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Self-healing of the statistical properties of exact non-Rayleigh nondiffracting speckle fields
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We investigate the capacity of the exact non-Rayleigh nondiffracting (ENRND) speckle field to reconstruct
its statistical properties along the propagation. It is unclear in the literature how the statistical properties of such
a speckle field can affect the reconstruction of the statistics itself after encountering an obstruction. Therefore,
we have conducted this study using the first-order and second-order intensity statistics, revealing a remarkable
superior robustness of the super-Rayleigh speckles. This study has the potential to be beneficial for future
applications of speckles with controlled statistics in microscopic systems and quantum imaging.
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The light of a coherent laser scattered from rough objects
results in a kind of light with a peculiar granular appearance,
known as speckle light. This type of light is an interference
between many independent partial waves with relative phases
uniformly distributed in the range of 2π . Typically, the am-
plitude of the speckle fields present a Rayleigh probability
density function (PDF) and the speckles intensity follows a
negative exponential PDF [1]. On the other hand, the self-
healing, or the capacity of reconstruction of the intensity
pattern, was observed first in Bessel beams [2–4], followed
by Airy beams [5–7] and even Laguerre-Gaussian beams
[8]. A similar effect was observed for diffracting Rayleigh
speckles [9], but it was called self-reconfiguration because
the speckle patterns are not the same after the reconstruction.
True self-healing is observed only for nondiffracting speckles
[10]. The self-healing and self-reconfiguration abilities can be
applied in microscopy [2,3], quantum optics communication
[11,12], and three-dimensional imaging processes through an
inhomogeneous medium [13].

The non-Rayleigh speckle statics regime occurs when the
spatial structure of the speckle intensity pattern is customized
without losing the random granular structure of light. The
non-Rayleigh speckle can be generated using a spatial light
modulator (SLM) to codify high-order correlation in the front
phase of an input field [14–19]. The non-Rayleigh speckles
can be nondiffracting [18] and even diffracting and main-
taining the non-Rayleigh statistical properties through the
distance of propagation [20]. The non-Rayleigh speckles also
have found applications in microscope systems [21] and for
ghost imaging [22,23]. Therefore, studies on the robustness of
the statistics, similar to the robustness of the speckle itself [9],
in the context of exact non-Rayleigh nondiffracting (ENRND)
speckle fields [19], can prove useful for systems that demand
controllable visibility [24]. These applications can be found in
optical encryption and optical tomography.

For Bessel beams, the beam parameter that governs the re-
construction distance is solely the transverse spatial frequency
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[9]. However, for the self-reconfiguration of speckle fields, it
relies on the spatial coherence length [25]. But, it is not clear
how the statistics affect this reconstruction length, therefore
in the present study we examine the impact of first-order
and second-order intensity statistics on the distance required
for reconstructing these statistical properties in the generated
non-Rayleigh speckle fields. Additionally, we propose a more
efficient and faster method for generating ENRND speckle
fields, improving the method described in Ref. [19]. As a
result, we will be able to generate multiple samples of inten-
sity patterns with contrast values ranging from sub-Rayleigh
to super-Rayleigh statistics. This will enable us to analyze
the behavior of the first- and second-order intensity statistics
of an ENRND speckle field since this investigation requires
averaging over a set of random realizations of the pattern.

Our objective is to write the discrete form of the Whittaker
integral [19] as a Fourier transform of a ring-shaped function
S(kx, ky),

U (x, y) ∝
∫

S(kx, ky)e−ikT .rT dkT , (1)

so that we represent the S(kx, ky ) as

S(kx, ky) =
∑

n

�(φn)δ(kx − kT cos φn, ky − kT sin φn), (2)

where φn = 2nπ/(Q − 1), n = 0, . . . , Q − 1 and �(φn) =
exp[iθ (φn)]. We have used the same optimization algorithm
as in Ref. [19]. Therefore, we have considered that the phase
array θ is the sum of two random arrays A and B, whose
entries are uniformly distributed over [0, 2π ]. In this case,
θ = A + B, both with length Q = 1024. The necessity of
summing B to A is just to generate a uniformly distributed
random array A + B, but with some correlations, in order to
control the speckles statistics. It is an artifact of this procedure
that if you do not add the constant array B to the optimized
array A the algorithm converges to a coherent pattern. The
uniformly distributed random numbers used for optimizing
the array A are taken from a phase array D with N = 150
random values, which is the minimum number of values to
guarantee convergence. As displayed in Fig. 1, we replaced
one fixed position of A with the values of D, and calculated
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FIG. 1. Representation of the positions of the pixels correspond-
ing the phase values in the ring-shaped function in Eq. (2). During
each iteration, the contrast value is optimized to each position “i”
of A that is randomly chosen at the beginning of the iteration. This
position remains fixed throughout the iteration process.

the sum in Eq. (1) for the N possible values and chose the one
that gives the best contrast. It corresponds to one iteration of
the algorithm. After each iteration the random values of D are
updated. If we desire a super-Rayleigh speckle field we select
A that have the biggest contrast, and if we want a sub-Rayleigh
speckle we choose A that have the smallest contrast.

