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Simultaneous control of quantum phase synchronization and entanglement dynamics
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The optomechanical cavity system has been a paradigm in the manifestation of continuous variable quantum
information over the past decade. This paper investigates how quantum phase synchronization is associated with
bipartite Gaussian entanglement in coupled gain-loss mechanical oscillators, where the gain and loss rates can
be controlled by driving the cavities with blue and red detuned lasers, respectively. We examine the role of
the exceptional point (EP) in a deterministic way of producing self-sustained oscillations that generate robust
quantum correlations among quadrature fluctuations of the mechanical oscillators. Particularly, steady phase
synchronization dynamics along with the entanglement phenomena are observed in the effective weak-coupling
regime above a critical driving power. These phenomena are further verified by observing the mechanical
squeezing and phase-space rotations of the Wigner distributions. Moreover, the fidelity fluctuation shows how the
quantum correlation dynamics are related to the EP of the system. We also discuss the impact of the mechanical
oscillator’s frequency mismatch and decoherence due to thermal phonons on system dynamics. These findings
hold promise for applications in phonon-based quantum communication and information processing on the
macroscopic scale.
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I. INTRODUCTION

Synchronization is a natural phenomenon widely observed
around us, where two or more systems tend to act similarly
at the same time. During the early 17th century, Huygens
first proposed that mechanical clocks hanging from a com-
mon support tend to oscillate in unison by overcoming their
natural frequency disorder [1]. Since then, it has been found
in various processes such as the flashing of fireflies, chemical
reactions, neuron networks, and heart cells [2]. Synchroniza-
tion in different classical setups was extensively studied in
the past, but in the quantum limit, it gained popularity after
Mari et al. proposed a measure to compute complete synchro-
nization and phase synchronization for continuous variable
systems [3]. This has been applied in various systems like
cavity quantum electrodynamics [4], atomic ensembles [5],
van der Pol oscillators [6], and spin chains [7]. The study of
synchronization among classical oscillators is usually mod-
eled in the framework of nonlinear dynamics, where limit
cycle solutions exist and the oscillators tend to synchronize
due to the mutual interaction in a steady state. However, the
principle of quantum synchronization differs fundamentally
from its classical counterpart due to Heisenberg’s uncer-
tainty relation [3]. It is well known that synchronization is
closely linked to other quantum correlations, such as entan-
glement [7], mutual information [8], and geometric discord
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[9]. Particularly, the coexistence of quantum synchroniza-
tion and entanglement is a captivating phenomenon. Earlier
studies have demonstrated that superconducting qubits that
emit entangled photons can be synchronized [10]. Also, clock
synchronization is achieved using entangled photons gener-
ated by parametric down-conversion [11], and in quantum
many-body systems, entanglement and synchronization lead
to collective cooperative behavior [12]. Moreover, spin-1 sys-
tems can also be synchronized through entanglement [7].

In this context, optomechanical architectures [13] appeared
to be a promising platform to test synchronization and entan-
glement among micro- or nanomechanical oscillators, where
two mechanical or cavity modes can be directly coupled
through phonon or photon hopping. Multiple synchroniza-
tion schemes have been developed in optomechanics [14–17],
among which enhancing the nonlinearity is considered a
primary feature, for which periodic modulation, quadratic
coupling, and optical parametric amplifiers are frequently
used [18–21]. The curiosity about the interplay between quan-
tum synchronization and entanglement in optomechanical
setup is emerging in recent times [21–24]. Previously it has
been demonstrated through optical coupling only, and the
mechanical interaction-based design is still unexplored. The
idea of exceptional points (EPs) [25] in coupled gain-loss
structures is a novel tool that can be applied for this purpose.
EPs refer to fundamental degeneracies in gain-loss cavities or
waveguides [26–28], where the system’s eigenvalues coalesce
and become degenerate. EP-based optomechanical structures
have been studied for mass sensing [29], optomechanically
induced transparency [30], and sideband generation [31]
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offering better controllability for operation. Synchronization
and frequency locking in the classical domain [32–34] and
entanglement generation in PT symmetric structures [35–37]
are also proposed via EP engineering. However, promising ad-
vantages of EPs need further exploration to feature intriguing
quantum correlation properties in different systems.

Here, we present a configuration consisting of two me-
chanically coupled gain-loss optomechanical cavities (OMCs)
by controlling the laser detuning. This configuration leads
to self-sustained oscillations through EP in a deterministic
way [31], which is essential for investigating quantum phase
synchronization and entanglement between the two oscilla-
tors. Based on the numerical calculations, a rich connection
between quantum synchronization and entanglement is further
clarified. It is noteworthy to mention that no entanglement was
observed in the mechanically coupled system despite achiev-
ing synchronization in Ref. [3]. In this paper, we present the
EP-induced limit cycles to obtain various dynamics of quan-
tum phase synchronization and entanglement simultaneously.
Also, in contrast to the earlier attempts at demonstrating en-
tanglement through coupling coefficient variation [35,36], the
driving field strength is suitably modified in our analysis to
switch the coupling from strong to weak regimes. The excep-
tional point in this system reveals an intriguing relationship
between mechanical squeezing characteristics and fidelity dy-
namics of the oscillators, which have not been studied so
far. The proposed method in this paper allows simultaneous
control of the dynamics of quantum phase synchronization
and entanglement, which can be applied in quantum commu-
nication protocols and information processing schemes.

The paper is organized as follows. In Sec. II, the quantum
Langevin equations are derived from the system Hamiltonian.
The classical dynamics are analyzed and the stability of the
system is presented in the consequent subsections. Next, we
present the covariance matrix (CM) approach to quantify
quantum phase synchronization and entanglement measure-
ment schemes. Section III presents the important results and
discussion about the possible relationship between these two
phenomena, and Sec. IV concludes the paper.

