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Far-field far-subwavelength spatial resolution using relative motion with structured illumination
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Relative motion of structured optical illumination with respect to an object and far-field measurement of inten-
sity are presented as a means to obtain far-subwavelength spatial resolution with a direct imaging arrangement.
The principle behind this approach is that the variable interaction of an object with a background field generates
information about nanometer-scale features that is encoded in the propagating plane-wave spectrum, allowing
far-field data that are modulated with motion according to the nanostructure. Information theory supports this
superresolution mechanism and illustrates sensitivity with respect to the illumination and detection arrange-
ments. Simulations indicate that available lasers and detectors would enable a resolution of λ/1000 with modest
signal-to-noise requirements and single-pixel detection. Relative motion in structured fields is shown to enhance
spatial resolution achievable using data inversion with constraints. Importantly, far-subwavelength sensitivity is
shown to be achievable even when the illuminating field is unknown. These results suggest applications that
include material defect detection and unlabeled protein sensing, and direct extensions to estimating geometrical
features at unprecedented spatial resolution become possible.
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I. INTRODUCTION

Achieving high lateral spatial resolution is critical in sci-
ence and technology, and the infrared through ultraviolet
wavelength range is of great importance for innumerable
domains. A common physical measure is distinguishing the
separation between two small objects, two apertures, for ex-
ample. The Abbe diffraction limit constrains conventional
far-field imaging methods to a maximum achievable resolu-
tion of λ/2n, with λ being the free-space wavelength and
n the refractive index of the background medium. This can
loosely be understood by loss of the evanescent field por-
tion of the plane-wave spectrum, leaving the propagating
spectrum. Significant scientific insights and technological de-
velopments are locked behind this link between wavelength
and resolution. We present the physical basis for achieving
virtually unlimited spatial resolution using relative motion in
structured illumination, where either the object or the field
is scanned and far-field intensity measurements are made. In
this situation, relative motion between the field and the object
encodes nanostructure information in the propagating plane
waves, allowing intensity measurements to be sensitive to far-
subwavelength transverse geometries. In an experiment using
a laser, nanometer-scale object features should be resolvable
without the need for fluorescent labeling. In the examples pre-
sented, an interfering beam and speckle fields are considered,
with a view to implementation strategies and the possible suite
of applications.

One approach to access high-spatial-frequency information
is near-field scanning of a tip (to directly measure or scatter).
However, such methods may not be practically feasible, and
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they are generally slow and obtrusive. Another method makes
use of structured illumination and moiré fringes and grants
an increase in resolution by a factor of two by extending the
range of spatial frequencies that can be accessed [1,2], an
approach that is known as structured illumination microscopy
(SIM). It has also been established that random speckle fields
can be used to access this factor of two in resolution im-
provement without the requirement of knowing the fields
[3]. Structured fields are also the basis of a nanometer-scale
optical ruler using a Pancharatnam-Berry phase metasurface,
where singularities can be revealed with interferometry [4].

In quantum optics, the twofold de Broglie wavelength
reduction of entangled photon pairs [5], relative to that for
the individual photons, can be, in principle, extended to a
larger number of photons. Exploiting this in practice requires
a commensurate multiphoton detection method. However, the
spatial resolution is that associated with the total energy,
and hence the parent photon. Higher-order photon-counting
correlations, in a configuration that extends the Hanbury
Brown–Twiss interferometer measurement from two detec-
tors, provide opportunities for higher spatial resolution with
the observation of multiphoton interference patterns from
statistically independent light sources [6,7]. In fluorescence
microscopy, higher-order photon correlations have been pre-
sented as a means to reduce the width of the point spread func-
tion of a microscope [8,9], offering an avenue for improved
spatial resolution. By combining structured illumination with
these higher-order correlations, an even greater resolution en-
hancement has been shown for quantum emitters [10].

In the biosciences, fluorescent labeling has become per-
vasive as a means to obtain information through various
forms of microscopy, such as fluorescent lifetime imaging
microscopy (FLIM). At the single-molecule level, fluctuation
correlation spectroscopy (FCS) has been commonly used [11].

2469-9926/2024/109(2)/023509(16) 023509-1 ©2024 American Physical Society

https://orcid.org/0000-0002-4748-5231
https://orcid.org/0009-0004-9965-9135
https://orcid.org/0009-0000-2861-4555
https://orcid.org/0000-0001-5834-1631
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.023509&domain=pdf&date_stamp=2024-02-09
https://doi.org/10.1103/PhysRevA.109.023509


PATEL, LACNY, RAGHURAM, AND WEBB PHYSICAL REVIEW A 109, 023509 (2024)

Importantly, with the constraint of the point spread function
of a microscope and, when it is possible to ascribe a sin-
gle point emitter in space, that point can be located to a
precision far greater than the visible wavelengths used in mi-
croscopy. For example, fluorescence-based techniques such as
stimulated emission depletion microscopy (STED), photoacti-
vated localization microscopy (PALM), and stochastic optical
reconstruction microscopy (STORM) demonstrate subwave-
length resolution [12–14]. While these techniques extract the
equivalent point location of a fluorophore, this may or may not
provide underlying information on the host material, a cell,
for example, and fluorescent labeling is not always desirable
or feasible.

Single-pixel imaging encompasses a range of techniques
for reconstructing the scene with a single-pixel camera. This
is accomplished through spatial modulation of either the illu-
mination or detection light [15]. Reconstruction using these
measurements is done with the addition of prior informa-
tion of some kind, for example, within a compressed sensing
framework [16] or with the use of machine learning [17].

Relative motion has been used in various imaging ap-
proaches that do not access subwavelength spatial informa-
tion. In x-ray microscopy, relative motion between the beam
and the specimen forms the basis of multiple techniques,
such as scanning transmission x-ray microscopy [18] or x-
ray ptychography [19]. Ptychography recovers an image of
the specimen by measuring diffraction patterns that occur
when the coherent beam and specimen are moved relative
to each other. The computational inversion process uses a
phase-retrieval method that requires significant overlap of
these relative positions [20]. Ptychography has been used
to image weakly scattering specimens, such as biological
samples [21]. “Superresolution” methods from digital image
processing [22] have been used to increase the resolution of
obtained ptychographic images [23]; it should be noted that
this usage of the term “superresolution” is in the context of
image processing and exploits subpixel shifts during acquisi-
tion, and it does not imply breaking the Abbe limit.

Prior simulation studies have demonstrated sensitivity to
far-subwavelength object features using relative motion in
structured illumination [24,25]. These studies consider object
motion relative to a known, deterministic illumination pattern
and demonstrate sensitivity to changes in feature geometry
on the order of λ/100. Additionally, these results rely ei-
ther partially [24] or completely [25] on information from
detectors that are perpendicular to the plane of the object
feature of interest and thus provide high sensitivity due to
phase differences between scatter from different parts of the
object at the detector plane. The direct imaging arrangement,
where the object lies in a plane parallel to the detector, is
important in microscopy because it allows the straightforward
use of lens systems to focus light, and limits the deleterious
effect of optical scatter from the object (see Ref. [26], for
example: p. 281 for an introduction to the microscope and
pp. 465–471 for the resolving power of a microscope and
the Abbe limit). Almost all common methods in optical mi-
croscopy utilize this arrangement. Thus, further analysis that
considers the direct imaging arrangement is of substantial
practical interest. Fundamentally, these studies demonstrate
that far-subwavelength object information can be encoded in

FIG. 1. Concept figure showing relative motion between an ob-
ject and a structured electric field. The object could be stationary in a
translated field, as is primarily considered in this work, or vice versa.
An example speckle field is shown in this case, for a subset of the
simulation region, although other types of illumination are possible.
The figure is to scale with regard to the object size in relation to the
fully developed speckle having half-wavelength spatial correlation
(speckle size).

the propagating plane-wave spectrum and measured in the
far-field. However, the roles of relative motion in structured
illumination, measurement geometry, prior information, and
multiple scatter in encoding this information have not been
completely understood.