The novelty of the optimization algorithm lies in the fact
that the speckle field represented in Eq. (1) is just a Fourier
transform and not a time-consuming plane wave summation.
We utilize the concept that the spatial Fourier spectra of a
nondiffracting beam can be represented as a ring with in-
finitesimal width and radius kT . By doing so, we express each
plane wave in Eq. (1) as a single pixel within this ring, as
illustrated in Fig. 1. This is elucidated by understanding that
nondiffracting beams consist of a collection of plane waves
characterized by wave vectors situated on the surface of a
light cone, all possessing identical amplitudes and equivalent
longitudinal components of the wave vector kz [26]. It can be

written that kz =
√

k2 − k2
T , where k = 2π/λ, kx = kT cos φ,

ky = kT sin φ, and λ is the wavelength of the light [18].
Therefore, to perform our summation algorithm we defined
a function to calculate the coordinates of the pixels along the
ring by the pseudocode in Fig. 2.

In Fig. 3, we compare the intensity patterns of a speckle
field plotted with the aid of the algorithm based on the Fourier
transform, displayed in Fig. 3(a), and using the discrete form
of the Whittaker integral [19], displayed in Fig. 3(b). The
process of calculating the sum using the Fourier transform is
700 times faster. We can observe that the speckle patterns have

FIG. 2. The pseudocode of the function used to calculate the
position of the phase values in the ring-shaped function in Eq. (2).
The symbol � � stands for the nearest integer.

FIG. 3. Numeric intensity pattern for nondiffracting speckle
fields in the Rayleigh regime. In (a), we utilized the Fourier transform
to sum the plane waves following Eq. (1), and in (b), we summed the
plane waves following Ref. [19].

the same contrast and the same medium speckle grain size,
which are the important characteristics for the generated ran-
dom patterns. Figure 4 shows our experimental setup. A laser
model Ultralasers MSL-FN-532, of 200 mW and operating in
532 nm, uniformly illuminates a Holoeye LETO spatial light
modulator (SLM), placed at the distance d = 540 mm from
the lens L3, of focal length f 3 = 1000 mm. In the focus of
lens L3, we separated the first diffraction order using an iris
(IR). We used a computer-generated phase hologram (CGPH)
of type 3 [27], which is encoded in the SLM and contains
the phase and amplitude of the calculated speckle field and a
circular obstacle partially blocking the speckle field. The lens
L4 has a focal length f 4 = 150 mm, where L4 was confocal
with the lens L3. Therefore, near the focus of the L4 we
have the image of the SLM, the ENRND speckle field with

FIG. 4. (a) The experimental setup: HWP is a half-wave plate;
L1, L2, L3, and L4 are lenses; BS is a beam splitter; SLM is the
spatial light modulator; M1, M2, M3, and M4 are mirrors; A is
a circular aperture; and CCD is a charge-coupled device camera.
(b) Intensity histograms for the measured intensity patterns: the red
squares, blue triangles, and green diamonds correspond to the super-
Rayleigh, Rayleigh, and sub-Rayleigh speckles, respectively. Each
of these intensity histograms was obtained by averaging over 100
measurements of random speckle intensity patterns. (c) A hologram
featuring a circular obstacle.
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FIG. 5. Experimental self-healing effect for the ENRND
speckle field. The intensity pattern for (a) sub-Rayleigh speckles,
(b) Rayleigh speckles, and (c) super-Rayleigh speckles.

a circular obstacle in the center of the intensity pattern. A
charge-coupled device (CCD) camera, which is mounted on
a translating stage, was used for the experimental measure-
ments of the speckle transverse profile reconstruction along
the propagation. For each measurement, the ENRND speckle
fields were propagated over 8.2 Rayleigh ranges, where the
measurement of one Rayleigh range resulted in R = 0.16 mm.

To understand the physics behind the self-healing effect of
the statistics in the ENRND speckle fields, we will compare
the speckle’s first-order and second-order intensity statistics
[1]. The first-order statistics of the speckle intensity is related
to the contrast, accounting for, in statistical properties, about
a single point in the transverse plane with coordinates x =
(x, y). We considered the following definition to the contrast:

C =
√

〈I (x)2〉
〈I (x)2〉 − 1, (3)

where I (x) = |U (x)|2 is the intensity, the symbol 〈 〉 indicates
the mean, and this contrast definition is the ratio between the
standard deviation and the mean intensity.