II. THEORETICAL MODEL

A. Hamiltonian and quantum Langevin equations

The schematic of the proposed setup is depicted in Fig. 1.
It consists of two optomechanical cavities that are identi-
cal but oppositely detuned, both coupled mechanically. The
coupling between the two oscillators is facilitated through
phonon tunneling. By adjusting the laser driving power, one
can tune the mechanical coupling between the two oscillators.
The Hamiltonian of the complete system can be expressed as
follows (taking h̄ = 1):

Ĥ =
∑
j=1,2

[
− � j â

†
j â j + ωm j

2

(
p̂2

j + q̂2
j

) − g0 j â
†
j â j q̂ j

+iE j (â
†
j − â j )

]
− Jq̂1q̂2. (1)

The Hamiltonian is written in the rotating frame of the
driving frequency (ωL) with cavity detuning from optical

FIG. 1. Schematic diagram of two Fabry-Pérot cavities coupled
mechanically with strength J and driven by red (�1 < 0) and blue
(�2 > 0) detuned laser fields, respectively. The opposite detunings
characterize the gain-loss effect, whereas Ej ( j = 1, 2) represents the
amplitude of optical driving power provided. The natural frequencies
of the vibrating oscillators are assumed to be nearly equal, i.e.,
ωm1 ≈ ωm2.

resonance, which is given as � j = ωL − ωoj . Here â†
j (â j )

are the creation (annihilation) operators associated with the
optical field with frequency ωoj , and q̂ j and p̂ j are the di-
mensionless position and momentum operators of the jth
mechanical oscillators with frequencies ωm j . The optome-
chanical coupling of each cavity is g0 j and the laser driving
field strength of the two single-mode cavities is Ej . The last
term in the Hamiltonian represents the mechanical interaction,
acting as a bosonic Gaussian channel between the oscillators
with strength J , assumed to be much smaller than mechanical
frequency (J � ωm j ). The interaction Hamiltonian indicates
the potential energy of the mechanically coupled oscilla-
tor system, and it depends on the product of displacement
operators, showing influences of the oscillator’s motion on
one another. The dissipative dynamics of the system are de-
scribed by the following set of nonlinear quantum Langevin
equations:

∂t â j = −(κ − i� j )â j + ig0â j q̂ j + Ej +
√

2κ âin
j ,

∂t q̂ j = ωm j p̂ j,

∂t p̂ j = −ωm jq̂ j − γm j p̂ j + Jq̂3− j + g0â†
j â j + η̂ j . (2)

Here, γm j and κ represent the intrinsic dissipation
of mechanical oscillators and optical cavities, respec-
tively. In analytical formulations, the cavity decay rate
(κ) and optomechanical constant (g0 j) are assumed iden-
tical for both cavities for the sake of simplicity. The
laser driving amplitude provided for both cavities is
also taken as the same, i.e., E1 = E2 = E . The stochas-
tic noise operators for optical and mechanical sys-
tems are given as âin

j and η̂ j , satisfying the standard

correlation 〈âin†
i (t )âin

j (t ′) + âin†
j (t ′)âin

i (t )〉 = δi jδ(t − t ′) and
1
2 〈η̂i(t )η̂ j (t ′) + η̂ j (t ′)η̂i(t )〉 = γm j (2nm + 1)δi jδ(t − t ′) under
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Markovian approximation [38,39]. The mean thermal phonon
occupancy at temperature T of the mechanical systems
for nearly equal operating frequencies is taken as nm =
[exp( h̄ωm

kBT ) − 1]−1 (where kB is the Boltzmann constant). As-
suming a strongly driven cavity field, the quantum Langevin
equations are usually solved using the standard linearization
technique, where the classical mean dynamics and quadra-
ture fluctuations of the operators are separated, i.e., Ô(t ) =
〈Ô(t )〉 + δÔ(t ), where O = aj, q j, p j . The classical dynami-
cal equations are given as

∂t 〈â j〉 = −(κ − i� j )〈â j〉 + ig0〈q̂ j〉〈â j〉 + E ,

∂t 〈q̂ j〉 = ωm j〈p̂ j〉,
∂t 〈p̂ j〉 = −ωm j〈q̂ j〉 − γm j〈p̂ j〉 + J〈q̂3− j〉 + g0|〈â j〉|2. (3)

Neglecting higher-order terms, the linearized quantum
Langevin equations describing quadrature fluctuations are as
follows:

∂tδâ j = −(κ − i� j )δâ j + ig0(〈â j〉δq̂ j + 〈q̂ j〉δâ j )

+
√

2κδâin
j ,

∂tδq̂ j = ωm jδ p̂ j,

∂tδ p̂ j = −ωm jδq̂ j − γm jδ p̂ j + Jδq̂3− j + g0(〈â j〉δâ†
j

+〈â j〉∗δâ j ) + η̂ j . (4)

B. Effective coupled mechanical system

The effective coupled mechanical oscillator picture can
be found by first introducing the creation and annihilation
operators of the mechanical modes defined as b̂ j = q̂ j+i p̂ j√

2
and

b̂†
j = q̂ j−i p̂ j√

2
. Subsequently, the coupled mechanical system

discarding noise terms is described by the following classical
equations:

∂t 〈â j〉 = −[κ − i(� j + 2g0 Re〈b̂ j〉)]〈â j〉 + E ,

∂t 〈b̂1〉 = −(iωm1 + γm1)〈b̂1〉 + iJ〈b̂2〉 + ig0|〈â1〉|2,
∂t 〈b̂2〉 = −(iωm2 + γm2)〈b̂2〉 + iJ〈b̂1〉 + ig0|〈â2〉|2. (5)