We present the physical basis for achieving far-
subwavelength spatial resolution in a direct imaging config-
uration using far-field intensity data and either motion of
an incident structured field over an object or motion of the
object in a background field. Information theory provides
an understanding of the underlying phenomena that allow
access to nanostructure information with visible laser light.
Our results clarify the role of relative motion in structured
illumination, interferometric information due to the geometry
of the object and detector, prior information, and multiple
scatter in achieving high spatial resolution. The arrangement
considered in a set of simulations is illustrated in Fig. 1. The
field could be scanned by various means, including the use of
a spatial light modulator. The object may also be scanned in
space, such as with a piezoelectric transducer [24]. Changes in
optical intensity are measured in the far field as these relative
positions change, and these measurements are sensitive to far-
subwavelength changes in the object’s geometry. Numerical
simulations and information theory support the opportunity
spaces presented. Far-subwavelength sensitivity is possible,
even if no forward model is available to connect these ge-
ometric changes and intensity measurements, i.e., when the
incident field is unknown. However, if such a forward model
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does exist, then it can be used for inversion with suitable
constraints.

Simulation results are presented in Secs. II and III, and
these provide the underpinnings of the physical contributions
of this work. In the first situation considered (Sec. II), two
plane waves are incident perpendicular to one another to
provide the structured field, and relative motion in this field
is shown to allow superresolution sensing in an imaging ar-
rangement. In the second arrangement (Sec. III), a speckle
field is used, as would occur with laser light passing through
a randomly scattering material, being representative of an
important class of problems involving randomly scattering
media, and relative motion with respect to an object investi-
gated. Because the power is integrated over multiple detector
points, the metric is one involving single-pixel detection with
a fixed aperture. In more detail and of direct relevance to the
key contributions, Secs. II A–II C introduce the simulation and
noise models; the results in Sec. II D provide insight into the
physical problem, as well as demonstrating the rough equiva-
lence of field and object motion for superresolution; Sec. II E
quantifies the available resolution with this technique and
provides insight into the role of signal-to-noise ratio (SNR)
and measurement geometry in achieving far-subwavelength
resolution. Section III provides insight into the role of prior
information about the field and object, demonstrating that
sensitivity to nanoscale features exists even when random
speckle illumination is used. Section IV discusses various
aspects of the work and the broader implications. Following
the conclusion in Sec. V, where the contributions of this work
are summarized, Appendices A through C cover numerical
accuracy of the simulations, experimental achievability of the
required sensitivity, and a proposed experimental implemen-
tation.

II. PLANE-WAVE ILLUMINATION

A. Simulation setup

We consider numerical field solutions for the two-
dimensional (2D) measurement arrangement in Fig. 2(a),
where the task is to resolve the separation D between two
square dielectric rods, each with a dielectric constant of εr

and 0.05λ on a side, shown in an expanded view in Fig. 2(b).
The finite element method (FEM) [27] is used to solve for
the scattered electric field in the temporal Fourier domain.
To solve for the scattered fields, the domain is bounded by
a 2λ-thick perfectly matched layer (PML) on all sides to
simulate unbounded space. The total electric field is formed
as the superposition of this scattered field solution and the
prescribed structured incident field, and the magnetic field
is subsequently determined. The FEM mesh is configured as
described in Appendix A.

The structured background field consists of two plane
waves of the same frequency (circular frequency ω), propagat-
ing perpendicularly to each other. With exp( jωt) dependence,
we have the electric field

E = {e− j(k0x+φx ) + e− j(k0y+φy )}ẑ, (1)

where k0 = 2π/λ is the free-space wave number, and φx and
φy are phases that are regulated to scan the interference fringes
over the object.

(a) (b)

FIG. 2. (a) The free-space simulation domain is a square 6λ on
a side and bounded by a 2λ-thick PML on all sides. Two dielectric
scatterers are placed in the center, forming an object with separation
D to be resolved. The red arrows indicate the direction of propagation
of the incident plane waves. The dotted red lines represent the detec-
tor arrays, which measure the normal component of the time-average
Poynting vector (intensity). (b) The central region is enlarged to show
the scatterers of side L = 0.05λ and separation D. These figures are
not drawn to scale, in that the object size is larger than that used in
the simulations, given the detector arrangement presented (with this
size of the objects, the detectors would be located farther away than
shown).

Two perpendicular detector planes (lines in the 2D sim-
ulations) are used, as indicated by the (red) dotted lines in
Fig. 2(a), and the power flow determined by the integral of
the normal component of the time-averaged Poynting vector
(S = Re{E × H∗}/2), with Re being the real part and H the
phasor magnetic-field intensity. The Poynting vector is based
on the total field (background plus scattered). By determining
the power flow at a set of points in the detector plane, we
simulate power flow through a series of small apertures, such
as those corresponding to camera pixels. Due to the use of
the integral of this power flow over the detector planes, we
consider this data to be fundamentally single-pixel. These
detection points are sufficiently far from the object (2.5λ from
the centerlines of the binary object in question) so as to con-
sider the intensity data to be in the far field with respect to the
evanescent fields. Since the evanescent fields are negligible
at the detectors, similar results could be achieved with the
detector planes positioned much farther from the objects, so
long as a similar solid angle of light is collected. As a re-
sult, this setup could be accomplished in an experiment using
macroscopic optics that direct the scattered light into a single
detector. The compact simulation domain is used to ensure
tractable simulation times. Each array of detectors is placed
a distance λ/2 from the nearest boundary. Based on the FEM
mesh density, our simulation generates 503 uniformly spaced
intensity-detection points along each detector array at which
the time-averaged Poynting vector is calculated.

Although the primary focus of this paper is on lateral
resolution (corresponding to the right detector plane in these
simulations), the top detector plane is included in order to
allow straightforward comparison with prior literature [24]
and to assess the role of measurement geometry in resolu-
tion. Results presented in Sec. II D integrate data from both
detector planes in order to appraise the overall sensitivity of
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the measurement and demonstrate the equivalence of field
and object motion, while results in Sec. II E are broken down
between the two detector planes in order to demonstrate the
role of measurement geometry and provide a clear metric for
lateral resolution.

B. Noise model

Independent additive noise at the set of point detectors
along the two orthogonal detector lines [Fig. 2(a)] is simu-
lated by using a zero-mean Gaussian density function whose
standard deviation (σs) is proportional to the time-averaged
Poynting vector (Sd = n̂ · S, where n̂ is the perpendicular unit
vector to the detector line in a direction for Sd > 0) detected
at that point. The SNR defines σs through σs = Sd/SNR. This
fixed-SNR noise model is a computationally simple one meant
to facilitate a proof of concept and allow convenient compari-
son with related literature. Here, a conservative SNR of 40 dB
is assumed [24] (see Appendix B) for the intensity-detection
points, giving σs = 10−4Sd . Taking into account the 1006
such points adds approximately 14.1 dB when considering
a measurement over the entire detector, so that the SNR for
the final measurement becomes about 54.1 dB. From here
onward, all SNRs discussed in this section will include this
additional 14.1 dB.

This fixed-SNR additive Gaussian noise model is practi-
cally equivalent to both a high-count shot-noise model and a
thermal noise model at the same SNR for these simulations.
The scattered field measured at each detector plane is small
relative to the incident field, so the power flow through the
detectors varies little with D, εr , φx, and φy (<0.1%). As
a result, the SNR would vary little between measurements
under a thermal or shot-noise model. The fixed-SNR model
is therefore a good approximation of both noise models. In
the strong-signal regime, the Poisson statistics of shot noise
converge to a Gaussian distribution with standard deviation
proportional to

√
N , where N is the number of detected pho-

tons.
Our simulations model a bright-field measurement, result-

ing in significant power-flow through the detector; thus, the
use of an additive Gaussian noise model [28,29] is appropri-
ate, even if the measurement is shot-noise limited. Under a
shot-noise model, the SNR of 54.1 dB used in much of this
analysis corresponds to 13.2 nW of optical power flowing
through the detector planes, assuming an integration time of
1 s and a wavelength of 1 μm. This level of power density in
the incident field is reasonable for a focused laser source, and
single-photon detectors that are essentially shot-noise limited
are widely available. As a result, the chosen SNR of 54.1 dB
could be comfortably achieved in an experimental realization
of this work.

