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We propose and analyze a scheme for manipulating the propagation of single-photon pulses with two
polarization components in a Rydberg atomic gas via double electromagnetically induced transparency. We
show that by storing a gate photon in a Rydberg state, a deep and tunable potential for a photon polarization
qubit can be achieved based on the strong Rydberg interaction. We also show that the scheme can be used to
realize an all-optical switch in the dissipation regime and generate a large phase shift in the dispersion regime
for the photon polarization qubit. Moreover, we demonstrate that such a scheme can be utilized to detect weak
magnetic fields. The results reported here are not only beneficial for understanding the quantum optical property
of Rydberg atomic gases, but also promising for designing devices for quantum information processing.
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I. INTRODUCTION

Photons do not interact with each other in vacuum and also
hardly interact with their environments. The linear (or nearly
linear) property of light propagation, in combination with high
speed, large bandwidth, and low loss, has made photons ex-
cellent information carriers for optical communications over
long distances. However, for quantum information processing,
strong interactions between photons are required. Although
interactions between photons may be obtained through some
nonlinear optical processes [1], optical nonlinearities realized
through these processes are too weak for all-optical quantum
information processing.

An all-optical switch is a photonic device by which a
gate pulse can effectively change the transmission of a target
pulse without the aid of electronic techniques. For quantum
information processing, it is desirable to build single-photon
switches in which the gate pulse contains only one pho-
ton. However, building single-photon switches is generally
difficult, because Kerr nonlinearities in conventional optical
media are too small at single-photon levels. Nevertheless,
the research of electromagnetically induced transparency
(EIT) [2] in the past three decades has led to the possibil-
ity of realizing strong optical nonlinearities at few-photon
levels [3].

Among a wide variety of physical systems that support
EITs, Rydberg atomic gases [4,5] are particularly attractive,
in which the strong atom-atom interaction can be effectively
mapped onto the strong photon-photon interaction via Ryd-
berg EIT [6–8]. In recent years, tremendous attention has been
paid to the study of various single- and few-photon states
and their quantum dynamics in atomic gases working under
the condition of Rydberg EIT [9–32]. In particular, many
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single-photon devices (including single-photon switches and
phase gates), which are promising for all-optical quantum in-
formation processing, have been demonstrated experimentally
[31–46].

In this article we suggest a scheme to realize a single-
photon switch based on the strong Rydberg interaction.
Different from those schemes explored before, in which
single-photon switches were designed for photon states with
only one polarization component |σ 〉 [15,17,19,35–38], in
our scheme the single-photon switch is for the photon state
with two polarization components σ+ and σ−, i.e., for
photon polarization qubit c+|σ+〉 + c−|σ−〉 (c+ and c− are
complex constants satisfying |c+|2 + |c−|2 = 1). The system
we consider is a cold Rydberg atomic gas working un-
der the condition of double Rydberg EIT. Recently, such
EIT has been used to acquire large self- and cross-Kerr
nonlinearities and some nonlinear optical phenomena (e.g.,
giant magneto-optical rotation, self-organized optical spa-
tial structures, and Stern-Gerlach deflection of light bullets)
for situations with large probe photon numbers [47–51]. In
contrast with these works, where semiclassical approaches
were used, in the present study the probe-laser field in the
system is assumed to be in a single-photon state; hence an
all-quantum approach for both the atoms and the probe field is
needed.

We show that, by storing a gate photon in a Rydberg state,
a deep and tunable optical potential (called Rydberg-defect
potential below) for a photon polarization qubit can be pre-
pared through the strong Rydberg interaction. We also show
that by using this scheme it is possible to design an effective
switch for the photon polarization qubit if the system works
in the dissipation regime. Moreover, large phase shifts for
the two polarization components of the photon polarization
qubit can be generated when the system works in the disper-
sion regime. In addition, we demonstrate that such a scheme
can be utilized to detect weak magnetic fields. The research
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FIG. 1. Schematics of the model and the propagation of the single-photon polarization qubit. (a) Shown on the left is the level diagram and
excitation scheme of the double Rydberg EIT, consisting of two ladder-shaped EIT excitation paths, i.e., |1〉 ↔ |3〉 ↔ |4〉 and |2〉 ↔ |3〉 ↔ |4〉,
with |1〉 and |2〉 the two lower states, |3〉 the excited state, and |4〉 the Rydberg state. Shown on the right is a gate photon stored in another
Rydberg state |3g〉 of the gate atom via another Rydberg EIT through the excitation path |1g〉 → |2g〉 → |3g〉. Red (blue) lines with double-
headed arrows represent the probe (control) fields. The purple line with double arrows and the symbol VvdW represents the van der Waals
interaction between the Rydberg atom located at the position z and the Rydberg atom at the position zg (gate atom). For a detailed description
of the probe and control fields, atomic decay rates �αβ , and detunings �α , see the text. (b) Suggested geometry of the system. The gate atom
(assumed to be located at the middle of the atomic gas, i.e., zg = L/2) excited to the Rydberg state |3〉g by the gate photon is denoted by the
green closed circle; other atoms are denoted by smaller blue closed circles. The domain centered at the gate atom forms a Rydberg blockade
sphere with radius rb (indicated by the yellow dashed circle), which contributes a Rydberg-defect potential for the incident probe photon qubit.
An external magnetic field B applied in the z direction results in the detunings �1 = −�2 = −μBB/3h̄. (c) Shown on top is the schematic
of the free propagation of the two polarization components σ+ and σ− of the photon qubit in the absence of the stored gate photon, i.e., the
qubit switch is off. In the middle the stored gate photon induces a dissipation-type Rydberg-defect potential (with a large imaginary part)
indicated by the purple dashed curve, blocking the transmission of the photon qubit, i.e., the qubit switch is on. On the bottom the stored gate
photon induces a dispersion-type Rydberg-defect potential (with a large real part) indicated by the blue solid curve. Significant phase shifts are
generated for the two polarization components of the photon qubit.

results reported here are useful not only for understanding the
quantum optical property of Rydberg atomic gases, but also
for designing single-photon devices which are promising for
optical quantum information processing [52].

The remainder of the article is arranged as follows. In
Sec. II we describe the physical model under study and
derive two-component envelope equations of the quantized
probe field based on Heisenberg-Maxwell (HM) equations. In
Sec. III we solve the two-component envelope equations and
present analytical and numerical results on the realization
of the Rydberg-defect potential, polarization qubit switch,
phase shifts of the two qubit components, and magnetic-
field-induced switching behavior for the polarization qubit.
In Sec. IV we summarize the main results obtained in this
work.

II. MODEL AND EQUATIONS OF MOTION

A. Physical model

We start by considering a cold four-level atomic gas (lower
states |1〉 and |2〉, excited state |3〉, and Rydberg state |4〉) with
an excitation scheme of an inverted-Y-type configuration, in-
teracting with a weak, pulsed probe laser field (target pulse)
of central wave number kp and angular frequency ωp = kpc,

and a strong continuous-wave control laser field of wave num-
ber kc and angular frequency ωc = kcc [see the left part of
Fig. 1(a)]. To suppress the first-order Doppler effect, the probe
(control) field is assumed to propagate in the z (−z) direction.