Next, we write 〈b̂ j〉 by using the ansatz formula as 〈b̂ j〉 =
βSS

j + β̃ j exp(−iω̄mt ), where βSS
j denotes the average dis-

placement in the steady state and β̃ j is the slowly varying
time-dependent amplitude with locking frequency ω̄m. By
utilizing this ansatz formula, it is easy to eliminate the
cavity modes 〈â j〉 from the system of equations Eq. (5)
[32] (detailed analysis is presented in Appendix). The re-
sulting coupled mechanical modes can be described by the
effective Hamiltonian dynamics as i∂t
 = Heff
, with the
eigenvector 
 = [〈b̂1〉 〈b̂2〉]T and the effective Hamiltonian
matrix

Heff =
(

ω1
eff − iγ 1

eff −J
−J ω2

eff + iγ 2
eff

)
. (6)

Here ω
j
eff and γ

j
eff are optomechanically modified mechan-

ical frequencies and damping rates, respectively, due to the
elimination of cavity modes. The effective frequency mod-
ification is negligible in the resolved sideband setup and
thus can be safely neglected [31]. The effective decay and

gain rate modifications are expressed as γ 1
eff = γ 1

opt + γm1

and γ 2
eff = γ 2

opt − γm2 [40], where γ
j

opt ≈ 4g2
0

κ
|〈â j〉SS|2 [41] is

the amount of optomechanical inclusion in the mechanical os-
cillators damping rates. The eigenfrequencies of the effective
Hamiltonian are found as

ε± ≈ ωm1 + ωm2

2
− i

γ 1
eff − γ 2

eff

4
± � (7)

with � =
√

J2 − ( γ 1
eff+γ 2

eff
4 )2. This non-Hermitian system has

eigenvalues of the form ε± = ω± + iγ ± where real and
imaginary parts of the eigenspectrum denote the mechani-
cal frequencies and damping of the system. From Eq. (7)
it can be seen that the phase transition between strongly
coupled and weakly coupled regimes in parameter space
occurs at Jc = (γ 1

eff + γ 2
eff )/4, which is also known as the

exceptional point. The effective strong coupling exhibits for
J > (γ 1

eff + γ 2
eff )/4, while J < (γ 1

eff + γ 2
eff )/4 stands for the

effective weak-coupling regime. The two transition regimes
merge at the EP, which can be determined by adjusting either
the effective damping rates (γ j

eff ) or the mechanical coupling
strength (J).

C. Classical dynamics

To determine various temporal dynamics of the mechanical
oscillators and identify the phase transition via exceptional
points, the set of Eq. (3) is numerically solved by setting initial
conditions to zero. In this analysis, we fixed the mechanical
coupling strength at J = 3 × 10−2ωm and varied the effective
damping rates γ

j
eff by changing the optical driving amplitude

E . As the same laser driving is incident in both cavities, we
can safely choose γ 1

opt ≈ γ 2
opt. The intrinsic damping rate of

the loss oscillator is taken to be higher than the gain oscillator,
i.e., γm1 = 10−2ωm and γm2 = 10−4ωm, which has implica-
tions regarding the system stability, and a detailed discussion
is provided later. The optomechanical coupling constant is set
at g0 = 10−4ωm and the cavity decay rate is set at κ = 0.1ωm

for both systems. The operating frequencies for the mechani-
cal oscillators are taken as degenerative with small frequency
mismatch, given by ωm1 = ωm and ωm2 = 1.008ωm. Here we
keep the first cavity red detuned and the second cavity blue
detuned, i.e., −�1 = �2 = ωm, which induces the loss and
gain effect in the mechanical oscillators. The simulation pa-
rameters are taken according to the experiments done in the
resolved sideband regime [42]. The critical driving strength
for which the phase transition occurs is found using the re-

lation Jc = γ 1
eff +γ 2

eff
4 , in which γ

j
eff is related to laser driving

amplitude E by Eq. (3). Based on the analytical calcula-
tion, the EP occurs in the parameter space of this system
at E = Ep ≈ 380ωm and it resembles closely the numerical
simulations performed on the classical dynamical Eq. (3).
From Fig. 2 different temporal dynamics of the coupled
mechanical system can be observed by varying the driving
amplitude over a wide range. The effective strong-coupling
condition J > (γ 1

eff + γ 2
eff )/4 = 0.0203ωm corresponds to the

low driving E < Ep, represented by Fig. 2(a). Here, strong
coupling results in a coherent exchange of energy between
the periodic dynamics of the oscillators at E = 300ωm. How-
ever, the driving amplitude at this condition is too low to
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FIG. 2. (a) The classical evolution of the gain (blue) and loss
(red) mechanical oscillators position q1,2 with decaying dynamics
at strong-coupling condition with driving E = 300ωm. (b) The sud-
den amplification in the vicinity of the exceptional point at driving
E = 400ωm. (c) The self-sustained oscillation with driving E =
500ωm. (d) The corresponding phase-space trajectory at effective
weak coupling.

support the energy exchange for a long time, therefore the
oscillation decays. Tuning the driving amplitude towards the
EP brings the system closer to the weakly coupled condi-
tion, i.e., J < (γ 1

eff + γ 2
eff )/4 = 0.0518ωm where the growing

oscillation appears for high driving E > Ep. Figure 2(b) rep-
resents this condition at E = 400ωm, where the mechanical
energies in both oscillators are localized, and the coupling
becomes weak, therefore the energy exchange cannot be sup-
ported anymore. This localization of energy amplified the
self-sustained oscillation amplitude of the oscillators. As we
keep increasing E , the effective loss and gain in the oscillators
cannot be balanced anymore. As a result, the gain oscillator
is amplified greatly, but the loss oscillator experiences lit-
tle amplification due to finite weak coupling between them.