C. Visualization and forward model

To demonstrate sensitivity to a change of 0.01λ in D,
we compare noisy data obtained for each value of D, here
D = 0.01λ and 0.03λ, with the noiseless data for the reference
D = D0 = 0.02λ, for both the object-motion and the field-
scanning scenarios. Data correspond to the difference in the
total power flow through both detector arrays for an ordered

pair of parameters (px, py) relative to their initial values (0,0).
In the field-scanning case, the parameters correspond to the
change in the phases of the incident waves, (�φx,�φy). For
object motion, (px, py) corresponds to the position translation
of the object given by (�x,�y). The sensitivity is calculated
using the measure

f (px, py; D) =
∫

[S(x, y; px, py, D) − S(x, y; 0, 0, D)] · n̂ ds

(2)

as the difference in the total power flow obtained by integrat-
ing S along both detector arrays for every (px, py), relative to
that for the reference value (0,0). When noise is added to the
Poynting vector, S → Sn [so, f → fn]. To highlight the mea-
surable difference in data between two different separations,
D and D0, we define the function

g(px, py; D) = fn(px, py; D) − f (px, py; D0). (3)

In the remainder of this paper, gs is used to refer to this
function in the case where a structured plane-wave field is
translated over an object [as in (1)], gm is used to denote
object motion in a structured plane-wave field, and gp is used
to denote translation of a speckle field over an object. The
integration in (2) and any averaging performed with noisy data
to calculate fn(px, py; D) are commutable. As mentioned in
Sec. II B, calculating g(px, py; D) using power flow measure-
ments from multiple noisy detectors is therefore equivalent
to doing so from the power flow through a single detector,
although the summation over noisy measurements in (2) for
fn has the effect of partly mitigating the noise because it is a
sum over independent Gaussian random variables.

Care should be taken when considering the implications
of (2) and (3). Equation (2) describes the measured power
through a detector for a given type of object and its relative po-
sition with the field. It does not involve any comparison with a
model; it only compares these measurements with each other
(specifically, to a reference position). Therefore, f (px, py; D)
describes how the measured power changes as the relative
positions change. This contains the core mechanism for far-
subwavelength sensitivity that this paper describes, as it will
be shown that fn(px, py; D) is sensitive to small changes in
D (for a structured field). Equation (3) incorporates a noise-
less version f (px, py; D), which is computed with a model.
This noiseless computed data is subtracted from the noisy
experimental version, but this is done only for the purpose
of visualizing how (2) changes with D. The symmetry of
g(px, py; D) can be seen in Figs. 3–5.

D. Structured illumination results

Figure 3 shows the first in a series of simulations that
appraise the resolution of the method. The field is scanned by
varying �φx while �φy = 0, the object is fixed at the origin,
as in Fig. 2, and the resulting gs(�φx,�φy; D) is plotted in
Fig. 3. The error bars are generated empirically by using 100
sets of noisy Poynting vector data and a SNR of 40 dB at each
of the intensity-detection points, for a final SNR of 54.1 dB
after taking into account all such points (see Sec. II B). The
length of the error bars is twice the standard error in estimating
the mean value of gs. A reference value of D0 = 0.02λ is
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(b)(a)

FIG. 3. Resolution performance for the arrangement in Fig. 2
with phase scanning of the structured field described by (1). The
reference separation is D0 = 0.02λ. The object in panel (a) has
εr = 1.5 and in panel (b) has εr = 4. The error bars are generated
empirically using a SNR of 54.1 dB. Separation changes of 0.01λ

are easily distinguished with far-field data. When εr is increased, this
distinguishability increases as well.

used, referring to (3). The object is subject to the complete
range of the 2π -periodic background electric field, with dif-
ferences in D being captured by gs. The dielectric constant is
varied, with Fig. 3(a) showing εr = 1.5 and Fig. 3(b) showing
εr = 4. At each position of the scatterers, the error bars are
negligible relative to the features in gs, showing that a change
of 0.01λ in D can be easily resolved. The larger dielectric
contrast in Fig. 3(b) results in more pronounced variations in
gs, both in absolute terms and also with respect to the error
bars. The curves approach zero near �φx/2π = 0 because
of the subtraction in (2), and near �φx/2π = 1 because of
the periodicity of the illumination. More details are given in
Appendix B.

Figure 4 shows a similar simulation, but with a moving
object and stationary field instead. The object is scanned along
a line parallel to the y axis, while fixing �x = −0.5λ. In these
results, (�x = 0, �y = 0) corresponds to the center of the
simulation area, where the scatterers are positioned in the field
scanning simulations. All other aspects of the simulation are
similar to Fig. 3. The dielectric constant is again varied, with
Fig. 4(a) showing results for εr = 1.5 and Fig. 4(b) those for
εr = 4. Although the shape of the curves changes compared
with Fig. 3, the general conclusions remain the same regarding
spatial resolution and separability as εr is varied. We thus

(a) (b)

FIG. 4. Resolution performance with a stationary field and mov-
ing object are used for comparison with Fig. 3. �y is varied in steps
of 0.1λ from −0.5λ to 0.5λ, while �x is fixed at −0.5λ. As in Fig. 3,
the object for panel (a) has εr = 1.5 and for panel (b) has εr = 4.
Despite the different shapes of the curves, it is still the case that the
separation between the curves increases with εr .

(a) (b)

FIG. 5. Effect of detector noise for the arrangement in Fig. 2 with
phase scanning of the field and εr = 4. The error bars are generated
using a SNR of (a) 49.1 dB and (b) 54.1 dB. Other simulation
parameters are similar to those of Fig. 3. The relationship between
SNR and distinguishability is explored further in Sec. II E.

conclude that object motion over short distances and field
scanning are roughly equivalent for superresolution.

Figure 5 explores the effect of varying detector SNR on
the distinguishability of the different values of D. A 49.1-dB
SNR is shown in Fig. 5(a), compared with the 54.1-dB SNR in
Fig. 5(b). Note that Figs. 3(b) and 5(b) show the same data; it
is reproduced here for easier comparison. A lower SNR results
in a diminished ability to sense the small gap but changes
much less than λ/100 can still be detected, demonstrating the
robustness of the technique to increased noise.

E. Information theory analysis (field motion)

Information theory provides a measure by which one can
estimate the achievable resolution with given experimen-
tal parameters and more rigorously quantify the resolution
achievable with the measurement configuration explored in
the previous sections. While we now understand that nanos-
tructure information is available in the far field with relative
motion in structured illumination, we have yet to appraise how
far we might expect to move into the subwavelength domain,
beyond estimates from the examples in Figs. 3–5. With refer-
ence to the object and detector arrangement in Fig. 2(a), we
use information theory to investigate the trend with reducing
separation between the objects and the relative importance of
the x detector [on the right in Fig. 2(a)] and the y detector (on
the top).

The Cramér-Rao lower bound (CRB) for the variance of
an estimate of scatterer separation from a measurement of
the power flow through the detector planes is computed as
a resolution measure. In general, the CRB is the minimum
variance of an unbiased estimator of an unknown parameter
from a random variable with a distribution which depends
on that parameter. It bounds the performance of inversion
techniques [30], such as the cost-function approach explored
in Sec. II F. Computing the CRB provides a more quantitative
metric to complement the physical insight provided by the
curves shown in Figs. 3–5, and also yields information about
which field and detector plane positions provide the most
sensitivity to scatterer separation.

This analysis considers the case of field motion with the
field and object geometries introduced in Sec. II A. Using the
same fixed-SNR Gaussian noise model described in Sec. II B,
we can express the likelihood function of a measurement
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of the power flow through the detector at N incident-field
positions, representing N values of (�φx,�φy), as

p(m, D) =
N∏

i=1

1√
2πσ 2

i

exp

[
− 1

2σ 2
i

(mi − Pi(D))2

]
, (4)

where m is a vector of power flow measurements through the
detector, Pi is the noise-free power flow through the detector
(with elements mi) at field position i computed from the nu-
merical field simulations, and σi is the standard deviation of
the power flow measurement at field position i which, with the
chosen fixed SNR noise model, is equal to Pi/SNR. The Fisher
information, which represents the sensitivity to D provided by
each measurement, is given by [30]

I (D) = −E

[
∂2 ln p(m, D)

∂D2

]
, (5)

with E [·] being the expected value. The CRB can be computed
from the Fisher information using

σ 2
D̂ = var(D̂) � 1

I (D)
, (6)

where D̂ is an unbiased estimate of the true value of D.