We assume that the probe field consists of two polarization
components, i.e., a right-circular (σ+) and a left-circular (σ−)
one, coupling to transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉, respec-
tively; the control field couples to the transition |3〉 ↔ |4〉.
Here �13, �23, and �34 are spontaneous decay rates from |3〉 to
|1〉, |3〉 to |2〉, and |4〉 to |3〉, respectively. In addition, �1 and
�2 are Zeeman energy splittings of the atomic ground-state
level, induced by an external magnetic field B applied in the
z direction [53]; �3 and �4 are one-photon and two-photon
detunings, respectively. The excitation scheme shown in the
left part of Fig. 1(a) is the basic configuration of double
Rydberg EIT; it consists of two ladder-shaped EIT excitation
paths, i.e., |1〉 ↔ |3〉 ↔ |4〉 and |2〉 ↔ |3〉 ↔ |4〉.

For simplicity, we assume that the system behaves as a
one-dimensional one, which can be realized by taking a cigar-
shaped atomic gas or an atomic gas filled into a waveguide
with small transverse sizes, so that the optical fields of the
system in transverse directions are tightly confined, and hence
the diffraction effect can be safely neglected. Thereby, a
(1 + 1)-dimensional (i.e., time plus the space along the z axis)
model is sufficient to describe the dynamics of the system, as
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schematically shown in Fig. 1(b).1 The total electric field in
the system reads

Ê(z, t ) = Ec(z, t ) + Êp(z, t ), (1a)

Ec(z, t ) = ecEcei(−kcz−ωct ) + c.c., (1b)

Êp(z, t ) = Êp+(z, t ) + Êp−(z, t ), (1c)

Êp j (z, t ) = ep jEpÊp j (z, t )ei(kp±z−ωp±t ) + H.c. (1d)

Here j = +, −; kp± = kp; ωp± = ωp; c.c. (H.c.) represents
the complex (Hermitian) conjugate; ec and Ec are the unit
polarization vector and amplitude of the control field, respec-
tively; Ep ≡ √

h̄ωp/2ε0V is the field amplitude of a single
probe photon, with V = LA0 the optical volume of the system
(A0 and L are the cross-section area and longitudinal size of
the atomic ensemble, respectively); and ep+ = (ex + iey)/

√
2

and Êp+(z, t ) [ep− = (ex − iey)/
√

2 and Êp−(z, t )] are the unit
polarization vector and annihilation operator of probe photon,
respectively, for the σ+ (σ−)-polarized component. The oper-
ators Êp+(z, t ) and Êp−(z, t ) obey commutation relations

[Êp j (z, t ), Êp j′ (z
′, t )] = [Ê†

p j (z, t ), Ê†
p j′ (z

′, t )] = 0, (2a)

[Êp j (z, t ), Ê†
p j′ (z

′, t )] = Lδ(z − z′)δ j j′ , (2b)

with j, j′ = +,− and L the size of the system in the z di-
rection. We also assume that the incident probe field is a
single-photon pulse and the quantum state of the pulse is a
polarization qubit because the pulse contains two polarization
components.

In order to design a switch for the photon polarization
qubit, a gate photon must be prepared. Here we adopt the
idea used in Refs. [35–38], i.e., before the incidence of the
probe photon, a gate photon is stored in another Rydberg state
|3g〉 of an atom (called the gate atom). This can be realized
by using another Rydberg EIT through the excitation path
|1g〉 → |2g〉 → |3g〉. Here the gate photon pulse (with central
angular frequency ωg and half Rabi frequency 
g) couples the
atomic states |1〉g and |2〉g, and a strong, assisted laser field
(with central angular frequency ωa and half Rabi frequency

a) couples the states |2〉g and |3〉g, as shown in the right part
of Fig. 1(a). In this way, the incident gate photon is stored in
the gate atom and hence the Rydberg state |3〉g can have the
atomic population of unit probability.

Assume that the atom excited into the state |4〉 is located at
position z. Because both |3〉g and |4〉 are Rydberg states, there
exists a strong Rydberg-Rydberg interaction between the gate
atom (at position zg) and the atom at z. Such an interaction can
be described by the van der Waals interaction potential of the
form

h̄VvdW(zg − z) = − h̄C6

|zg − z|6 (3)

if both |4〉 and |3g〉 are taken to be the S state. Here C6 is called
the dispersion coefficient. The Rydberg-Rydberg interaction

1The two polarization components have no spatial separation dur-
ing propagation. The separation plotted in the figure is used to
indicate the fact that the photon qubit consists of two polarization
components.

results in atomic level shifts and hence induces an important
phenomenon, called Rydberg blockade [4,5,31,32], by which
only one atom can be excited to Rydberg states in the region
of the Rydberg blockade sphere of radius rb.2

Under electric dipole, rotating-wave, and paraxial approx-
imations, the effective Hamiltonian of the atomic ensemble is
given by Ĥ = ĤAF + ĤAG, with

ĤAF = −h̄
∫ +∞

−∞
dz ρa(z)

(
4∑

α=1

�α Ŝαα (z, t )

+
cŜ34(z, t ) + gp+Ŝ13(z, t )Êp+(z, t )

+ gp−Ŝ23(z, t )Êp−(z, t ) + H.c.

)
, (4a)

ĤAG =
∫ +∞

−∞
dz ρa(z)

∫ +∞

−∞
dz′

gρg(z′
g)

× [Ŝ33(z′
g, t )h̄VvdW(z′

g − z)Ŝ44(z, t )], (4b)

where ĤAF is the Hamiltonian describing the atom-light in-
teraction and ĤAG is the one describing the Rydberg-Rydberg
interaction between atoms in the Rydberg state |4〉 and gate
atoms in the Rydberg state |3〉g. In these expressions, ρg is
the linear density of gate atoms, ρa is the linear density of
atoms other than the gate atoms, 
c = (ec · p43)Ec/h̄ is the
half Rabi frequency of the control field, and gp+ ≡ (ep+ ·
p31)Ep/h̄ [gp− ≡ (ep− · p32)Ep/h̄] is the single-photon half
Rabi frequency denoting the dipole coupling between the σ+
(σ−) component of the probe field and the atomic transition
|1〉 ↔ |3〉 (|2〉 ↔ |3〉). Here pαβ is the electric dipole matrix
element associated with the atomic transition from |β〉 to |α〉
and gp+ ≈ gp− = gp due to the symmetry of the level configu-
ration of the double Rydberg EIT. In addition, we have defined
Ŝαβ ≡ |β〉〈α| exp[i(kβ − kα )z − i(ωβ − ωα + �β − �α )t] as
atomic transition operators related to the states |α〉 and |β〉
(α, β = 1–4), with k1 = 0, k2 = kp+ − kp− = 0, k3 = kp+,
k4 = kp+ + kc, and ωα = Eα/h̄ (Eα being the eigenenergy of
the atomic state |α〉) [48]. The Ŝαβ obey the commutation
relation

[Ŝαβ (z, t ), Ŝμν (z′, t )] = L

N
δ(z − z′)[δαν Ŝμβ (z, t )

− δμβ Ŝαν (z, t )],

with N the total atomic number of the system. Note that, as
in Refs. [15,17,35–39,41], when writing (4a) and (4b) we
have assumed that ρa is small and hence the Rydberg-Rydberg
interaction between the atoms excited in the Rydberg state |4〉
is negligible.