However, the optomechanical nonlinearity saturates the
growth of amplification for both oscillators’ amplitudes at
E = 500ωm, shown in Fig. 2(c). Here we see the loss os-
cillator has a lesser amplitude than the gain oscillator as
it continues to lose its stored mechanical energy to the
environment due to a higher effective damping rate. The
oscillators perform self-sustained oscillation while operat-
ing in the weak-coupling condition (E > Ep) and they start
oscillating with a locking frequency. The phase portrait
in Fig. 2(d) represents the frequency-locking phenomenon
as also studied in Ref. [32]. It is important to note
that, after crossing the driving amplitude threshold, there
is a sudden rise in mechanical amplitude, which induces
instability in the system. But the growing amplification
settles as we keep on increasing the driving amplitude,
eventually reaching limit cycles. This self-sustained oscil-
lation obtained through exceptional points generates the
quantum-mechanical correlations between the coupled me-
chanical oscillators, which will be discussed in the following
section.

D. Stability and Lyapunov equation

To investigate the quantum correlation properties of the
quadrature fluctuations we introduce the operators for the
optical fields, i.e., δx̂ j = 1√

2
(δâ†

j + δâ j ) and δŷ j = i√
2
(δâ†

j −
δâ j ), and for the noise operators δx̂in

j = 1√
2
(δâin†

j + δâin
j ) and

δŷin
j = i√

2
(δâin†

j − δâin
j ). Therefore, the set of Eq. (4) describ-

ing fluctuations can be rewritten in compact matrix form as

∂t u = A(t )u(t ) + n(t ). (8)

Here uT = (δq̂1, δ p̂1, δx̂1, δŷ1, δq̂2, δ p̂2, δx̂2, δŷ2)
is the quadrature fluctuation vector and nT =
(0, η̂1,

√
2κδx̂in

1 ,
√

2κδŷin
1 , 0, η̂2,

√
2κδx̂in

2 ,
√

2κδŷin
2 ) is the

input noise vector with the drift matrix A given as

A8×8 =
(
A1 A0

A0 A2

)
(9)

with

A j =

⎛
⎜⎜⎜⎝

0 ωm j 0 0
−ωm j −γm j

√
2 Re(Gj )

√
2 Im(Gj )

−√
2 Im(Gj ) 0 −κ −�′

j√
2 Re(Gj ) 0 �′

j −κ

⎞
⎟⎟⎟⎠. (10)

In addition, the 2 × 2 block matrix A0 is defined by the
only nonzero element A21 = J . Here �′

j = � j + g0〈q j〉 is
the normalized effective detuning and Gj = g0〈â j〉 is the
linearized effective optomechanical coupling strength where
Re(·) and Im(·) indicate the real and imaginary parts of the
complex quantity. Note that the driving field strength might
possess any arbitrary phase associated with the mechanical
quadratures [43], therefore a positive phase reference of the
cavity field is assumed throughout the numerical analysis.
Assuming this, only positive values of imaginary parts of

〈â j〉 are taken while solving the drift matrix A. The sta-
bility conditions of the system are obtained by numerically
solving the eigenvalues of the drift matrix A, in which the
system becomes unstable when any one of the real parts of
the eigenvalues becomes positive [44]. Figure 3 shows the
stable and unstable regions under the variation of driving
amplitude. The loss oscillator is chosen as more dissipative
than the gain oscillator (i.e., γ 1

eff > γ 2
eff ) owing to the stability

analysis of the system, as it provides the decaying dynamics
in strong coupling before reaching the parametric instability
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FIG. 3. The maximum eigenvalues (λi/ωm ) of the drift matrix A
against the driving power for different damping ratios of the oscil-
lators, while other parameters remain the same. The critical driving
power Ep is depicted by the red star on the horizontal axis, where the
system jumps from stable to unstable region.

point (EP), as indicated by Eq. (7) and shown in Fig. 2(a). Fig-
ure 3 shows that the EP matches the transition from stable to
unstable region by considering the aforementioned dissipative
condition. For identical damping rates, i.e., γ 1

eff ≈ γ 2
eff , both

mechanical oscillators lead to effectively balanced gain-loss
in the system, operation in that condition may induce finite
oscillations before reaching the EP, and the transition from
decaying dynamics to self-sustained oscillation will not be
visible. The instability reached via EP essentially amplifies
the mechanical amplitudes of the oscillators, leading to limit
cycle oscillation, as also confirmed by imbalanced gain-loss
conditions related to mechanical and optical PT symmetric
systems [31,35]. The limit cycles reached via EP are essential
to develop quantum phase synchronization and entanglement
simultaneously in the proposed system.

The correlation properties of quadrature fluctuations can
be found by studying the evolution of A and the formal
solution of Eq. (8) can be expressed as u(t ) = M(t )u(0) +∫ t

0 M(τ )n(t − τ )dτ , where M(t ) = eAt and n is the input
noise vector. Since the fluctuation dynamics in Langevin
equations are linearized and noise for both optical and
mechanical systems is assumed as zero-mean Gaussian distri-
bution, the evolved states are also time-dependent Gaussian
states with zero mean irrespective of the initial conditions
[45]. Therefore, Gaussian dynamics can be fully characterized
by the CM formalism [46]. Let, V be the covariance matrix
whose elements are defined as

V = 1
2 〈ui(t )u j (t ) + u j (t )ui(t )〉. (11)

Here uj is the jth entry of the quadrature vector u and the evo-
lution of the covariance matrix and its elements are governed
by the following Lyapunov equation:

∂tV = AV + VAT + N . (12)