1. Cramér-Rao lower bound for structured illumination

Numerical data for the power flow through the detector [see
Fig. 2(a)] are computed for values of D between 0λ and 0.03λ

in increments of 0.001λ with scanned structured illumination.
These data are used to determine the Fisher information and
Cramér-Rao lower bound for estimating D. Data are collected
for 11 evenly spaced values of �φy between 0 and 2π . The
CRB calculation assumes that these 11 measurements are used
together to estimate D. The analysis is performed with εr = 4,
and εr is assumed to be known when computing the CRB for
D. This is done in order to ascertain the sensitivity of the mea-
surement to separation alone, providing a lower bound on the
potential spatial resolution achievable with the measurement
configuration explored in Sec. II. If the dielectric constant is
unknown, and a two-parameter inversion must be performed,
then the achievable resolution will be reduced. An analysis
of the two-parameter inversion problem could be performed
using a similar approach.

Figure 6(a) shows the square root of the CRB for estimat-
ing D (σD̂) from a measurement of the power flow through
the combined detector plane [top and right dashed line in
Fig. 2(a)] at each value of �φy as a function of D with a
54.1-dB SNR. This metric represents the minimum achievable
standard deviation for an estimate of scatterer separation from
this measurement, and doubling this value provides a sound
statistical measure for resolution. Three curves are shown in
Fig. 6(a), one assuming that only the top detector plane in
Fig. 2 (referred to here as the y detector plane) is used, one
assuming that only the right detector plane (the x detector
plane) is used, and one where the sum of the power flow
through both detector planes is measured. Since the combined
detector plane collects roughly double the optical power of the
individual (x and y) detector planes, a measurement with the
combined detector should produce a higher SNR. This can be
considered in the context of a shot-noise picture, where the

(a) (b)

FIG. 6. Cramér-Rao bound and Fisher information for estimating
D from power flow through the detector plane, scaled in terms of
λ. εr = 4 for both panels. (a) Square root of the CRB variance of
D̂ as a function of D for three detector plane configurations using
data corresponding to 11 values of �φy. (b) Fisher information as a
function of �φy for three detector plane configurations at D = 0.02λ.

higher total intensity leads to a higher SNR, or in a general-
ized Gaussian noise picture, where summing two independent
Gaussian random variables (the x and y detector power flows)
leads to a Gaussian random variable with a variance equal
to the sum of the component variances. Since the x and y
detector planes have roughly equal power flow and noise,
both of these descriptions yield a factor of

√
2 difference in

SNR between the individual and combined detector planes.
As a result, a slightly lower SNR of 52.6 dB is used for
the x and y detector planes (10log10

√
2 ≈ 1.5 dB). From the

data shown in Fig. 6(a), it is clear that changes in separation
smaller than λ/1000 can be distinguished with 2σ certainty.
This certainty level of 2σ is commonly used for statistical
confidence intervals, although others may instead be chosen,
with corresponding effect on the minimum distinguishable
change in separation.

The shapes of the curves in Fig. 6(a) are themselves in-
teresting and provide insight into why resolutions far beyond
the diffraction limit are available. If we consider the typical
problem of distinguishing point sources or scatterers with
direct imaging, we would find that, as the distance between
the scatterers goes to zero, the CRB variance of an estimate
of their separation will diverge to infinity. This is because, as
the separation of point “sources” goes to zero, the derivative
of the scattered field with respect to separation goes to zero.
Since we measure the power flow from the fields, and the
CRB variance is related to the reciprocal of this derivative, the
CRB variance diverges. This behavior is well documented in
the literature [31–35]. The divergence of the CRB as source
separation goes to zero can be thought of as a fundamental
reason for the diffraction limit. We do not see this divergence
in Fig. 6(a) because the geometry of the scatterers prevents
their center points from being brought closer together than
their width, which effectively windows off the diverging part
of the curves that we would see if we considered them as
point objects. Additionally, the extra sensitivity provided by
relative motion in structured illumination shifts the curves
down, which abates the divergence of the CRB. Multiple
scatter also provides additional sensitivity that moderates the
CRB degradation with decreasing D/λ, however, this has a
much weaker effect than relative motion in structured illumi-
nation. With reducing scatterer size combined with decreasing
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(a) (b)

FIG. 7. Minimum scatterer separation distinguishable with 2σ

certainty as a function of combined detector SNR, and comparison
between Cramér-Rao bounds for estimating D with single-plane-
wave illumination versus standing-wave illumination [structured
illumination from (1)]. Both subfigures are scaled in terms of λ and
use εr = 4. (a) Minimum scatterer separation distinguishable from
D = 0 with 2σ certainty as a function of SNR for three detector plane
configurations with structured illumination. (b) Square root of the
CRB variance of D̂ as a function of D for plane-wave illumination
(in each direction, and over the corresponding detector plane) and
structured illumination (over each detector plane). 52.6-dB SNR.
SI: structured illumination, PW: single-plane-wave illumination, y:
y detector plane, x: x detector plane.

D, we would eventually see the CRB diverge, however, it
does not in this case due to the indicated factors. Impor-
tantly, in relation to the point of this work, far-field data
with relative motion in structured illumination provides ad-
ditional sensitivity to D that moderates the divergence of
the CRB.

Figure 6(b) shows the Fisher information, scaled by λ2,
over a phase scan of 2π , for each detector plane and the
combined data. These curves provide additional insight into
the difference in sensitivity between the two detector planes
(x and y) and also demonstrate that measurements at field
positions around �φy = π provide little or no sensitivity to
D. This occurs because �φy = π corresponds to a null in
the incident-field pattern at the center of the scatterers, and
thus very little scattered power. The y detector plane provides
greater Fisher information and thus higher resolution than the
x detector plane, because the path-length difference between
the scattering center of each particle is much larger when
measured along the y detector plane than along the x detector
plane. The resulting phase difference is one of the largest
factors that causes the power flow through the detector to
change with D, and thus the detector with more sensitivity to
this phase difference provides greater resolution. Note that the
Fisher information [I (D)] over �φy is not directly comparable
to the difference metric (gs) over �φy, as the subtraction of
reference values in (2) and (3) results in gs containing data
from multiple incident-field positions. While gs provides a
good metric for overall sensitivity, it does not explicitly re-
late to the sensitivity provided by each field position like the
Fisher information. Of special note is that the x detector plane
provides a standard resolution metric arrangement.

2. Other trends and illumination patterns

Consider now resolution as a function of the noise level.
Figure 7(a) shows the minimum scatterer separation that can

be distinguished from D = 0 with 2σ certainty (Dmin) as a
function of SNR. Dmin is shown to decrease by about an order
of magnitude for every 10-dB increase in the SNR, which is
expected due to the constant CRB variance over the values of
D considered. This trend is expected to continue for a SNR
beyond the range shown, so for the situation leading to the
results in Fig. 7(a), the diffraction limit cannot be exceeded
if the SNR falls below about 30 dB. However, based on
the analysis in Sec. II B and the bright-field nature of the
measurement, 30 dB represents a relatively low SNR (that
could easily be exceeded). Naturally, there is greater sensi-
tivity shown in Fig. 7(a) to D with the y detector, because this
directly exploits interference between the scattering centers
of the two particles. Perhaps more relevant to applications
is the far-subwavelength resolution with only the x detector,
conforming to the usual arrangement for applications related
to imaging.