The Zeeman effect induced by the magnetic field B makes
the levels |1〉 and |2〉 (which are degenerate when B =
0) produce splitting �E = μBgα

F mα
F B. Here μB, gα

F , and
mα

F are the Bohr magneton, gyromagnetic factor, and mag-
netic quantum number of the atomic state |α〉, respectively.
Therefore, we have �2 = −�1 = (E2 − E1)/2h̄ = μ21B/2h̄,

2The radius of the Rydberg blockade sphere rb ≡
(|C6||d31|/|
c|2)1/6 is about 8 µm. To make the (1 + 1)-dimensional
model valid, the condition πr2

b > A0 must be satisfied.
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�3 = ωp − (E3 − E1)/h̄, and �4 =ωp +ωc − (E4 − E1)/h̄ −
μ41B/h̄, with μαβ = μB(mα

F gα
F − mβ

F gβ
F ). The derivation of

the effective Hamiltonian (4) is similar to that given in Ap-
pendix A of Ref. [48].

As indicated above, we are interested in the case of a
single gate photon stored in the gate atom located at the
position zg. Thus the gate-atom density is given by ρg(z′

g) =
δ(z′

g − zg), and Ŝ33(zg, t ) ≈ Î (Î is the unit matrix). For sim-
plicity, we assume ρa is a constant, given by ρa = N/L.
Then the Hamiltonian ĤAG is reduced to the form ĤAG =
ρa

∫ +∞
−∞ dz h̄�d (z)Ŝ44(z, t ), with

�d (z) =
∫ +∞

−∞
dz′

gρg(z′
g)

−C6

|z′
g − z|6 = − C6

|zg − z|6 . (5)

As a result, �d (z) behaves as a position-dependent detuning,
which will contribute an external optical potential, i.e., the
Rydberg-defect potential, for the scattering of the incident
probe photon polarization qubit (discussed in Sec. III below).
The position of the gate atom is assumed to be located at the
middle of the atomic gas, i.e., zg = L/2.

The time evolution of the atoms in the system is governed
by the Heisenberg equation of motion

i
∂

∂t
Ŝαβ =

[
Ŝαβ,

Ĥ

h̄

]
+ iL̂(Ŝαβ ) + iF̂αβ. (6)

Here the term L̂(Ŝαβ ) describes the dissipation of Ŝαβ due to
spontaneous emission and dephasing and F̂αβ are δ-correlated
Langevin noise operators describing the fluctuations asso-
ciated with the dissipations L̂(Ŝαβ ). Explicit expressions of
Eq. (6) are presented in Appendix A. For simplicity, in the
present work the dynamics of the gate atom is not considered,
which is approximately valid because the lifetime of the Ryd-
berg state is quite long [35–39,41].

The evolution of the probe field is controlled by
the Maxwell equation ∂2Êp/∂z2 − (1/c2)∂2Êp/∂t2 =
(1/ε0c2)∂2P̂p/∂t2, with P̂p ≡ Na(p31Ŝ31 + p32Ŝ32)ei(kpz−ωpt )

+ H.c. the polarization intensity, p31 (p32) the electric dipole
matrix element related to the transition from |3〉 to |1〉 (|3〉
to |2〉), and Na ≡ N/V = ρa/A0 the volume atomic density.
Under the slowly varying approximation, the Maxwell
equation is reduced to

i

(
∂

∂z
+ 1

c

∂

∂t

)
Êp+ + g∗

p+N

c
Ŝ31 = 0,

i

(
∂

∂z
+ 1

c

∂

∂t

)
Êp− + g∗

p−N

c
Ŝ32 = 0. (7)

The physical model described above is valid for
many alkali-metal atomic gases, such as 85Rb, 87Rb,
and 88Sr. In numerical calculations given in the fol-
lowing, we use cold 85Rb gas as an example. The
atomic levels for realizing the double Rydberg EIT
are selected to be |1〉 = |52S1/2, F = 3, mF = −1〉, |2〉 =
|52S1/2, F = 3, mF = 1〉, |3〉 = |52P3/2, F = 4, mF = 0〉, and
|4〉 = |68S1/2〉. For n = n′ = 68 (n and n′ are princi-
pal quantum numbers of the Rydberg states |4〉 and
|3〉g, respectively), the van der Waals dispersion param-
eter reads C6 = −2π×625.6 GHz µm6, i.e., the Rydberg-

Rydberg interaction is repulsive. Other system parameters are
�12 = �21 = 2π×0.0016 MHz, �3 = 2π×6.06 MHz, �4 =
2π×0.02 MHz, and �13 = �23 = �3/2.

For the D2 line of 85Rb atoms, the gyromagnetic factor of
the two lower levels is gF = 1

3 . Due to the symmetry of the
lower-energy-level shifts induced by the magnetic field B, we
have

�1 = −�2 = −μBB

3h̄
. (8)

We stress that, due to the choice of magnetic quantum num-
bers and the linear polarization of the control field, the levels
|3〉 and |4〉 are not sensitive to the applied magnetic field.
Therefore, the dependence on B for �3 and �4 is negligible.

B. Envelope equations of the two-component probe field

To study the propagation of the probe field under the
action of the gate photon, we must solve the HM equa-
tions (6) and (7). Because the probe field under consideration
is at a single-photon level, nonlinear terms in the HM
equations are negligible. By employing a Fourier transforma-
tion and eliminating atomic variables, we obtain the linear
envelope equations describing the dynamics of the two po-
larization components of the probe field in frequency space(

i
∂

∂z
+ Kj (z, ω)

)
˜̂E pj (z, ω) = i ˜̂F p j (z, ω), (9)

where j = +,− and

˜̂Epj (z, ω) = 1√
2π

∫ ∞

−∞
dt Êp j (z, t )e−iωt , (10a)

K+(z, ω) = ω

c
+ |gp|2N

2c

[ω + d41 − �d (z)]

D1(ω)
, (10b)

K−(z, ω) = ω

c
+ |gp|2N

2c

[ω + d42 − �d (z)]

D2(ω)
, (10c)

with Dα (ω) = |
c|2 − (ω + d3α )[ω + d4α−�d (z)] (α = 1, 2).
Here dαβ = �α − �β + iγαβ (α �= β), γαβ ≡ (�α + �β )/2 +
γ

dep
αβ , and �β ≡ ∑

α<β �αβ , with �αβ the decay rate of the
spontaneous emission from the state |β〉 to the state |α〉 and
γ

dep
αβ the dephasing rate between |α〉 and |β〉. The quantities

K+(z, ω) and K−(z, ω) are linear dispersion relations for the
σ+ and σ− polarization components, respectively. A detailed
derivation of Eq. (9) is presented in Appendix B, with ex-

plicit expressions of Langevin noise terms ˜̂F p j (z, ω) given by
Eqs. (B6a) and (B6b).

Note that when deriving Eq. (9) we have, for simplic-
ity, assumed that �d (z) is a slowly varying function of z.
This allows �d (z) to be approximated as a constant during
the Fourier transformation.3 Under the double EIT condition,

3Using the system parameters, one can obtain the group velocity
of the probe pulse Vg ∼ 10−7c. If the time duration of the pulse is
t0 ∼ 10−7 s, the spatial width of the pulse in the z direction is given
by d0 ∼ Vgt0 ∼ 3 µm, which is much smaller than the spatial width of
�d (z) (∼10 µm). This means that during the Fourier transformation,
�d (z) can indeed be approximated as a constant.
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i.e., |
c|2 � γ3αγ4α (α = 1, 2), the Langevin noise terms
˜̂F p j (z, ω) in the envelope equations (9) are very small and
hence can be safely neglected [9,54–56].

