= vph, (35)

where ∂ω/∂k|| is the group velocity along the direction of
propagation.

V. CONCLUDING REMARKS

We have shown that the group velocity Vg of SEWs
occurring on the interface between two homogeneous half-
infinite bianisotropic media is equal to the energy velocity Ve.
The media may be not only bianisotropic but also magneto-
optically active. The equality remains valid if one of the
dielectric is replaced by metal provided that the absorption
of electromagnetic waves may be neglected.

The frequency dependence of the material constants does
not affect the equality of the group and energy velocities
but the absence of such a dependence yields a useful re-
lation. Namely, we have proved that the projection of the
energy velocity Ve|| (group velocity Vg||) on the direction of
propagation is equal to the SEW phase velocity vph pro-
vided that the material constants do not depend on the
frequency. The equality Ve|| = vph holds true locally, that is,
the phase velocity equals the projection of the energy velocity
onto the direction of propagation at any distance from the
interface.

The equality of the group and energy velocities results
in the planes of constant amplitudes of a monochromatic
wave modulated by a smooth envelope function move with
the energy velocity of this monochromatic carrier wave. In
addition, the energy velocity of a monochromatic wave is
directed along the normal to the surface of constant frequency
[20,21]. Correspondingly, the direction of propagation of a
smooth pulse will not coincide with the wave normal of the
carrier wave but in the absence of frequency dispersion the
pulse velocity along the wave normal of the carrier wave will
be equal to the phase velocity of this wave.

In deriving the equalities in question, we did not employ
any particular relations among material parameters, including
those that could be due to a specific crystallographic sym-
metry, so variations of material properties do not affect the
equalities established unless attenuationoccurs.

Our proof is applicable to SEWs in half-infinite superlat-
tices and in this case the integrals in (22)–(26) should be
viewed as sums of the integrals over individual layers. This
proof also applies to waves in planar waveguides. Meanwhile,
identity (33) does not hold true in layers since the wave field
in them involves partial modes with Im(pα ) � 0. Therefore
Ve|| �= vph for SEWs in superlattices and waves in planar
waveguides when the dispersion is absent. However, if a pla-
nar waveguide is on a homogeneous half-infinite substrate
then the wave field in such a substrate is similar to a SEW.
Hence locally in the substrate, P‖/W = vph.
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APPENDIX

By using the notation introduced in Sec. II, we can write
the result of the substitution of expression (1) in the Maxwell
equations in the following form:

1

i

dξ

dz
= T̂(ωψ + Ĵφ), (A1)

−Ĵtξ = ων. (A2)

The matrix N̂NN (8) and hence N̂ diverge when ω → 0 because
of the factor ω−1 at the matrix Ĉ (10). However, Eq. (2) can
be modified such that the new matrix N̂ω will be finite when
ω = 0. Indeed, let us point the coordinate axis X along the
direction of propagation of wave (1) and put u = ωuω, where
u = (−Ey Hy)t (3). Since ky = 0 in (11), we find that in the
limit ω = 0 (A1) and (A2) reduce to

duω

dz
= iψ′,

dv
dz

= ikxφ, −kxuω = ν, (A3)

where v = (Hx Ex )t , ψ′ = (Bx Dx )t , φ = (Hz Ez )t , and ν =
(Bz Dz )t . Thus Ey = Hy = 0 when ω = 0 and, by using the
constitutive connections written in terms of the matrix �̂
(5), we transform (A3) into the system dξω/dz = iN̂ωξω,
where ξω = (uω v)t and N̂ω is constructed from the elements
of �̂. Hence the matrix N̂ω of system (2) for ξω does not
involve terms divergent when ω → 0. Note that the equa-
tion dv/dz = ikxφ allows one to introduce the magnetic and
electric potentials �(x, z) = (ϕH (z) ϕE (z))t exp(ikxx) so that
v = −d�/dx = −ikx� and φ = −d�/dz.

In certain cases the explicit expression of N̂NN in terms
of material constants simplifies substantially. For instance,
if a medium confined by the XZ plane is nonbianisotropic,
biaxial, and magnetically isotropic (μ = 1), the coordinate
axes X , Y , and Z coincide with the principal axes of the
dielectric permittivity and the direction of propagation is the
X axis, then N̂NN proves to be a diagonal matrix with ele-
ments N11 = ωεyy − k2

x /ωμ0, N22 = ωμ0 − k2
x /ωεzz, N33 =

ωμ0, and N44 = ωεxx, where μ0 is the magnetic constant.
The matrix N̂ splits into two 2 × 2 blocks and system (2)
decomposes into two systems of two equations describing
transverse electric (TE) and transverse magnetic (TM) modes,

dξ′
TE

dz
= i

⎛
⎝ 0 ωμ0

ωεyy − k2
x

ωμ0
0

⎞
⎠ξ′

TE, (A4)

dξ′
TM

dz
= i

⎛
⎝ 0 ωεxx

ωμ0 − k2
x

ωεzz
0

⎞
⎠ξ′

TM, (A5)

where ξ′
TE = (−Ey Hx )t and ξ′

TM = (Hy Ex )t . The correspond-
ing four component vectors (3) read as ξTE = (−Ey 0 Hx 0)t

and ξTM = (0 Hy 0 Ex )t .
By (A4) and (A5) we obtain simple expressions for all the

necessary characteristics of the modes, so one can straight-
forwardly check that, e.g., expressions (15) and P = Re[E ×
H∗]/2 yield the same result for the components Px,y of the
energy flux.
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