The role of the structured illumination pattern in providing
sensitivity to D is illustrated in Fig. 7(b). This figure shows
σD̂ for a measurement of the power flow through the x and
y detector planes (right and top, respectively, in Fig. 2) as a
function of D with a 52.6-dB SNR. Results are shown for
the structured illumination pattern produced from the two
interfering plane waves (Sec. II A) and for a single plane wave
with E = [exp(− jk0y)]ẑ for the y detector plane measurement
or E = [exp(− jk0x)]ẑ for the x detector plane measurement.
The combined detector plane is not considered in this analysis
because the single-plane-wave incident fields only produce
significant power flow through one detector, and thus the
data from the nonilluminated detector plane cannot be rea-
sonably compared with the structured illumination results
with the chosen (fixed-SNR) noise model. The plane-wave
results shown in Fig. 7(b) are for 11 samples, matching the
11 samples taken at different values of �φy in the structured
illumination case. Using a single detector plane, the structured
illumination cases each provide a smaller σD, and hence a
higher spatial resolution, because the spatially varying inci-
dent field causes a measurable change in scatterer excitation
when their separation is varied. The difference in resolution
between the plane wave and structured illumination configu-
rations depends on which detector plane is considered, as the
y detector plane exploits interferometry between the particles
while the x detector plane does not. It is clear from these
results that measurement geometry has a significant effect on
the degree to which far-subwavelength object information is
encoded in a far-field measurement, and what factors enable
that encoding.

The x detector, which is representative of a direct imaging
arrangement, is the most relevant to optical microscopy. No-
tably, the Abbe diffraction limit is only applicable to this type
of geometry, and not to the y detector measurements [26]. The
x detector results are representative of a standard resolution
metric (distinguishing laterally spaced point sources) which
can be compared with prior literature. For this detector plane,
sensitivity to far-subwavelength object features is provided
primarily by relative motion in structured illumination. While
there is still some sensitivity to D in the plane-wave case,
the sensitivity falls off rapidly as D increases, indicating that
this sensitivity is primarily provided by multiple scatter. As
a result, if D is large, or if a less heavily scattering geom-
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etry is considered, then the plane-wave case will be almost
entirely insensitive to small changes in D, while the struc-
tured illumination case will retain its high sensitivity. We thus
conclude, for typical optical measurements representative of
microscopy, relative motion in structured illumination pro-
vides a very large increase in sensitivity.

For the y detector arrangement, which is sensitive to phase
differences between scatter from each object, relative motion
in structured illumination has a much smaller effect on sen-
sitivity. This is because the geometry of the measurement in
this case already provides very high sensitivity to D. This is
perhaps unsurprising; the y detector geometry is more repre-
sentative of an interferometer than a typical imaging problem,
and thus far-subwavelength sensitivity should be expected
with or without relative motion in structured illumination
assuming sufficient SNR. With relative motion in structured
illumination, the sensitivity of the x and y detectors is roughly
equivalent. Relative motion in structured illumination can
therefore be thought of as a means of accessing a level of sen-
sitivity commensurate with an interferometric measurement in
situations where the measurement geometry does not provide
interferometric information.

While relative motion in a structured illumination pattern
provides a significant improvement in sensitivity to D, as
Fig. 7 indicates, it has another important role that should be
addressed. With the single-plane-wave illumination pattern
and a single-pixel detector, it is not possible to invert for more
than one parameter of the object, as only one measurement can
be performed. The structured illumination pattern allows for
multiple measurements to be performed corresponding to dif-
ferent values of (φx, φy), which allows inversion for multiple
parameters of the object, such as the two-parameter inversion
for D and εr considered below in Sec. II F.

F. Inversion

The focus of this paper is on the far-subwavelength infor-
mation available in the type of measurements we describe,
and a variety of inversion techniques could be used in con-
junction. As an example, we present here a method based on
cost-function minimization to determine the subwavelength
distance between scatterers and their relative permittivity. In
this approach, fn represents the noisy data that would be
obtained from an experiment, and f represents the noiseless
data calculated from the forward model. To show that these
approaches can yield sensitivity to a difference of 0.01λ in
separation and a difference of 0.5 in relative permittivity at
54.1-dB SNR, we minimize a cost function

(D∗, ε∗
r ) = arg min

D,εr

∑
�x,�y

| fn,motion(�x,�y; D, εr )

− fmotion(�x,�y; D, εr )|, (7)

for the case of object motion in structured illumination. This
cost function uses the function f described in (2), as opposed
to the function g plotted in Sec. II D; this is because f contains
sufficient information for inversion, while g is merely a visu-
alization tool (see Sec. II C). Noisy data corresponding to all
values of D ∈ [0, 0.05λ] and εr ∈ [11.9, 14.4] are compared
with noiseless data for (D, εr ) = (0.02λ, 12.4). We find that

(a) (b)

FIG. 8. Logarithm of mean value of the cost function compar-
ing noisy data for D = 0.02λ and εr = 12.4 and noiseless data for
(a) object translation and (b) phase scanning of the structured field.
Cost function minimum is obtained at the correct value of separation
and dielectric constant within a margin of λ/100 for separation and
0.5 for dielectric constant.

the cost is minimum for (D∗, ε∗
r ) = (0.02λ, 12.4), as is shown

in Fig. 8(a). Referring to Fig. 2, the object is moved in steps
of 0.1λ over a square region of side 5λ. The separation (D)
is varied in steps of 0.01λ, from 0λ to 0.05λ. The relative
permittivity of the object, εr , is varied in steps of 0.5, from
11.9 to 14.4. For every value of (�x,�y; D), the noisy data
are compared with the noiseless data of a chosen value of
(D, εr ) = (0.02λ, 12.4). The logarithm of the mean cost ob-
tained from the 100 sets of noisy data is shown in Fig. 8(a). It
is evident that the lowest cost is obtained for the correct value
of (D, εr ) = (0.02λ, 12.4).

When the background field is scanned over the object,
rather than the object moving in the field, as in (7), the phase
�φx of one of the incident waves is varied from 0 to π in
steps of 0.2π while φy = 0. The separation D is varied in steps
of 0.01λ from 0λ to 0.05λ and the relative permittivity εr is
varied identically as before. For every value of φx between 0
and π , noisy data are compared with the noiseless data for
(D, εr ) = (0.02λ, 12.4). We minimized a cost function as

(D∗, ε∗
r ) = arg min

D,εr

∑
�φx

| fn,scan(�φx; D, εr )

− fscan(�φx; D, εr )|. (8)

The logarithm of the mean cost obtained from 100 noisy
datasets is shown in Fig. 8(b). It is evident that the min-
imum cost is obtained at the correct value of (D, εr ) =
(0.02λ, 12.4).

The cost function plots in Fig. 8 show that both motion
in structured illumination and scanning of structured illumi-
nation can yield information in the far-field scattered field
intensity that is sensitive to a change of 0.01λ in scatterer
separation and a change of 0.5 in relative permittivity of the
scatterers, despite the presence of significant detector noise.
This is the case even when D and εr are being simultaneously
estimated, rather than the one-parameter inversion analyzed in
Sec. II E.

III. SPECKLE ILLUMINATION

In many applications, coherent light from a laser forms
speckle because of the random scatter involved when the light
interacts with surface or bulk scattering features, and various
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FIG. 9. Adaptation of the geometry shown in Fig. 2 for use with
a speckle field, which is incident from the left. The left and right
boundaries are still 2λ-thick PMLs, but the top and bottom bound-
aries (green) have been replaced with continuous periodic boundary
conditions.

fundamental and applied aspects of statistical optics have
received substantial recent attention. For instance, a means
to access the transmission matrix and hence focus through
scattering media has been found [36]. Also, speckle correla-
tions over frequency provide information about the random
medium [37,38], and correlations over object position offer a
way to image an object in a heavily scattering random back-
ground [39,40]. More generally, interesting transport physics
has been found with coherent fields in randomly scattering
media, including the role of participating modes on the eigen-
value distribution [41] and in relation to localization [42] and
quantum transport [43,44]. We show that speckle can pro-
vide the structured illumination that allows for superresolution
sensitivity and inversion with relative motion between this
field and the object. As in Sec. II, this is investigated using
a stationary object and translating the field.

A. Speckle setup

The notation for this section is similar to that of Sec. II,
where appropriate, but the differing incident field necessitates
some changes. The function g(px, py; D), defined in (3),
represents the difference between a noisy single-pixel
measurement and a noise-free reference value, which is
generated using the forward model. To address the speckle
case, we define gs(�φx,�φy; D). This gp corresponds to the
motion of a speckle field (which will only be moved in the
y direction), and this spatial translation is described by the
variable �γy [and not �y, which is used in Sec. II in relation to
object motion using gs(�φx,�φy; D)]. A fixed-SNR Gaussian
noise model equivalent to the model presented in Sect. II B is
also used for the speckle results. A slightly lower SNR of 40
dB is used to illustrate good performance at this SNR.