In the absence of the control field (
c = 0) and the gate
atom [�d (z) = 0], the amplitudes of the two polarization
components of the probe field (Êp+ and Êp−) behave in
the way of exponential decay with the form exp(−D) when
passing through the atomic medium, with D = |gp|2NL/2cγ31

the optical depth (D) of the atomic gas (which describes the
effective coupling strength between the probe field and the
atoms). The application of the control field (
c �= 0) induces
deconstructive quantum interference effects for atomic transi-
tion paths, so transparent windows on the absorption spectra
of the two polarization components will open, resulting in
the occurrence of the double Rydberg EIT phenomenon in
the system. For completeness, a detailed discussion of the
double Rydberg EIT in the absence of the gate atom is given
in Appendix C.

III. SWITCH AND PHASE SHIFTS OF PHOTON
POLARIZATION QUBITS

A. Rydberg-defect potential for manipulating photon
polarization qubits

As illustrated above, the existence of the gate atom con-
tributes the position-dependent detuning �d (z). In fact, this
position-dependent detuning can induce a Rydberg-defect po-
tential for the propagation of the probe pulse. To see this
clearly, we write Eq. (9) in the form

ih̄
∂

∂τ

˜̂Epj (z, ω) = Vj (z, ω) ˜̂Epj (z, ω), (11)

after neglecting the small Langevin noise terms. Here τ ≡ ct
and Vj (z, ω) ≡ −h̄cKj (z, ω) ( j = +,−). One can see that
V+(z, ω) and V−(z, ω) play the roles of external potentials for
the σ+ and σ− polarization components, respectively. It is the
z dependence of V± that contributes the Rydberg-defect poten-
tial to the propagation of the probe pulse and hence induces
switch behavior and phase shifts for the photon polarization
qubit.

For simplicity, here we discuss in detail only V±(z, ω) near
the center point of the EIT transparency windows, i.e., ω = 0.
According to (10b) and (10c), we have V±(z, 0) ≡ V±(z) =
Re[V±(z)] + i Im[V±(z)], which means that the Rydberg-
defect potential has real and imaginary parts. Detailed
expressions of Re[V±(z)] and Im[V±(z)] are presented in
Appendix D.

To simplify the expressions of Re[V±(z)] and Im[V±(z)],
we note that the decay rates γ41 and γ42 can be approximated
to be zero because the Rydberg state |4〉 has a long life-
time; moreover, for weak magnetic field B, detunings �2 =
−�1 � �d (z). Under such a consideration, Re[V±(z)] and
Im[V±(z)] can be reduced to the simple forms

Re[V+(z)] ≈ Naωp|ep+ · p31|2
4ε0

× �d (z)[|
c|2 + (�3 − �1)�d (z)]

||
c|2 + d31�d (z)|2 , (12a)

Re[V−(z)] ≈ Naωp|ep− · p32|2
4ε0

× �d (z)[|
c|2 + (�3 − �2)�d (z)]

||
c|2 + d32�d (z)|2 , (12b)

Im[V+(z)] ≈ −Naωp|ep+ · p31|2
4ε0

γ31|�d (z)|2
||
c|2 + d31�d (z)|2 ,

(12c)

Im[V−(z)] ≈ −Naωp|ep− · p32|2
4ε0

γ32|�d (z)|2
||
c|2 + d32�d (z)|2 .

(12d)

From these expressions we see that the Rydberg-defect
potentials V±(z) = Re[V±(z)] + i Im[V±(z)] are proportional
to the position-dependent detuning �d (z). Figure 2 shows
various profiles of the Rydberg-defect potential as func-
tions of z/rb for different system parameters. The blue
solid line and red dashed line in Fig. 2(a) are for the real
part Re[V+(z)] and the imaginary part Im[V+(z)], respec-
tively, by taking �3 = �4 = 0, 
c = 2π×6.37 MHz, Na =
3×1012 cm−3, and C6 = −2π×625.6 GHz µm6. From the
figure we see that |Im[V+(z)]| is much larger than |Re[V+(z)]|.
This is due to the selection of vanishing single-photon de-
tuning, i.e., �3 = 0, which makes the system work in a
dissipation regime for the propagation of the probe field,
useful for designing qubit switches (see Sec. III B below).
The result shown by Fig. 2(b) is obtained by using C6 =
2π×625.6 GHz µm6 [the other parameters are the same as
those in Fig. 2(a)]. In this case the system works still in dissi-
pation propagation regime, i.e., |Im[V+(z)]| � |Re[V+(z)]|.

Plotted in Fig. 2(c) are profiles of Re[V+(z)] and Im[V+(z)]
by selecting a large and positive single-photon detuning
(�3 = 2π×100 MHz), with the other system parameters the
same as those in Fig. 2(a). One can see that in this situation
the real part of the potential is much larger than its imagi-
nary part, i.e., |Re[V+(z)]| � |Im[V+(z)]|. This fact tells us
that the selection of positive and large single-photon detun-
ing �3 can make the system work in a dispersive regime
and Re[V+(z)] has the shape of a single barrier (repulsive),
useful for realizing large phase shifts for photon qubits (see
Sec. III C below). The result given by Fig. 2(d) is obtained by
using �3 = −2π×100 MHz and C6 = 2π×625.6 GHz µm6,
with the other parameters the same as those in Fig. 2(a). In
this case, the system works still in dispersion regime, but
Re[V+(z)] displays the shape of single well. This means that
the Rydberg-defect potential of this case can be used to trap
the photon polarization qubit, which is interesting but will not
be discussed in the present work.

Note that, by inspecting the symmetry of the excitation
configuration of the double Rydberg EIT [see the left part
of Fig. 1(a)], we have V−(z) ≈ V+(z). Thus the profile of the
Rydberg-defect potential V−(z) is basically the same as that
of V+(z). This point can be seen clearly from the expressions
(12a)–(12d).

Based on the above analysis, we see that the disper-
sion coefficient of the Rydberg-Rydberg interaction C6 and
the single-photon detuning �3 are two important parameters
for controlling the property of the Rydberg-defect potential.
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(a) (b) (c) (d)

FIG. 2. Rydberg-defect potential V+(z) = Re[V+(z)] + i Im[V+(z)]. (a) The blue solid line and red dashed line are the real part Re[V+(z)]
and the imaginary part Im[V+(z)], respectively, as a function of z/rb, by taking �3 = �4 = 0, 
c = 2π×6.37 MHz, Na = 3×1012 cm−3,
and C6 = −2π×625.6 GHz µm6. The system works in a dissipation regime for the propagation of the probe pulse, useful for designing
qubit switches. (b) Same as (a) but for C6 = 2π×625.6 GHz µm6. (c) Same as (a) but with �3 = 2π×100 MHz. The system works in a
dispersion regime for the propagation of the probe pulse, useful for realizing large phase shifts for photon qubits. (d) Same as (a) but with �3 =
−2π×100 MHz and C6 = 2π×625.6 GHz µm6. Due to the symmetry of the excitation configuration of the double Rydberg EIT, V−(z) ≈
V+(z), and thus is not shown.

Based on such results, we can realize various Rydberg-defect
potentials and hence can actively manipulate the behavior
of the incident photon polarization qubits. In the following
discussion, we consider only two cases for C6 < 0, i.e., the
Rydberg-defect potentials of the forms shown in Figs. 2(a)
and 2(c).