Figure 5 displays the self-healing effect for different sta-
tistical regimes: sub-Rayleigh, Rayleigh, and super-Rayleigh.
All obstacles have a diameter of d = 0.8 mm and are posi-
tioned at the initial point of propagation (z = 0R). We have
used a window of 1.3 mm × 1.3 mm of the CCD camera
for all the results in this work. In the first column of Fig. 5
the patterns are partially blocked by the obstacle and are in
the initial position of propagation (z = 0R). In Fig. 5(a) the
ENRND speckle field is in the sub-Rayleigh regime. The
speckle intensity pattern in the second column represents the
reconstructed speckle patterns at 8.20R with a contrast C =
0.90. In the same line, third column, the same sub-Rayleigh
speckle without obstacle at distance z = 8.20R has the

FIG. 6. Second-order spatial intensity correlations for the EN-
RND speckle field. (a) The intensity pattern for sub-Rayleigh
speckles, (b) the Rayleigh speckles, and (c) the super-Rayleigh
speckles.

contrast C = 0.85. At 0R the contrast for the sub-Rayleigh
speckle without obstacle was C = 0.78; therefore, we ob-
serve an increase in the speckle contrast after inserting the
obstacle. However, the spatial features and contrast of the re-
constructed speckle field approach the values obtained with no
obstacles. Similar behaviors were observed for the Rayleigh
and super-Rayleigh fields at Figs. 5(b) and 5(c), respectively.
In Fig. 5(b), we analyzed the self-healing behavior of the
Rayleigh speckles. We observed that the contrast along the
propagation path returns toward the value obtained for the
speckles with no obstacles. Figure 5(c) shows the intensity
pattern for speckles in the super-Rayleigh regime, where the
intensity pattern reconstructed at the distance 8.20R has con-
trast C = 1.56 and the intensity pattern without obstacles has
contrast C = 1.55. The contrast for the super-Rayleigh speck-
les with no obstacles at the initial position z = 0R was C =
1.66, relatively closer to the final value at z = 8.2R. Its im-
portant to call attention to the sub-Rayleigh speckle fields, as
both blocked and nonblocked speckles exhibit a trend towards
Rayleigh statistics during propagation. This transition occurs
due to the degradation of sub-Rayleigh speckle statistics along
propagation, impeding a more pronounced reconstruction to-
wards the contrast value of C = 0.78. Now, we will introduce
the second-order statistics of the speckle intensity. To quantify
these statistics, we will use the second-order spatial intensity
correlations [28],

�(x) =
〈 ∫

	

I (x′)I (x′ − x) dx′
〉

=
∫

	

〈I (x′)I (x′ − x)〉 dx′, (4)

where 	 indicates the domain of the integral. Using the pro-
cedure described in Eq. (4), we can calculate the normalized
second-order speckle correlation function displayed in Fig. 6.
These results are obtained averaging over 100 samples of
speckles without any obstacles. The green, blue, and red line
plots at the right of Fig. 6 correspond to the sub-Rayleigh,
Rayleigh, and super-Rayleigh statistics, respectively. They are
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horizontal profiles taken at the center of Figs. 6(a), 6(b),
and 6(c), respectively. The smallest background is observed
for the super-Rayleigh speckles. The noncorrelated speckle
grains are responsible for the background [9], therefore the
sub-Rayleigh speckles have a bigger number of noncorrelated
speckle grains than the super-Rayleigh speckles. The number
of noncorrelated speckle grains is not simply proportional to
the area outside the coherence length divided by the coherence
length. Regardless of the statistics, all speckle patterns have a
coherence length of 0.01 mm, which is measured as the full
width at half maximum of the correlation function, roughly
the size of a speckle grain. However, the super-Rayleigh
speckle patterns have less speckle grains in a given area be-
cause the light is concentrated in a fewer speckle grains and
the grains are more spaced between each other. Therefore, the
super-Rayleigh speckles have an increased spatial coherence
even with the same coherence length as the sub-Rayleigh
speckles. It also may be understood in terms of the spatial
spectral density [29], which is the spatial distribution of the
light along the spatial frequencies. The coherence information
is not just in the coherence length but also in the spectral
density. The spectral density contributes to the background
but is not totally dependent on the coherence length. To
understand the behavior of the second-order intensity statistics
we calculate the visibility of the correlation function [30,31]