In the numerical FEM simulations with speckle, we con-
sider the geometry shown in Fig. 9, which is transversely
periodic and hence has a discrete plane-wave expansion. Only
a single detector geometry is considered in order to clearly
isolate the effect of the speckle illumination pattern from
other factors. The detectors on the right measure the inten-
sity, but these data are only used to calculate the total power
flow. Noise is then added to this single-pixel detector data. A
speckle field is generated that illuminates the sample from the
left side, propagating in the positive x direction and spanning
the full breadth of the y dimension. Let the size of the domain

(a) (b)

FIG. 10. Speckle results, with εr = 4 and 100 samples at 40-dB
SNR. (a) 1 speckle field. (b) Average over 20 speckle fields.

in the y direction be Ly. In order for the speckle field to be
periodic in the y dimension, the y components of the wave
numbers of its plane-wave components ky must each be inte-
ger multiples of Ly, i.e., ky(m) = 2πm/Ly, for some integers
m. Also, in order to ensure that there are no evanescent field
components in this speckle field, we must limit m such that
kx(m) = [k2

0 − ky(m)2]1/2 is real, or |m| � Ly/λ. The speckle
field is composed of a superposition of such plane waves.

The complex amplitudes of these plane waves are drawn
from a random distribution, resulting in random speckle. The
real and imaginary components should be independent and
identically distributed zero-mean Gaussian random variables
[45]. Therefore, if the maximum allowable value of m (as
described in the preceding paragraph) is M = �Ly/λ�, then
2M + 1 random complex amplitudes should be generated
(including the m = 0 mode), or 2(2M + 1) independent
samples drawn from a zero-mean Gaussian distribution. Let
these amplitudes be denoted αm. This process is repeated for
each random speckle field that is generated. The speckle field
can therefore be written as

Ep =
{

M∑
m=−M

αme(− jxkx (m)− j(y+�γy )ky (m))

}
ẑ. (9)

Comparing (9) to (1), �γy has units of distance, whereas φx

and φy have units of phase. The translation in (9) along the y
direction is accomplished by the phase ramp with slope �γy.

B. Speckle illumination results

Figure 10 shows the speckle results. The speckle field is
translated across a stationary object; in this case, referring to
(3), the parameter py corresponds to the distance by which the
speckle is shifted, �γy, while px goes unused because the field
is not shifted in the x direction. When a single random speckle
field is used, Fig. 10(a) shows distinguishability among differ-
ent separations D, demonstrating that the far-subwavelength
resolution obtained with this method does not rely solely on
the type of field described in Sec. II. The shape of the curves
differs from those in Sec. II D due to the relative irregularity of
the speckle field compared with the standing wave, although
this has not detracted from distinguishability. The inversion
approach described by (8) assumes the ability to construct a
forward model, and this requires knowledge of the speckle
field that is used. This information would be difficult to obtain
if the speckle field were generated by passing coherent light
through a scattering medium. However, using a spatial light
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FIG. 11. Mean absolute difference hp(�γy; D1, D2) for two dif-
ferent values of D, averaged over 20 random speckle fields. This
allows many random fields to be averaged over without resulting
in the significant overlap shown in Fig. 10(b) and demonstrates
distinguishability (but not reconstruction) of D.

modulator (SLM) would allow such a forward model to be
constructed and D to be estimated.

If the speckle pattern is not known, then inversion for
D becomes more challenging. Figure 10(b) shows the result
for gp with averaging over 20 random speckle fields. While
the curves from a single speckle field are distinguishable,
the averaged curves are not for the three separation values.
This is because there is no consistent relationship between
gp(�γy; D) and the separation D when different speckle fields
are used. The different intensity patterns produced by each of
the speckle fields causes gp to behave differently as a function
of D and �γy for each speckle field, and over a large number
of speckle fields, gp averages out to approximately zero. As a
result, gp cannot reliably be used to invert for D if the speckle
pattern is unknown.

Model-free far-subwavelength resolution

A distinction between two goals must be recalled: estab-
lishing sensitivity to far-subwavelength changes in D, and
using this sensitivity to estimate the separation D. While the
above discussion of the relationship between Figs. 10(a) and
10(b) involves limitations on inversion, it does not comment
on the basic question of sensitivity. This section shows that,
if the goal is to distinguish between two values of D, then
some benefit could still be gained from using multiple speckle
fields. To distinguish between D = D1 and D = D2, the mean
absolute difference

hp(�γy; D1, D2) = 〈| fn(�γy; D1) − fn(�γy; D2)|〉 (10)

can be calculated, where the brackets 〈·〉 indicate averaging
over the random speckle fields, and fn again represents a
noisy measurement of power flow across the entire detector
plane. This metric is adapted from (7), where the mean ab-
solute difference is used to compare a noisy measurement to
a noiseless simulation. Here, it instead compares two noisy
measurements. The calculated result using (10) is plotted in
Fig. 11 using the same 20 speckle fields as in Fig. 10(b).

The distinguishability in Fig. 11 is accomplished with-
out using the forward model f (px, py; D), meaning that the
far-subwavelength changes in D can be sensed without prior
knowledge of either the background field or the geometry.

This is a core result of the paper because it shows that this far-
subwavelength sensitivity results from relative motion with
structured illumination, not merely from prior knowledge.

Because Fig. 11 shows the mean absolute distance be-
tween noisy measurements, rather than the measurements
themselves, an overlap between two curves does not indicate
a lack of distinguishability. Rather, the distance from zero of
each curve indicates the ability to discern between a separate
pair of values of D. A tentative pattern is suggested that,
when the difference between D1 and D2 is doubled, the mean
absolute difference is also doubled, although more work is
required to fully establish this pattern. The overlap of the blue
and green curves in Fig. 11 shows that gp changes about the
same amount when D is increased from 0.01λ to 0.02λ as
it did when increasing from 0.02λ to 0.03λ. This explains
why the red curve in Fig. 11 is about twice either the green
or blue curve, as well as why the curves in Figs. 3–5 and
10 are symmetric about D = 0.02λ. More generally, (10) can
be thought of as measuring the possible level of sensitivity
achievable if a forward model is available for the incident
field, as is assumed in (7) and (8). However, if these gp are
not averaged together, then a more elaborate cost-function-
based inversion method could be used. In this case, taking
into account the gp due to each random speckle field may
improve inversion performance, as Fig. 11 shows that many
such speckle fields contain information that can be used for
distinguishing different values of D. While the effect of the
speckle correlation length (speckle size) or contrast ratio is not
explored, it is reasonable to assume that optimal performance
occurs with small speckle (of size λ/2) that is fully developed
(speckle contrast ratio of 1).

IV. DISCUSSION

We have shown that either a moving background field
with a stationary object or object motion in a structured
field can yield far-subwavelength spatial resolution informa-
tion appropriate for imaging. Despite the loss of evanescent
fields and thus of high-spatial-frequency information in the
far field, information about nanoscale features is still avail-
able in the propagating plane-wave spectrum. This is because
such nanoscale changes in object geometry have a small ef-
fect on the propagating spectrum, which is greatly enhanced
by relative motion in structured illumination. With the use
of a sufficiently constrained forward model, the approach
presented is equivalent to estimating the high-frequency com-
ponents of the plane-wave spectrum from measurements of
its low-frequency components, modulated by motion in the
structured field. While it is well known that modifying a struc-
ture changes the complete plane-wave spectrum, the degree to
which far-subwavelength information can be extracted from
the propagating spectrum and the role of relative motion in
structured illumination in enhancing sensitivity to this infor-
mation was not well understood until now. We should note
that this is different from an interferometer, where counter-
propagating waves provide interference fringes that are very
sensitive to mirror placement [26]. While interferometry can
also provide sensitivity to nanoscale features from an opti-
cal measurement, as demonstrated in Sec. II E, our approach
provides access to nanometer-scale object information even
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with measurement geometries that are not sensitive to phase
differences across the object. Additionally, our approach al-
lows unique inversion for multiple features from a single
measurement, further distinguishing it from traditional in-
terferometry. Our work has shown that, using the standard
imaging arrangement, hence the x detector plane in Fig. 2(a),
available equipment will allow a spatial resolution of about
one-thousandth of a wavelength.