B. Switch of the photon polarization qubits
in the dissipation regime

We now explore the possibility of different type of pho-
ton switch in the system. Single photon switches are optical
devices for controlling the transmission of target photons
through the application only a single gate photon. They are
key devices for all-optical quantum information processing
[57]. One of techniques for building single-photon switches
is the use of the dissipative optical nonlinearity via Rydberg
EIT. In the past few years, the possibility of realizing such
switches for target photons with one polarization component
has been demonstrated experimentally [35–38]. Here we show
that the model proposed above can be used to realize another
type of single-photon switch, which is for the single photon
with two polarization components, i.e., a photon polarization
qubit switch. The basic idea of the scheme is the following.
First, a single gate photon is stored in the Rydberg state |3〉g

[as shown in the right part of Fig. 1(a)], which provides the
Rydberg-defect potential discussed in the preceding section.
Second, a probe photon qubit (as a target photon) with σ+
and σ− polarization components is incident into the atomic
gas working in the dissipation regime of the double Ryd-
berg EIT (realized by taking zero single-photon detuning, i.e.,
�3 = 0), for which the imaginary part of the Rydberg-defect
potential is much bigger than its real part [see Fig. 2(a)].
When the gate photon is absent, the photon polarization qubit
would propagate in the atomic gas nearly without absorption

[as schematically shown in the top of Fig. 1(c)]; however,
when the gate photon is present, the strong Rydberg-Rydberg
interaction between the states |4〉 and |3〉g results in a
Rydberg blockade effect (the breaking of the double Ryd-
berg EIT) and hence switches the atomic gas from highly
transparent to strongly absorptive [as shown in the middle
of Fig. 1(c)].

To this end, we consider the dynamics of the two polar-
ization components of the probe pulse in the presence of the
Rydberg-defect potential, which is controlled by the envelope
equation (9). By directly integrating Eq. (9) from 0 to L, we
get the solution (in the frequency domain)

˜̂Epj (L, ω) = ˜̂Epj (0, ω) exp

(
i
∫ L

0
dz Kj (z, ω)

)
, (13)

with j = +,−. The solution in time domain can be obtained
by using the inverse Fourier transformation, which reads

Êp j (L, t ) =
∫ +∞

−∞
dω ˜̂Epj (0, ω)

× exp

[
i
∫ L

0
dz Kj (z, ω) − iω

(
t − L

c

)]
.

(14)

Here ˜̂Epj (0, ω) is the Fourier transform of Êp j (z, t ) at the input

boundary z = 0. Since the probe field is a pulse, ˜̂Epj (0, ω) is
narrow in ω and hence we can expand Kj (z, ω) near ω = 0,
i.e., Kj (z, ω) = K0 j + ωK1 j + · · · , with K0 j ≡ Kj (z, ω)|ω=0

and K1 j ≡ (∂Kj/∂ω)|ω=0. Then (14) can be reduced to the
form

Êp j (L, t ) ≈ Êp j (0, t − L′/Vgj )e
−η j+iφ j , (15)
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where

φ+ = |gp|2N

c
Re

(∫ L

0
dz a31(z)

)
, (16a)

φ− = |gp|2N

c
Re

(∫ L

0
dz a32(z)

)
, (16b)

η+ = |gp|2N

c
Im

(∫ L

0
dz a31(z)

)
, (16c)

η− = |gp|2N

c
Im

(∫ L

0
dz a32(z)

)
, (16d)

L′ = L − 2rb ≈ L, (16e)

with

a31(z) = d41 − �d (z)

2{|
c|2 − d31[d41 − �d (z)]} , (17a)

a32(z) = d42 − �d (z)

2{|
c|2 − d32[d42 − �d (z)]} . (17b)

In these expressions, L′ is the reduced medium length due to
the existence of the Rydberg blockade and Vgj = [K1 j]−1 ≡
[(∂Kj/∂ω)|ω=0]−1 is the group velocity of the jth polarization
component, which is a constant after the pulse passes over
the gate atom. Using the system parameters given in Sec. II A
and taking Na = 3×1012 cm−3 and 
c = 2π×6.37 MHz, we
obtain Vg− ≈ Vg+ = 6.46×10−7c, i.e., the probe pulse is a
slow-light qubit.

The dynamics of the incident photon polarization qubit un-
der the action of the Rydberg-defect potential is characterized
by key quantities η j and φ j ( j = +,−) in the solution (15),
which describe the amplitude attenuations and phase shifts
of the two polarization components after traversing the gate
atom, respectively. To demonstrate this, we first consider the
switch behavior of the photon polarization qubit by assuming
that the system works in the dissipation regime of the double
Rydberg EIT, i.e., �3 = 0.

Figure 3(a) shows the numerical result for the qubit switch.
The red dashed line in the figure is the amplitude attenuation
factor η+ for the σ+ polarization component [using the ex-
pression given by (16c)], plotted as a function of optical depth
D. The phase shift φ+ in this regime is also displayed by the
blue solid line. The result is obtained for cold 85Rb atomic
gas, by taking B = 1.5 G (i.e., �2 = −�1 = 2π×0.7 MHz),
�4 = 0, and the other system parameters the same as in
Sec. II A.4 The inset of the figure gives the shape of the
Rydberg-defect potential [the same as Fig. 2(a)]. Since in
double Rydberg EIT there exists a configuration symmetry for
excitation paths of the σ+ and σ− polarization components,
the amplitude attenuation factor η− and phase shift φ− for the
σ− component have behaviors similar to those for η+ and φ+,
respectively, and thus are omitted here.

From the figure we see that η+ reaches the value 1 when
D ≈ 15 and it grows rapidly as D is increased further. This
fact tells us that, because of the rapid exponential attenuation

4Since γ41 and γ42 are much smaller than �d (z), the contributions
to the amplitude attenuations and phase shifts by d41 and d42 in (17a)
and (17b) are negligible.
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FIG. 3. Switch of the photon polarization qubit in the dissipa-
tion regime of the double Rydberg EIT (�3 = 0). The red dashed
line is the amplitude attenuation factor η+ for the σ+ polarization
component, as a function of optical depth D ≡ |gp|2NL/2cγ31. Here
η+ reaches value 1 at D ≈ 15; it grows rapidly as D is increased
further. The phase shift φ+ in this regime is also shown by the blue
solid line. The inset shows the shape of the Rydberg-defect potential
V+. Because of the rapid exponential attenuation of the amplitude of
the incident photon, the system acts as a well-behaved photon qubit
switch. Due to the excitation configuration symmetry of the double
Rydberg EIT, the behaviors of the amplitude attenuation factor η−
and the phase shift φ− for the σ− component are similar to those of
the σ+ component and hence are not shown.

of the incident photon amplitude, the stored gate photon can
act indeed as a well-behaved single-photon switch, which can
significantly impede the transmission of the incident photon
polarization qubit [as shown by the middle part of Fig. 1(c)].

C. Phase shifts of the photon polarization qubit
in the dispersion regime

We now turn to consider how to get large phase shifts
for the photon polarization qubit. It is known that the strong
dispersive interaction between the gate photon and target pho-
ton can be used to access a significant phase shift for the
target photon, which is also important for all-optical quantum
information processing [3,6,9,31,32,39,41,43,44,58]. Here we
show that large phase shifts for the two polarization compo-
nents of the incident photon polarization qubit can be acquired
under the action of the gate photon if the system works in the
dispersion regime of the double Rydberg EIT.