N is the diffusion matrix for noise, which satisfies the cor-
relation formula 1

2 〈ni(t )n j (t ′) + n j (t ′)ni(t )〉 = Ni jδ(t − t ′).
This is used to deduce the noise correlation vector as N =
Diag[0, γ (2nm + 1), κ, κ, 0, γ (2nm + 1), κ, κ]. The CM for

the whole system has the following form:

V8×8 =

⎛
⎜⎜⎝

Vm1 Vm1,a1 Vm1,m2 Vm1,a2

Va1,m1 Va1 Va1,m2 Va1,a2

Vm2,m1 Vm2,a1 Vm2 Vm2,a2

Va2,m1 Va2,a1 Va2,m2 Va2

⎞
⎟⎟⎠. (13)

Here m1 and m2 denote the mechanical modes of the vi-
brating oscillators and a1 and a2 are the modes corresponding
to optical fields. Each block of V represents a 2 × 2 square
matrix. The off-diagonal elements of the matrix represent the
covariance of different subsystems, while the diagonal ele-
ments refer to the variance of each system. From this matrix,
we can easily calculate the correlation properties between two
different subsystems. The coupled mechanical system can be
easily described by extracting the submatrix V ′ from Eq. (13),
which has the following form:

V ′
4×4 =

(
Vm1 Vm1,m2

VT
m1,m2

Vm2

)
. (14)

By singular value decomposition, it can be shown that the
2 × 2 symplectic matrices of Eq. (14) can be written as
Vm j = (2nm + 1)R(�)S(2r)RT (�) where S(r) = exp[r(b2

j −
b†2

j )] is the squeezing operator for the jth mechanical mode

with squeezing parameter r and R(�) = (cos φ j − sin φ j

sin φ j cos φ j
) is the

phase rotation operator with rotation angle φ j .

E. Quantum phase synchronization

Earlier, we have demonstrated that the oscillators are phase
locked for limit cycles. So, the measurement of quantum
phase synchronization is appropriate to verify the quan-
tum synchronization among quadrature fluctuations of the
mechanical modes. This can be evaluated by the position
and momentum vector errors for the mechanical oscillators,
given as δq̂− = 1√

2
[δq̂1(t ) − δq̂2(t )] and δ p̂− = 1√

2
[δ p̂1(t ) −

δ p̂2(t )]. According to Mari et al.’s criteria [3], the quantum
phase synchronization measurement is obtained by

Sp = 1
2 〈δp′

−(t )2〉−1. (15)

Here, δp′
− = 1√

2
[δp′

1(t ) − δp′
2(t )] is the phase-locking opera-

tor associated with the mechanical oscillators:(
δp′

j (t )
δq′

j (t )

)
= R(�)

(
δ p̂ j (t )
δq̂ j (t )

)
(16)

where R(�) is the rotation matrix and the phase is defined
as φ j = tan−1[〈p̂ j〉/〈q̂ j〉] ∈ [0, 2π ]. In the case of quantum
phase synchronization, we obtain equal quadrature variances
for both oscillators, i.e., 〈δq′

−(t )2〉 = 〈δp′
−(t )2〉 [20]. An an-

alytical expression of Sp can be obtained in the form of
covariance matrix elements, and it is an unbounded quantity.

F. Bipartite Gaussian entanglement

The bipartite entanglement between two Gaussian states
can be estimated with logarithmic negativity as [47,48]

En = max[0,− log(2v−)] (17)
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where

v− =
√

� −
√

�2 − 4 det(V ′)
2

(18)

is the smallest symplectic eigenvalue of the partial trans-
pose of the submatrix V ′ with � = det(Vm1 ) + det(Vm2 ) −
2 det(Vm1,m2 ). According to Simon’s criterion of positive par-
tial transpose [49], the necessary and sufficient condition for
bipartite Gaussian states to be entangled is v− < 0.5.

III. RESULTS AND DISCUSSION

In this section, we analyze the significance of exceptional
point-induced limit cycles to establish the phenomena of
quantum phase synchronization and entanglement generation
between the coupled mechanical oscillators. We also repre-
sent how the shape of the Wigner function changes when we
shift from strong- to weak-coupling zones, and by quantifying
fidelity we establish a connection between the EP and the
diverse dynamics observed in synchronization and entangle-
ment. The impact of frequency deviations of the oscillators
and decoherence due to thermal phonons is discussed finally
in this section.

A. Phase synchronization and entanglement dynamics

The numerical analysis is started by solving Eq. (12),
which describes the behavior of the CM elements associated
with the optical and mechanical modes with initial condition
V (0) = 1

2 Diag[1, 1, 1, 1, 1, 1, 1, 1]. This corresponds to the
vacuum state for both the cavities and thermal state for the
mechanical oscillators with mean thermal phonon number
nm = 0, which can be achieved by precooling them to their
ground state [50]. The CM specifies how quadrature fluctua-
tions are correlated across different bipartite subsystems, and
its elements are specified in Eq. (13). From the matrix V , we
have extracted V ′ as given in Eq. (14), which only contains
information about the vibrating oscillators. V ′ is associated
with the characterization of phase synchronization and entan-
glement parameters defined in Eqs. (15) and (17).