It was previously shown that the level of granularity acces-
sible in material is related to the plane-wave spectrum extent,
relevant for homogenization in an imaging system [46]. Now
we know that essentially unlimited and fine granularity in con-
densed matter is accessible with relative motion in a structured
field. We have also demonstrated that the achieved spatial
resolution is not limited to an illumination pattern composed
of two interfering plane waves but can be obtained using a
speckle pattern as well. This further implies that a wide variety
of illumination patterns could potentially be used, so long as
the spatial variation of the pattern is sufficiently high. Finally,
we have shown that, while prior knowledge of the incident
field and geometry allow the reconstruction of nanometer-
scale features, changes on this scale can be detected even
without such knowledge.

Analysis using information theory provides insight into the
role of key factors including the illumination pattern, a con-
strained forward model, and the object geometry in achieving
far-subwavelength resolution. While all three are important
to resolution, structured illumination can be considered more
critical than the forward model in the situations considered:
relaxing the one-parameter inversion to two-parameter still
results in high resolution (Sec. II F), but using single-plane-
wave illumination reduces resolution and does not allow
multiparameter inversion. Furthermore, the fact that σD̂ does
not have a limiting asymptote as D → 0 in Fig. 6(b) implies
that the resolution at which D can be estimated can be in-
creased arbitrarily by increasing the SNR. These insights are
likely also applicable to the measurement problems explored
in earlier work [24,25]. While it is not explicitly considered
in our analysis, utilizing a multipixel detector or a spatially
distributed detector network with relative motion in structured
illumination would provide additional information, enabling
inversion for additional far-subwavelength object features.

This work has provided the physical basis for superreso-
lution sensing with relative motion in structured illumination
and an assessment of the expected possible resolution.
The results also break several key requirements that were
previously assumed necessary for far-subwavelength sensing
and inversion using relative motion in structured illumination
[24], notably the need for object motion in a known structured
illumination pattern. Motion of the fields, rather than the
object, allows for measurements that are both faster and more
robust, and the extension to arbitrary illumination patterns
provides significant additional flexibility in the experimental
implementation. Being able to access such high spatial
resolution without a forward model (with a known incident
field in a cost function involving measurements) also opens
substantial new application domains, such as for photonics in
biophysical studies, including of the brain. The unprecedented
resolution available with this approach presents a variety of
important application domains, such as unlabeled protein

sensing and material defect detection. Because this work
motivates an experimental study, we have proposed a possible
implementation in Appendix C.

While unique inversion for nanoscale object features with
our approach requires prior information in the form of a
forward model, there are many applications for which this
information would be readily accessible. For example, con-
straints on the object may be available during material
inspection, where subwavelength defects must be detected, or
in protein imaging, where the typical structure of a protein can
be known. While the simulated object in this paper has been
of subwavelength size, this is a choice made for computational
simplicity, and the results shown here should extend naturally
to far-subwavelength features of larger objects as well. Ob-
jects that interact more strongly with each other provide more
information as well; this has been exploited by, for example,
tomographic diffraction microscopy [47,48], which can also
utilize inversion constraints on the dielectric constant of the
object based on prior knowledge of the sample in order to
improve resolution (as has been used in Sec. II E).

This line of work can be understood as a special case
of single-pixel imaging [15,16] (SPI), and it reveals the
framework’s power to extract far-subwavelength features
when combined with a suitable forward model. Some ap-
proaches make only a random subset of measurements and use
compressive-sensing-based reconstruction techniques [16],
and some use light sources that produce correlated pho-
ton pairs [49]. While these approaches typically attempt
to accommodate a general class of images, the forward
model employed here incorporates specifics from the imag-
ing target, similar to how the camera itself is modeled in
image-processing-based superresolution reconstruction meth-
ods [50]. Compressive sensing generally involves assuming
that the image is sparse under a particular basis or other set of
functions [51–53], and the forward model used in this paper
can be considered a further degree of prior knowledge. This
work demonstrates that the resolving power of such structured
illumination methods can be greatly improved if a forward
model is specifically tailored to the object being imaged, or
if relative motion is introduced. Some SPI methods modulate
the light at the detector instead of the illumination and are
correspondingly referred to as “structured detection” rather
than “structured illumination” [15]. The placement of a scat-
tering analyzer between the object and detector [54] can be
considered a form of structured detection that enables sub-
wavelength far-field sensitivity by leveraging relative motion
with structured illumination [55], but the randomness of the
scattering medium may be difficult to precisely characterize
with a nonrandom forward model of the type used in this
paper.

Outside of SPI, phase-translated standing-wave patterns
have been used for increased axial resolution [56] (standing-
wave fluorescence microscopy) and sub-Rayleigh lateral
resolution [1] (structured illumination microscopy, or SIM).
SIM has been adapted for the use of random speckle illumina-
tion [3,57], with image reconstruction being done using either
cost-function inversion [3] or second-order image statistics
[57], or with single-pixel detection and spatiotemporally
modulated illumination [58]. All of these methods exploit
structured illumination for improved resolution but are limited
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by the number of unknowns involved in reconstructing arbi-
trary images. Our results suggest that the resolution of some of
these methods may be improved with the inclusion of a highly
constrained forward model and relative motion between the
sample and the illumination.

While our results with random speckle illumination only
show sensitivity to far-subwavelength features, rather than
full invertibility, unique inversion for object features may be
possible in this case with an appropriate measurement strat-
egy and forward model. As noted in the previous paragraph,
second-order image statistics have been used to replicate the
resolution benefit of SIM using random speckle illumination
[57] without relative motion. Additionally, speckle intensity
correlations over object position have been demonstrated as a
basis for extracting object information from a speckle image
without knowledge of the underlying speckle pattern [59].
Either of these strategies could likely be combined with our
approach to invert for far-subwavelength object features. This
would still require a highly constrained model for object ge-
ometry but would allow inversion with random speckle illumi-
nation. Both of these approaches to inversion would probably
necessitate measurements using a multipixel detector or cam-
era, as opposed to the single-pixel detector used in this paper.
Inverting for features using image statistics would additionally
require collecting data over a sufficient statistical sample of
random illumination patterns, which could be achieved by
translating the object over many speckle correlation lengths.

The results presented in this paper consider the case of
perfectly coherent illumination and scatter; however, they
could likely be extended to situations with limited coher-
ence, although with reduced sensitivity. By way of example,
a similar information-theory analysis to Sec. II E has been
performed for a measurement of the separation of two fluo-
rophores [60] and indicated a maximum resolution of around
10 nm (≈λ/50) without structured illumination. In this case,
subdiffraction-limit resolution is achieved due to the highly
constrained single-parameter estimation. In the x-ray regime,
it has been demonstrated that the positions of a set of scatter-
ers can be imaged with comparable or improved resolution
compared with coherent approaches using incoherent mea-
surements of intensity correlations over wave-vector [61]. As
a result, far-subwavelength resolution based on relative mo-
tion may still be achievable even if coherence requirements
are relaxed significantly. The problem of distinguishing in-
coherent point sources with various approaches has received
substantial attention [6,7,31–35], and it has been shown that
partial coherence results in a looser bound on resolution
[62]. Partially coherent structured illumination may arise, for
example, when broadband light is passed through an opti-
cal bandpass filter. For speckle illumination, reducing the
coherence also reduces the speckle contrast ratio [45], and
exploration may be done into the relationship between the
speckle contrast ratio and the sensitivity using relative motion
in a speckle field. Prior studies on the statistical properties of
broadband speckle [63] would be useful in such an effort.