The one-photon detuning �3 is a key parameter to control
the dissipation and dispersion behaviors of the system. When
|�3| � γ31, the system works in the dispersion regime. Note
that the general solution of the envelope equation (9), given
by (15), together with (16) and (17), is valid for any value
of the one-photon detuning �3. It thus can also be used to
calculate the phase shifts φ j and amplitude attenuation factors
η j ( j = +,−) of the photon polarization qubit for nonzero
�3.
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FIG. 4. Phase shift of the photon polarization qubit in the disper-
sion regime for the σ+ component (with �3 = 2π×100 MHz and
B = 1.5 G). The blue solid line is for φ+, as a function of optical
depth D. Here φ+ reaches −π rad for D ≈ 51; it can be increased
further as D increases. The red dashed line shows η+, which is
considered to be small in the range of D � 51 because the optical
absorption is suppressed in this regime. The inset shows the shape of
the Rydberg-defect potential V+.

Shown in Fig. 4 is the numerical result for the σ+
polarization component in the dispersion regime (�3 =
2π×100 MHz). The blue solid line in the figure is the phase
shift φ+ as a function of optical depth D. The result is ob-
tained still for the cold 85Rb atomic gas, with B = 1.5 G (i.e.,
�2 = −�1 = 2π×0.7 MHz), �4 = 0, and the other parame-
ters given in Sec. II A. The inset of the figure gives the shape
of the Rydberg-defect potential [i.e., Fig. 2(c)]. The plot in
Fig. 5 is similar to that in Fig. 4 but for φ− and η− of the
σ− component. For large �3 and nonzero B, the symmetry
of the two Rydberg EITs for the σ+ and σ− polarization
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-22

FIG. 5. Phase shift of the photon polarization qubit in the disper-
sion regime for the σ− component (with �3 = 2π×100 MHz and
B = 1.5 G). The blue solid line is for φ− as a function of optical
depth D. Here φ− reaches −π rad for D ≈ 146; it can be increased
further as D increases. The red dashed line shows η−, which is much
smaller than η+ because the optical absorption is greatly suppressed
in this regime. The inset shows the shape of the Rydberg-defect
potential V−.

components, respectively, is broken and hence the phase shift
φ− and the amplitude attenuation factor η− for the σ− polar-
ization component have different behavior than those of the
σ+ component.

From Fig. 4 we see that φ+ reaches the value −π rad for
D ≈ 51 and it increases further as D is increased. The ampli-
tude attenuation factors η+ is also shown by the red dashed
line; it is very small due to the large �3, by which the photon
absorption is greatly suppressed. From Fig. 5 one can see that
although φ− behaves similarly to φ+, a large optical depth
(D ≈ 146) is needed to reach the value of −π . In addition,
η− is much smaller than η+, which can be seen by comparing
Fig. 5 with Fig. 4.

Consequently, due to the existence of the Rydberg-defect
potential contributed by the stored gate photon, in the disper-
sion regime the two polarization components of the incident
single-photon qubit can indeed acquire significant phase shifts
with a very small attenuation of qubit amplitude. However,
these two polarization components display different behaviors
due to large one-photon detuning �3 and the existence of a
nonzero magnetic field B.

D. Propagation of the qubit wave packet

To be more intuitive, we now present a study of the propa-
gation of the photon polarization qubit when it passes through
the Rydberg defect (gate atom) using the Schrödinger picture.
In such an approach, the qubit can be described by a single-
photon wave packet with two polarization components.

Since the input probe pulse is in a single-photon qubit state,
in the atomic medium the photon state takes the form

|�(t )〉 = |�+(t )〉 + |�−(t )〉
=

∫
dz[�+(z, t )Ê†

p+(z) + �−(z, t )Ê†
p−(z)]|0〉. (18)

Here |0〉 is electromagnetic vacuum and � j (z, t ) ≡
〈0|Êp j (z)|� j (t )〉 is the effective wave function of the jth po-
larization component ( j = +,−), obeying the normalization
condition

∫
dz[|�+(z, t )|2 + |�−(z, t )|2] = 1.

Based on Eq. (9) and the above definition of the one-photon
state vector, it is easy to derive the equation

i
∂

∂z
�̃ j (z, ω) + Kj (z, ω)�̃ j (z, ω) = 0, (19)

where �̃ j (z, ω) ≡ (1/
√

2π )
∫ ∞
−∞ dt � j (z, t )eiωt is the Fourier

transform of � j (z, t ) ( j = +,−). We assume that the jth
component of the incident single-photon wave packet has the
Gaussian form

� j (0, t ) = √
Aj

√
2
√

ln(2)

t0
√

π
exp

(
−2 ln(2)

t2

t2
0

)
, (20)

where Aj are amplitudes satisfying A+ + A− = 1 and t0 is
the full width at half maximum (FWHM) of |� j (0, t )|2. The
Fourier transform of � j (0, t ) reads

�̃ j (0, ω) = √
Aj

√
2
√

ln(2)

ω0
√

π
exp

(
−2 ln(2)

ω2

ω2
0

)
, (21)

where ω0 = 4 ln(2)/t0 is the FWHM of |�̃ j (0, ω)|2.
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FIG. 6. Propagation of the wave packet �+ of the σ+ polariza-
tion component in the dispersion regime of the double Rydberg EIT
(�3 = 2π×100 MHz and B = 1.5 G). (a) Plot of �+ as a function
of time t and position z in the absence of the gate photon. Here
�0 represents the initial amplitude of �+. (b) Same as (a) but in
the presence of the gate photon. The width of the Rydberg-defect
potential is marked by two red dashed lines; the gate atom is denoted
by the blue circle.

By solving Eq. (19) under the boundary condition (21),
we can obtain � j (z, t ) through the relation � j (z, t ) =
(1/

√
2π )

∫ ∞
−∞ dω �̃ j (z, ω)e−iωt . Figure 6(a) shows �+ of

the σ+ polarization component as a function of time t and
spatial coordinate z for the case of no gate photon, with
�0 = [2

√
ln(2)Aj/t0

√
π]1/2 representing the initial amplitude

of �+. When plotting the figure, we have chosen �3 =
2π×100 MHz, B = 1.5 G, t0 = 1×10−7 s, A+ = 1

2 , and Na =
3×1012 cm−3. We see that the wave packet propagates quite
stably. The reason is that, in the absence of the gate atom,
the phase shift and attenuation of the wave packet are nearly
vanishing due to the EIT effect.

Plotted in Fig. 6(b) is the wave function �+ as a function
of t and z in the presence of the gate photon, with the system
parameters the same as those used in Fig. 6(a). In the figure,
the width of the Rydberg-defect potential is indicated by the
two red dashed lines and the gate atom is denoted by the blue
circle. For comparison, Fig. 7 shows the propagation of the
wave packet �− of the σ− polarization component. We see
that in the presence of the gate atom �− displays behavior a
little different from that of �+.

FIG. 7. Propagation of the wave packet �− of the σ− polariza-
tion component in the dispersion regime of the double Rydberg EIT
(�3 = 2π×100 MHz and B = 1.5 G). (a) Wave function �− as a
function of time t and position z in the absence of the gate photon.
Here �0 represents the initial amplitude of �−. (b) Same as (a) but
in the presence of the gate photon. The width of the Rydberg-defect
potential is marked by two red dashed lines; the gate atom is denoted
by the blue circle.