While tuning the driving amplitude E and surpassing the
exceptional point threshold (E > Ep), the coupled oscillators
enter into the limit cycle regime, where consistent correlations
of the quadrature fluctuations are noticeable in this system. As
mentioned earlier, beyond the EP there is a sudden surge in
mechanical vibrations, triggering instability. Although the EP
occurs at critical driving Ep ≈ 380ωm, quantum correlation
does not prevail until E ≈ 480ωm, which is in congruence
with Ref. [35]. Figure 3(a) shows phase synchronization dy-
namics for driving amplitudes in the self-sustained oscillation
regime, and Fig. 3(b) depicts the corresponding inset. Though
phase synchronization parameter Sp fluctuates at the transient
stage starting from 1, it converges to a steady state asymp-
totically. A similar behavior is observed for entanglement
dynamics En as shown in Fig. 3(c) with the inset in Fig. 3(d)
for the same driving amplitudes as considered for the syn-
chronization. We see the enhancement in Sp and En occurs
with higher E as long as the driving power compensates for
the weak effective coupling condition. However, the phase
synchronization parameter increases dramatically with E in

comparison with logarithmic negativity. We also notice the
death and rebirth of entanglement [51] happens at the low
driving strength E = 500ωm, which is closer to the EP and
vanishes quickly as the optical power increases. The dynamics
can be controlled with driving amplitude (E ) and various
frequency mismatches (δωm) between the oscillators, which
is discussed later in this section. Over time, entanglement
and synchronization both exhibit periodic variations because
quantum fluctuations follow classical periodic orbits as long
as all Lyapunov exponents of the classical equations are neg-
ative [52]. It is essential to understand that steady quantum
correlation dynamics arise with weak-coupling conditions
only. When the driving amplitude is not strong enough (E <

Ep), classical dynamics decays, and the oscillators do not
entangle or synchronize.

B. Wigner’s distribution and fidelity

To further confirm the influence of the exceptional point
on synchronization and entanglement, we plot the two-mode
Wigner distribution function W (q, p) of the coupled oscil-
lators for various optical driving amplitudes. The Gaussian
Wigner distribution of the two mechanical modes m1 and m2

is defined as [53,54]

W (q, p) = 1

2π
√

det(Vmj )
exp

[
−

u jV−1
mj

uT
j

2

]
(19)

where j = 1, 2 represents the two coupled oscillators and
uj and Vm j are first- and second-order moment vectors of
the jth mechanical mode. The first-order moment vector, uj ,
indicates the position of the origin and the second-moment
vector Vm j can be found from diagonal block matrices of
Eq. (14). However, u j does not provide any relevant infor-
mation and can be conveniently set to zero. The phase-space
distribution of the gain (loss) oscillators is represented with
blue (red) colors in Fig. 5 with the variation of E . When the
driving amplitude is low, such as E = 200ωm, it corresponds
to both oscillators being in their ground state with nearly
equal distribution function (W ) and identical Gaussian states.
This occurs because of the strong coupling, which causes a
coherent exchange of energy between them. Increasing E to
300ωm causes the dispersion in phase space indicating a lower
Wigner density function. This fact can also be verified by the
decaying dynamics of classical oscillation in Fig. 2(a). Near
the exceptional point at E = 400ωm, we notice an overlapping
in the Wigner distribution functions, and the two mechanical
modes are closest at that time. The Wigner distributions are
almost indistinguishable until this driving amplitude limit.
Further increasing E causes the mechanical amplification after
the EP and the Wigner functions become delocalized with
abrupt stretching occurring in phase space, which is a sign
of dynamical instability [50]. But this delocalization vanishes
quickly as the system moves away from the exceptional point
and reaches limit cycles for E = 500ωm. The squeezing ef-
fect is visible among the oscillators for limit cycle driving
power, depicted in the lower panel of Fig. 5. Although there
are certain periods with En = 0 in the temporal evolution of
entanglement due to the lower optical drive in Fig. 4(d), this is
not reflected in the squeezing characteristics of Fig. 5. As long
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FIG. 4. (a), (c) The time evolution of quantum phase synchronization and logarithmic negativity at different optical driving strengths in
the limit cycle regime. (b), (d) The magnified plot for the time duration ωmt = 4200 → 4300 (marked by two vertical dotted lines) with
E = 500ωm (black), E = 600ωm (red), and E = 700ωm (blue) for nm = 0. The other parameters remain the same.

as the Wigner function remains localized in phase space with
finite squeezing and no abrupt stretching, we can ensure there
is a certain amount of quantum correlations (such as entan-
glement) present between the Gaussian states. In other words,
the onset of entanglement between the coupled mechanical
oscillators is guaranteed by the squeezed behavior of the
phase-space distributions. Additionally, the Wigner density

functions start rotating in phase space. Similar to the classical
case as discussed earlier, the weak-coupling condition is also
exhibited in the Wigner distribution. As E further increases
beyond the EP, the degree of phase-space rotation as well
as the squeezing magnitude of the oscillators change. The
origin of phase synchronization and entanglement dynamics
in the limit cycle regime driving amplitudes in Fig. 4 can be

FIG. 5. The Wigner function visualization of the coupled gain (blue) and loss (red) mechanical system. The upper panel represents the
distribution functions of the unsqueezed states, while the lower panel represents the squeezed states by varying the optical driving strength.
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FIG. 6. The time evolution of the gain (blue) and loss (red) Wigner density functions at time instants ωmt = 3000, ωmt = 3500, and
ωmt = 4000 at fixed power E = 600ωm.

traced back to this point. Also, the shape and angle of rotation
of Wigner functions remain constant over time, at a fixed
driving amplitude. Figure 6 represents W at three subsequent
time intervals with optical driving E = 600ωm. Note that the
two coupled oscillators are phase synchronized with the same
magnitude of squeezing, indicating persistent entanglement.
Therefore, we ensure the proposed system exhibits both phase
synchronization and entanglement simultaneously.