V. CONCLUSION

We have shown that relative motion between struc-
tured illumination and an object provides sensitivity to

far-subwavelength object features using far-field measure-
ments, despite the presence of realistic detector noise. There
are three primary contributions in this work. (i) Intensity
measurements in the far field with either structured field scan-
ning over an object or motion of the object in a stationary
structured field provide access to virtually unlimited lateral
spatial resolution. (ii) Our understanding is that superresolu-
tion sensitivity exists with relative motion because motion in
a structured field greatly enhances changes to the propagating
spectrum induced by the nanostructure, and information the-
ory supports this position. (iii) Far-subwavelength information
is available with a known forward model, and, importantly,
even when the specific incident fields are unknown. If suit-
able constraints on the geometry are available, then inversion
for parameters of the object is possible and an image could
thus be formed. The advantage of using the field-scanning
approach is that it can be faster and more robust than spa-
tial scanning (which needs a nanometer-precision mechanical
stage with good repeatability), potentially important in some
applications. Instead of structured light from two plane waves
incident on the object, a spatial light modulator would allow a
complex set of incident fields to be realized and scanned over
the object, such as the demonstrated speckle field. Adequate
temporal coherence for the laser light is required, and, while
maintaining low noise is important, there are inexpensive
lasers that fulfill this requirement. The performance could be
enhanced with multiple-detector data, so that higher spatial
resolution becomes available.
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APPENDIX A: NUMERICAL ACCURACY

This Appendix describes details of the simulation related
to numerical accuracy. The accuracy of an FEM simulation
depends on the size of the mesh elements, and this is there-
fore a critical parameter. For plane-wave illumination, it is
determined that satisfactory accuracy is achieved using a mesh
composed of triangular elements with a maximum side length
of 0.02λ and a minimum size of 0.001λ. At this level of
discretization, there are at least eight layers of mesh elements
between the two scatterers at every value of D. These values
are also judged to provide sufficient accuracy in Ref. [24].
The process by which these mesh sizes are decided upon
is the same for the plane-wave-illumination case as for the
speckle-illumination case, and it is presented in more detail
for the latter.

For speckle illumination, the maximum element size is
λ/20 in the PML (where less sensitivity to the mesh ele-
ment size is found), λ/40 in the background, and λ/(40n)
in the dielectric material (where n is the refractive index of
this material). Values between the mesh element points are
interpolated using a cubic interpolation method, instead of the
quadratic method used for plane-wave illumination, allowing
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FIG. 12. Mean absolute percent error (MAPE) in gp(�γy; D)
when decreasing the maximum mesh element size, calculated for one
speckle field [the same one used in Fig. 10(a)]. Parameter values of
D = 0.01λ and εr = 4 are used. Any decrease in the maximum mesh
element size beyond λ/25 results in a MAPE less than 0.0001%, so
our chosen maximum size of λ/40 is clearly sufficient for numerical
convergence.

a coarser mesh. The minimum element sizes are smaller than
the maxima by a factor of 10, with an additional factor of 10
near narrow regions.

To verify the numerical accuracy of our results, the max-
imum FEM element size is varied until convergence in the
results is achieved, and the results of this process are shown
in Fig. 12. The first speckle field [the same one used in
Fig. 10(a)] is repeatedly applied to the geometry, while the
maximum element size (for the background, and dielectric
correspondingly) is iteratively reduced. The change between
successive resulting gp(�γy; D) curves is compared using an
absolute percentage error metric, with parameter values of
D = 0.01λ and εr = 4. This is calculated at each value of
�γy, and then averaged together, yielding a mean absolute
percentage error (MAPE) as

MAPE

(
λ

da
→ λ

db

)
= 100%

N

×
N∑

i=1

∣∣∣∣∣
Gi

(
λ
db

) − Gi
(

λ
da

)
Gi

(
λ
da

)
∣∣∣∣∣, (A1)

where N is the number of different values of �γy calculated
(N = 11, in this case), and Gi(λ/d ) = gp(�γy; D) for the ith
value of �γy and a maximum mesh element size of λ/d .

As shown in Fig. 12, decreasing the maximum mesh ele-
ment size of the background from λ/20 to λ/25 [and of the
dielectric to λ/(25n), accordingly] results in a mean absolute
change in gp(�γy; D) of less than 0.0001%, as did any further
decrease. We therefore expect no issues of numerical accuracy
with our chosen maximum element size of λ/40 [and λ/(40n)
for the dielectric].

(a) (b)

(c)

FIG. 13. Detailed information about the measurements under-
lying Sec. II. (a) Poynting vector incident upon the y detector at
different positions, for varying D. The change in intensity is small
compared with the background. yd/λ represents the position on the
y detector plane normalized in terms of wavelength. (b) Similar, but
for a changing field position instead. The measurement is laterally
translated. (c) Measured power difference for a fixed field position,
but more separation values D, and having been divided by the back-
ground intensity according to (B1). This illustrates required detector
sensitivity.

APPENDIX B: NORMALIZED SENSITIVITY

For plane-wave illumination, the intensity incident upon
the system was on the order 10−3 W/m, using units cor-
responding to the 2D geometry. Equivalently, this intensity
could be described as 10−3 W/m2 if a three-dimensional (3D)
geometry is considered where none of the quantities vary in
one spatial dimension. Such will be the convention used here,
for familiarity with units of 3D space. This intensity is approx-
imately equal to that incident upon the detector plane, because
the object has a small scattering cross section. The change in
intensity depends on the setup, but is typically on the order
10−7 W/m2, as measured by averaging over intensity-detector
points in (2). Normalizing this intensity change with respect to
the intensity incident upon the system gives a factor of 10−4;
to detect the specified changes in D, a detector sensitivity to
changes of 1 part in 10,000 is necessary. For the speckle illu-
mination, the intensity incident upon the system is on the order
of 10−1 W/m2, but the sensitivity requirement is similar. This
sensitivity requirement corresponds to a SNR of 40 dB. Using
modern avalanche photodiodes [64], this SNR is achievable
[24]. An experimental evaluation of one CCD camera found a
SNR of about 30 dB per pixel [65], and averaging over its
400 pixels increases this SNR to over 40 dB. Section II B
discusses this issue further.

Figures 13(a) and 13(b) show plots of the Poynt-
ing vector over the top detector plane (y detector) for
the plane-wave illumination case of Sec. II [described
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by (1)] at various values of D [Fig. 13(a)] and φy

[Fig. 13(b)], with φx = 0 and εr = 4. Figure 13(c) shows
an example normalized version of the difference signal
gs as a function of D. The normalized difference is
given by

g̃s(φx, φy, D) = gs(φx, φy, D)∫
S(x, y; φx, φy, D) · n̂ds

(B1)

and represents the ratio of the difference signal to the total
power flow through the detector plane.

APPENDIX C: CONSIDERATIONS
FOR EXPERIMENTAL ADAPTATION

An experimental realization of this work would be rela-
tively straightforward to implement and a general framework
for a possible experimental adaptation is presented in Fig. 14.
The scales and distances used in the simulations were cho-
sen with computational constraints in mind, but they are too
small to realistically implement in an experiment. To ac-
count for this, a system of lenses should provide comparable
performance. Figure 6 demonstrates that only one detector
orientation is necessary to access far-subwavelength sensi-
tivity, so a more complicated experimental arrangement with
two perpendicular detector planes (as in Fig. 2) would not be
needed. Our results also demonstrate that nanoscale informa-
tion is accessible with a wide variety of illumination patterns,
allowing for one to be chosen based on the desired geometry
of the experiment, potentially further simplifying the required
setup. Experimental realization of this approach could enable
applications in material defect detection and protein imaging
(where contrast might be provided with a fluorophore, if the
coherence requirements can be met using a bandpass filter).

FIG. 14. Conceptual diagram for a possible experimental adapta-
tion. A laser is focused onto a structured sample, and an electro-optic
modulator translates the field along one direction by modulating its
phase.

The potential noise due to errors in mechanical positioning
and electronic phase control in corresponding experimen-
tal realizations of these concepts has not been incorporated.
The results from beam motion in Fig. 3, and object mo-
tion in Fig. 4, have relatively similar features. We attribute
differences to the specific object geometry and scan ranges
in relation to the detection arrangement. For the geometry
considered, a larger dielectric constant provides greater sensi-
tivity, as of course does higher SNR (from longer integration
time or reduced detector noise). Technically, beam scanning
could be achieved with high speed. This makes the phase-
scanning approach or, more generally, electronic control of
the incident field as a means of relative motion with respect to
the object, of substantial practical utility.
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