If the photon polarization qubit is incident to the atomic
gas at (z, t ) = (0, 0), the state vector of the probe field for this
input state reads |�+,in(0)〉 = c+|σ+〉 + c−|σ−〉, with c+ =
�+,in(0, 0), c− = �−,in(0, 0), |σ+〉 = Ê†

p+(0)|0〉, and |σ−〉 =
Ê†

p−(0)|0〉. Depending on whether no or one gate photon is
stored, the output qubit state (after passing through the atomic
medium) is given by

|�out,0〉 ∝ (c+|σ+〉 + c−|σ−〉) ⊗ |0〉g, (22a)

|�out,1〉 ∝ (c+e−η+eiφ+ |σ+〉 + c−e−η−eiφ−|σ−〉) ⊗ |1〉g.

(22b)

Here |1〉g (|0〉g) is the Fock state with one gate photon (no
gate photon) stored in the Rydberg state |3〉g and η j and φ j are
the amplitude attenuation factors and the phase shifts for the
jth polarization component ( j = +,−), respectively, given by
(16a)–(16d).

E. Magnetic-field-induced switching behavior
of the photon polarization qubit

How to detect weak magnetic fields is an important topic
in the study of precision measurements [59]. As the final
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(a)

(b)

FIG. 8. Magnetic-field-induced switching behavior of the pho-
ton polarization qubit. (a) Amplitude attenuation factor η+ (red
dashed line) and phase shift φ+ (blue solid line) as functions of
magnetic field B, for �3 = 0, Na = 3×1012 cm−3, and L = 50 µm.
Here P(6.3, π ) (clue circle) means the numerical point with B =
6.3 G and φ+ = π . (b) Same as (a) but for the amplitude atten-
uation factor η− (red dashed line) and phase shift φ− (blue solid
line). Here Q(−6.3, π ) (blue circle) means the numerical point with
B = −6.3 G and φ− = π .

example, here we consider another possible application of the
strong interaction between the gate photon and the photon
polarization qubit. We demonstrate that the present system can
be used to design a different type of magnetometer that can be
used to detect weak magnetic fields.

As indicated at the end of Sec. II A, when the magnetic
field B = (0, 0, B) is applied to the system the Zeeman effect
induced by the magnetic field makes the two degenerate levels
|1〉 and |2〉 produce a level splitting proportional to B. Since
B is contained in the HM equations (6) and (7), solutions of
the amplitude attenuation factors η j and phase shifts φ j ( j =
+,−), given by (16a)–(16d), are also B dependent. Hence,
the behaviors of the switch and phase shift of the photon
polarization qubit can display a dependence on B.

Figures 8(a) and 8(b) show the amplitude attenuation
factors η j (red dashed lines) and phase shifts φ j (blue solid
lines) for the jth polarization component ( j = +,−), plotted
as functions of the magnetic field B, by taking the system pa-
rameters to be �3 = 0, Na = 3×1012 cm−3, and L = 50 µm.
The point P(6.3, π ) (blue circle) in Fig. 8(a) is the one for B =
6.3 G and φ+ = π , while the point Q(−6.3, π ) in Fig. 8(b)

is the one for B = −6.3 G and φ− = π . From these results
we see that both η j and φ j are very sensitive to B. Thereby,
the present system can be used to design a magnetometer to
detect the external magnetic field B, which can be realized by
measuring the amplitude attenuation factors η j and/or phase
shifts φ j of the photon polarization qubit.

IV. CONCLUSION

The calculation results given above are based on the as-
sumption that the gate atom is located at the fixed position
z = zg. To be rigorous and realistic, the derivation of the above
results by the influence of gate-atom delocalization (which
may be due to the intrinsic quantum motion of the gate atom
and as well as other possible noise acting on the atom) should
be estimated. To this end, we assumed that the gate atom
may randomly occupy different spatial positions around zg,
with the density described by ρg(z′

g, ξ ) = f (ξ )δ[z′
g − (zg + ξ )].

Here f (ξ ) ≡ (1/
√

πσ ) exp[−(ξ/σ )2] is the normalized dis-
tribution function, with σ the distribution width and ξ the
random variable describing the derivation of the gate-atom
position relative to zg. Based on such a random density
distribution, we have carried out a numerical simulation
on the topics described above, with the result presented in
Appendix E. The simulation shows that the gate-atom delo-
calization does not significantly modify the main conclusions
given above, which means that the single-photon qubit switch,
phase shifts, and weak-magnetic-field measurement can still
be achieved in the system.

In conclusion, in this article we have suggested and
analyzed a scheme for manipulating the propagation of single-
photon pulses of two polarization components in a cold atomic
gas via double Rydberg EIT. Through solving the Heisenberg-
Maxwell equations governing the quantum dynamics of the
atoms and quantized probe field, we have shown that, by
storing a gate photon in a Rydberg state, a deep and adjustable
optical potential for photon polarization qubits can be real-
ized based on the strong Rydberg-Rydberg interaction. We
have also shown that this scheme can be utilized to design
all-optical switches of photon polarization qubits in the dissi-
pative propagation regime and generate large phase shifts to
them in the dispersive propagation regime. Furthermore, we
have demonstrated that such a scheme can be employed to
detect weak magnetic fields that induce the Zeeman splitting
of the atomic levels.

The theoretical approach developed here can be general-
ized to the study of all-optical transistors and phase gates of
photon qubits and qudits based on Rydberg atoms. The results
reported in this work are useful not only for the understanding
of the quantum optical property of Rydberg atomic gases, but
also for the design of quantum devices at the single-photon
level, which are promising in applications for quantum infor-
mation processing.
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APPENDIX A: EXPLICIT EXPRESSION OF THE HEISENBERG EQUATION OF MOTION (6)

The explicit expression of the Heisenberg equation of motion (6) for atomic operators is given by

i

(
∂

∂t
+ �21

)
Ŝ11 − i�12Ŝ22 − i�13Ŝ33 + g∗

p+Ê†
p+Ŝ31 − gp+Ŝ13Êp+ − iF̂11 = 0, (A1a)

i

(
∂

∂t
+ �12

)
Ŝ22 − i�21Ŝ11 − i�23Ŝ33 + g∗

p−Ê†
p−Ŝ32 − gp−Ŝ23Êp− − iF̂22 = 0, (A1b)

i

(
∂

∂t
+ �3

)
Ŝ33 − i�34Ŝ44 − g∗

p+Ê†
p+Ŝ31 + gp+Êp+Ŝ13 − g∗

p−Ê†
p−Ŝ32 + gp−Ŝ23Êp− + 
∗

c Ŝ43 − 
cŜ34 − iF̂33 = 0, (A1c)

i

(
∂

∂t
+ �34

)
Ŝ44 − 
∗

c Ŝ43 + 
cŜ34 − iF̂44 = 0, (A1d)

(
i
∂

∂t
+ d21

)
Ŝ21 + g∗

p−Ê†
p−Ŝ31 − gp+Ŝ23Êp+ − iF̂21 = 0, (A1e)

(
i
∂

∂t
+ d31

)
Ŝ31 + 
∗

c Ŝ41 + gp+(Ŝ11 − Ŝ33)Êp+ + gp−Ŝ21Êp− − iF̂31 = 0, (A1f)

(
i
∂

∂t
+ d32

)
Ŝ32 + 
∗

c Ŝ42 + gp−(Ŝ22 − Ŝ33)Êp− + gp+Ŝ12Êp+ − iF̂32 = 0, (A1g)

(
i
∂

∂t
+ d41 − �d (z)

)
Ŝ41 + 
cŜ31 − gp+Ŝ43Êp+ − iF̂41 = 0, (A1h)

(
i
∂

∂t
+ d42 − �d (z)

)
Ŝ42 + 
cŜ32 − gp−Ŝ43Êp− − iF̂42 = 0, (A1i)

(
i
∂

∂t
+ d43 − �d (z)

)
Ŝ43 + 
c(Ŝ33 − Ŝ44) − g∗

p+Ê†
p+Ŝ41 − g∗

p−Ê†
p−Ŝ42 − iF̂43 = 0. (A1j)

Here dαβ = �α − �β + iγαβ (α �= β), γαβ ≡ (�α + �β )/
2 + γ

dep
αβ , and �β ≡ ∑

α<β �αβ , with �αβ the decay rate of
the spontaneous emission from the state |β〉 to the state |α〉
and γ

dep
αβ the dephasing rate between |α〉 and |β〉. The half

Rabi frequency of the control field is defined as 
c ≡ (ec ·
p43)Ec/h̄.