V = �max − �min

�max
, (5)

where �max and �min are the maximum and minimum values
of the correlation function. Figure 7 compares the contrast
and the visibility during the propagation for approximately
8.20 Rayleigh ranges. Each point in the curves of Fig. 7 is
obtained averaging the results over 100 measured intensity
patterns. Continuous lines represent the self-healing effect and
the dashed lines represent the results without blocking the
speckle fields. Red, blue, and green lines represent the super-
Rayleigh, Rayleigh, and sub-Rayleigh regimes, respectively.
In Fig. 7(a) we observe the behavior of the first-order intensity
statistic, represented through the contrast. The contrast of
the super-Rayleigh patterns after crossing the obstacle at the
initial position z = 0R is C = 1.66, and at the final position at
z = 8.20R it is C = 1.53. This result should be compared with
results for the super-Rayleigh speckles without obstacles, at
z = 0R, where C = 1.56, and at z = 8.20R, where C = 1.50.
In other words, the super-Rayleigh regime almost recovers its
first-order statistical properties after the self-healing effect.
For the Rayleigh regime, represented in the blue lines, the
self-healing effect is also observed. At z = 0R the value of
the contrast is C = 1.13, after crossing the obstacle, and at
z = 8.20R the contrast is C = 1.09, near the value for the
Rayleigh speckles without obstacles. For the sub-Rayleigh
regime, the green lines, after crossing the obstacle at z = 0R,
the value of contrast is C = 0.91, and at z = 8.20R the value
is C = 0.89, which without obstacles evolves from C = 0.77
to C = 0.80. Mainly in the sub-Rayleigh speckles we observe
some degradation of the statistics, moving the contrast value
in the direction of value C = 1 of the Rayleigh speckles.
Therefore, to make these results clearer, we displayed in
Fig. 7(c) the difference between the results for the speckle
field that crossed an obstacle and the one that did not cross any

FIG. 7. Experimental results for the intensity statistics along
different axial positions. (a and b) Behavior of the contrast and
visibility, respectively, during the self-healing effect in the axial
propagation of Rayleigh speckles (blue line), sub-Rayleigh speckles
(green line), and super-Rayleigh speckles (red line). The dotted lines
correspond to the results without obstacles. (c and d) The difference
between the results with and without obstacles.

obstacle. We can conclude that this difference is decreasing
with the propagation, indicating the amount of the self-healing
effect of the contrast.

To understand the behavior of the second-order intensity
statistics we analyzed the visibility of the correlation function
in Fig. 7(b). The line colors and the use of dashed and con-
tinuous lines represent the same meaning as that used for the
contrast. Therefore, the results for the second-order statistics
agree with the results for the first-order statistics. When the
intensity pattern is blocked, the visibility increases, and as
the propagation continues, the self-healing effect takes place,
recovering the statistical properties of the field. The difference
between the intensity correlation visibility with and without
obstacles, Fig. 7(d), decays during the propagation. It is worth
emphasizing that upon analyzing the statistics of all speckle
fields, we noted that the impact of the obstacle is least pro-
nounced for super-Rayleigh speckles when compared to other
statistical regimes. This finding could serve as a justification
for choosing super-Rayleigh speckles in applications related
to imaging and microscopy.

Following the ideas of Ref. [25], we have proposed a
theoretical estimation for the reconstruction distance zR. Sup-
pose that a single speckle grain has a mean width equal to
the coherence length δ and that it could be represented by
exp(−r2/2δ2), where r is the radial coordinate. Each speckle
spot in the field that surrounds the opaque disk acts as a
secondary source that radiates into the disks shadow, filling
in the dark hole in the field due to the circular obstacle. The
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distance for the total reconstruction of a Rayleigh speckle is
obtained by equating the width of the central lobe of an Airy
pattern, of a circular aperture having the same diameter d of
the obstacle, with the full width at half maximum of the func-
tion exp(−r2/2δ2). The effect of having a bigger or smaller
background for other statistics could be estimated by adding
a constant to the speckle grain function 
b + exp(−r2/2δ2),
therefore its full width at half maximum is shifted and we have

zR = 2δ
√

2d

1.22λ

√
ln

2

1 − 2
b
,

where b = �max − �min, and 
b is the difference in relation to
the Rayleigh background. Using the data from the experiment,

bsub-Rayleigh = 0.13, 
bRayleigh = 0 and 
bsuper-Rayleigh =
−0.23, and therefore, zR = 34.8 mm, zR = 29 mm and zR =
19.6 mm, for the sub-Rayleigh, Rayleigh, and super-Rayleigh
speckles, respectively.

In summary, we analyzed the self-healing of the sta-
tistical properties of ENRND speckle fields. Besides, we
proposed a faster method to calculate a sum of plane waves
to form a nondiffractive field. This procedure generates an

approximation to the exact solution of the Helmholtz equa-
tion. This method can generate a continuous range of contrast
values in the sub-Rayleigh, Rayleigh, and super-Rayleigh
regimes, preserving the nondiffractive property. Our results
demonstrated that the super-Rayleigh regime had better re-
construction of contrast and visibility during the self-healing
effect, demonstrating that these speckle fields can be used to
improve the spatial resolution in the ghost image process with
applications in optical encryption and optical tomography, or
imaging through a scattering medium [13]. Similar effects
should be observed in other types of non-Rayleigh speckles,
such as three-dimensional speckles [20], in cases where they
possess statistics that lead to an increased or decreased back-
ground in the intensity correlation.
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