Another important method to verify the geometry of
Wigner functions is by calculating fidelity for the Gaussian
states. In this system, fidelity is determined by comparing the
overlap of two Gaussian states. Essentially, it measures the
level of similarity between these states, defined as [53,54]

F = exp
[ − 1

2 (u1 − u2)(Vm1 + Vm1 )−1(u1 − u2)T
]

√
δ1 + δ2 − √

δ2

(20)

with δ1 = det(Vm1 + Vm1 ) and δ2 = 4(det[Vm1 ] −
0.25)(det[Vm2 ] − 0.25). The behavior of fidelity (F )
dynamics is illustrated in Fig. 7 under varying optical
powers. Initiated at F = 1 during the transient stage, fidelity

FIG. 7. The evolution of the fidelity dynamics at driving strength
E = 400ωm (orange), E = 500ωm (black), E = 600ωm (red), and
E = 700ωm with the magnified plot for the time duration ωmt =
4200 → 4300 shown in the lower panel. The dynamics are plotted
by considering thermal phonons nm = 0.

subsequently diminishes in the steady state for limit cycles. As
anticipated from the Wigner distribution functions depicted in
Fig. 5, fidelity remains at unity near the exceptional point, i.e.,
E = 400ωm, exhibiting no fluctuations as represented by the
orange dotted line in the inset image. Moving away from the
exceptional point, fidelity experiences a decline, as evident
by the distinct shapes of the squeezed Wigner distributions.
Figure 7 portrays diverse fidelity dynamics within the
limit cycle regime, employing driving amplitude levels
consistent with those taken previously. We see that fidelity
represented with the black curve (E = 500ωm) is higher than
the red (E = 600ωm) and blue (E = 700ωm) curve, which
depicts opposite behavior than phase synchronization and
entanglement dynamics. The fidelity fluctuation persists in the
limit cycle oscillation of the mechanical oscillators. As one
can observe from Fig. 5, the Gaussian states represented by
the Wigner distribution are almost identical for E � 400ωm,
therefore F = 1 is imperative. In this scenario, no quantum
correlations are observed, but the indistinguishable nature
is lost when mechanical squeezing modifies the Gaussian
states for E � 500ωm, due to which fidelity dynamics start to
fluctuate below F = 1. The fluctuation of fidelity indicates a
greater likelihood of synchronization and entanglement [55],
which was also verified in Fig. 4.

C. Effect of frequency mismatch and finite thermal phonons

The frequency mismatch of the coupled mechanical
oscillators plays a crucial role in examining the phase syn-
chronization and entanglement characteristics. To explore the
influence of frequency deviations, we varied the frequency
mismatch, i.e., δωm = ωm2 − ωm1 till 0.01δωm while tuning
the driving amplitude E in the limit cycle regime. Note that
δωm should remain small due to the assumption considered
in the classical analysis. Figure 8 represents the effect of
δωm on quantum phase synchronization and logarithmic neg-
ativity, showing different zones of maximum and minimum
values of Sp and En. From Fig. 8(a) it can be observed for
lower mismatch, i.e., δωm < 0.002, that a smaller range of
optical driving (E � 700ωm) is sufficient to synchronize the
oscillators, while with a higher mismatch, i.e., δωm > 0.005,
a wider range of E is required in the limit cycle regime.
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FIG. 8. (a) The maximum of the quantum phase synchronization
and (b) the entanglement with the varying frequency mismatch (δωm)
and the optical driving power (E ) in the self-sustained oscillation
regime.

Smax
p occurs in between E = 700ωm and 900ωm with fre-

quency deviation ranging from 0.007 to 0.01. For this reason,
we have fixed δωm = 0.008 in the earlier numerical simula-
tions. Interestingly, we observe a stronger tendency towards
phase synchronization with an increase in δωm, which is
contradictory to the classical case, yet similar to the block-
ade phenomenon [56]. However, the physical mechanism of
quantum synchronization blockade is different in this case,
which depends upon the simultaneous cooling of the me-
chanical modes as discussed in Ref. [23]. We also notice a
similarity of quantum phase synchronization with entangle-
ment in Fig. 8, which further establishes their simultaneous
generation and control. However, the occurrence of Emax

n does
not depend upon δωm, unlike Smax

p . We see that maximum
logarithmic negativity values can be obtained from lower- to
higher-frequency deviations and they fall in the driving power
range of 750ωm � E � 950ωm. Therefore, we expect that a
moderate frequency deviation of the mechanical oscillators
does not affect much the quantum phase synchronization and
entanglement formation.
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S p
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E n
ωmt

 nm=5   nm=15

FIG. 9. The time evolution of (a) the quantum phase synchro-
nization and (b) the entanglement for a finite thermal phonon number
of nm = 5 (blue) and nm = 15 (red) with the driving power amplitude
fixed at E = 600ωm.

Lastly, it is important to discuss the impact of thermal
phonons on quantum dynamics to analyze the deviations.
The calculations mentioned so far do not account for ther-
mal noise. However, as the system temperature rises, there
is a corresponding increase in mean thermal phonon num-
bers. Figure 9 displays dynamics of phase synchronization
and entanglement for different thermal phonon numbers when
increased from an idealistic condition of nm = 0 to nm = 5
and 15. As the temperature increases, entanglement and phase
synchronization dynamics diminish, due to the decoherence.
However, phase synchronization is more resilient than entan-
glement, even at high temperatures.

IV. CONCLUSION

In this paper, we explored entanglement and quantum
phase synchronization dynamics in a gain-loss optomechani-
cal system with mechanically coupled oscillators. By applying
opposite detunings, we induced gain and loss effects in the
mechanical oscillators and controlled various dynamics both
classically and quantum mechanically by varying the optical
driving amplitude. Using experimentally feasible parameters,
we observed various oscillation dynamics, including damp-
ing and self-sustained vibrations. These oscillators showed
phase-locked behavior in the weak-coupling condition result-
ing in limit cycles, which could be accessed by adjusting laser
power and tuning the exceptional point. Quantum correla-
tions of quadrature fluctuation operators emerged during limit
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FIG. 10. The real (a) and imaginary parts (b) of the eigenvalues. The EP occurs in the parameter space for the critical coupling strength Jc

with corresponding driving amplitude E = Ep, and other parameters are taken the same as before. (c) The variation of critical coupling strength
where driving amplitude below the red dotted line indicates effective strong coupling and that above it represents effective weak-coupling
regions.

cycle oscillations, revealing entanglement and synchronized
quantum phases between the coupled mechanical modes.
As driving amplitude is increased, the effective coupling
becomes weaker, and entanglement and synchronization dy-
namics are enhanced. These phenomena initially grew but
later decreased due to factors like higher driving strength and
various frequency mismatches. Corresponding Wigner func-
tion distributions help to visualize the evolved Gaussian states
that are squeezed and phase-space rotated. Also, the fidelity
dynamics is calculated to verify how different geometries of
the Wigner function are related to fidelity fluctuation, which
in turn controls phase synchronization and entanglement dy-
namics. Remarkably, phase synchronization remained robust
against finite thermal noise compared to entanglement, which
is more sensitive to temperature changes. From an engineering
point of view, a perfectly balanced condition is not always
practically realizable, and moderate frequency deviation of
the mechanical oscillators does not affect much our system.
The numerical calculations show that mechanical oscillators
can be used to manipulate Gaussian quantum information
through the phonon transfer mechanism that acts as Gaussian
channels.

APPENDIX: EXCEPTIONAL POINT ANALYSIS

The growth of mechanical amplitudes is slow over time in
the limit cycle oscillations, thus the cavity modes 〈â j〉 can be
safely eliminated from Eq. (5) by assuming a fixed amplitude
for the mechanical vibrations. With this assumption, the set of
Eq. (5) can be solved by describing the mechanical oscillation
with the aforementioned ansatz formula as [32]

〈b̂ j〉 = βSS
j + β̃ j exp(−iω̄mt ) (A1)

where βSS
j = ig0|〈â j〉|2+iJβSS

3− j

iωm j+γm j
[obtained by setting ∂t 〈b̂ j〉 = 0

in Eq. (5)], and by using the Jacobi-Anger expansion the
intracavity field can be expressed as

〈â j〉 = exp (−iθ j )
∑

n

αn
j exp (inω̄mt ) (A2)

where θ j = −ν j sin ω̄mt is the phase with ν j = 2g0 Re(β̃ j )
ω̄m

and
the different harmonics of the cavity field are

αn
j = EJn(−ν j )

κ + i(nωm − �′
j )

. (A3)

Here Jn is the nth-order Bessel function of the first kind
where i(nωm − �′

j ) + κ can be expressed as l j
n and �′

j =
� j + 2g0 Re(βSS

j ). Substituting the expressions into Eq. (5),
we get the coupled mechanical modes without the cavity fields
as [40]

∂t 〈b̂1〉 = −(
iω1

eff + γ 1
eff

)〈b̂1〉 + iJ〈b̂2〉,
∂t 〈b̂2〉 = −(

iω1
eff − γ 1

eff

)〈b̂2〉 + iJ〈b̂1〉. (A4)

The optomechanical modifications for effective frequency
and effective damping rates while eliminating the cavity fields
are expressed as ω

j
eff = ωm j + ω′

j and γ
j

eff = γ
j

opt ± γm j [31].

Here, ω′
j is known as the optical spring effect and γ

j
opt is the

optomechanically modified damping rate, which is given as
[32]

ω′
j = − 2g2

0E2

�ν j
Re

∑
n

Jn+1(−ν j )Jn(−ν j )

l j∗
n+1l j

n

,

γ
j

opt =4κg2
0E2

ν j

∑
n

Jn+1(−ν j )Jn(−ν j )∣∣l j∗
n+1l j

n

∣∣2 . (A5)

In the limit of conservative systems, the Bessel functions
can be approximated as

Jn(−ν) ≈ 1

n!

(−ν

2

)n

, for n > 0,

Jn(−ν) ≈ (−1)n

(−n)!

(−2

ν

)n

, for n < 0. (A6)

Since ν � 1 implies −ν
2 ∼ 0 for n � 1, we take n = −1, 0,

that yields [41]

γ
j

opt ≈ 4g2
0

κ
|〈â j〉SS|2. (A7)

Here 〈â j〉SS is the steady-state amplitude of the optical field
given as 〈â j〉SS = E/(κ − i�′

j ) [also obtained by setting
∂t 〈â j〉 = 0 in Eq. (5)]. These expressions are obtained in the
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linear regime with amplitude-independent ω′
j and γ

j
opt terms.

By incorporating all modifications into the gain-loss system,
the effective Hamiltonian of Eq. (6) is obtained with the cor-
responding eigenvalues given as

ε± ≈ ωm1 + ωm2

2
− i

γ 1
eff − γ 2

eff

4
±

√
J2 − J2

c . (A8)

The eigenvalues are numerically estimated in Fig. 10 by as-
suming δωm = 0, which is found near 372ωm, and it resembles

closely with the earlier analytical anlysis when finite δωm is
considered. From Figs. 10(a) and 10(b) we see the splitting
characteristics of eigenvalues upon reaching the exceptional

point of the system. Here Jc = γ 1
eff +γ 2

eff
4 is the critical coupling

strength that depends upon the effective damping rates of the
mechanical oscillators. By tuning the driving amplitude (E ),
the EP can be adjusted to match the critical coupling strength
Jc. Figure 10(c) depicts the effective strongly coupled region
(J > Jc) for E � Ep and the effective weakly coupled region
(J < Jc) for E � Ep, respectively.
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