APPENDIX B: DERIVATION OF THE TWO-COMPONENT
ENVELOPE EQUATIONS OF THE PROBE FIELD

The dynamical evolution of the probe field is controlled
by the HM equations (6) and (7). Because we are interested
in the case of the probe field at the single-photon level, the
nonlinear terms in the HM equations play no significant role
and hence can be safely disregarded. Based on this idea, we
take Ŝαβ → S(0)

αβ + Ŝαβ , with S(0)
αβ the steady-state solution of

Ŝαβ in the absence of the probe field, i.e., S(0)
11 = S(0)

22 = 1
2 ,

and otherwise S(0)
αβ = 0. Then, by taking Ŝαβ and Êp j as small

quantities, Eqs. (6) and (7) are reduced to(
i
∂

∂t
+ d31

)
Ŝ31 + 
∗

c Ŝ41 + gp+Êp+
2

− iF̂31 = 0, (B1a)

(
i
∂

∂t
+ d32

)
Ŝ32 + 
∗

c Ŝ42 + gp−Êp−
2

− iF̂32 = 0, (B1b)

(
i
∂

∂t
+ d41 − �d (z)

)
Ŝ41 + 
cŜ31 − iF̂41 = 0, (B1c)

(
i
∂

∂t
+ d42 − �d (z)

)
Ŝ42 + 
cŜ32 − iF̂42 = 0, (B1d)

i

(
∂

∂z
+ 1

c

∂

∂t

)
Êp+ + g∗

p+N

c
Ŝ31 = 0, (B1e)

(
∂

∂z
+ 1

c

∂

∂t

)
Êp− + g∗

p−N

c
Ŝ32 = 0. (B1f)

Since these equations are linear, they can be solved easily by
using the Fourier transform

X̂ (z, t ) = 1√
2π

∫ +∞

−∞
dω ˜̂X (z, ω)e−iωt , (B2a)

˜̂X (z, ω) = 1√
2π

∫ +∞

−∞
dt X̂ (z, t )eiωt , (B2b)

where X̂ denotes Ŝ31, Ŝ32, Ŝ41, Ŝ42, F̂31, F̂32, F̂41, F̂42, and
Êp j ( j = +,−). Substituting (B2) into (B1a)–(B1d), we get
the atomic transition operators expressed by the polarization
components of the probe field

˜̂S31 = Y1(ω)

2D1(ω)
gp+ ˜̂Ep+ − i

Y1(ω) ˜̂F31 − 
c
˜̂F41

D1(ω)
, (B3a)

˜̂S32 = Y2(ω)

2D2(ω)
gp− ˜̂Ep− − i

Y2(ω) ˜̂F32 − 
c
˜̂F42

D2(ω)
, (B3b)

˜̂S41 = −
c

2D1(ω)
gp+ ˜̂Ep+ + i


c
˜̂F31 − (ω + d31) ˜̂F41

D1(ω)
, (B3c)

˜̂S42 = −
c

2D2(ω)
gp− ˜̂Ep− + i


c
˜̂F32 − (ω + d32) ˜̂F42

D2(ω)
, (B3d)
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(a) (b)

(c) (d)

FIG. 9. Linear dispersion relations K+ (for the σ+ component) and K− (for the σ− component) of the probe field as functions of ω

in the absence of the gate atom, with �2 = −�1 = 4.68 MHz (B = 1.6 G), �3 = �4 = 0, and Na = 3×1010 cm−3. (a) Real parts Re(K±)
and (b) imaginary parts Im(K±) for 
c = 0. No EIT occurs in this case. (c) Real parts Re(K±) and (d) imaginary parts Im(K±) for 
c =
2π×6.37 MHz. An EIT transparency window is opened in both Im(K+) and Im(K−), i.e., a double EIT occurs.

where Dα (ω) = |
c|2 − (ω + d3α )[ω + d4α − �d (z)] and
Yα (ω) = ω + d4α − �d (z) (α = 1, 2).

Substituting (B3a) and (B3b) into (B1e) and (B1f), we
obtain the two-component envelope equations(

i
∂

∂z
+ Kj (z, ω)

)
˜̂E pj (z, ω) = i ˜̂F p j (z, ω), (B4)

with j = +,−. Here

K+(z, ω) = ω

c
+ |gp|2N

2c

[ω + d41 − �d (z)]

D1(ω)
, (B5a)

K−(z, ω) = ω

c
+ |gp|2N

2c

[ω + d42 − �d (z)]

D2(ω)
(B5b)

are the linear dispersion relations of the σ+ and σ− compo-

nents of the probe field, respectively, and the ˜̂F p j (z, ω) are
defined by

˜̂Fp+(z, ω) = g∗
p+N

c

Y1(ω) ˜̂F31(z, ω) − 
c
˜̂F41(z, ω)

D1(ω)
, (B6a)

˜̂Fp−(z, ω) = g∗
p−N

c

Y2(ω) ˜̂F32(z, ω) − 
c
˜̂F42(z, ω)

D2(ω)
. (B6b)

Note that in the above derivation, for simplicity, the quantity
�d (z) has been assumed to be a slowly varying function of
z, which allows us to take it as a constant during the Fourier
transformation. 3 The quantity ω in the Fourier transformation
(B2) plays the role of the sideband angular frequency of the
probe pulse (the center angular frequency is ωp). Under the

EIT condition, the Langevin noise terms ˜̂F p j (z, ω) are very
small and hence can be neglected safely (see detailed discus-
sions of the role of Langevin noise in EIT systems given in
Refs. [9,54–56]).

APPENDIX C: DOUBLE RYDBERG EIT FOR �d (z) = 0

If the gate atom is absent, the position-dependent detun-
ing �d (z) = 0. In this case, from (10b) and (10c) we have
K+(z, ω) → K+(ω) and K−(z, ω) → K−(ω), with

K+(ω) = ω

c
+ |gp|2N

2c

ω + d41

|
c|2 − (ω + d31)(ω + d41)
, (C1a)

K−(ω) = ω

c
+ |gp|2N

2c

ω + d42

|
c|2 − (ω + d32)(ω + d42)
. (C1b)

Figure 9 shows K+ (for the σ+ component) and K− (for the
σ− component) as functions of ω, plotted by taking �2 =
−�1 = 4.68 MHz (B = 1.6 G), �3 = �4 = 0, and Na =
3×1010 cm−3. From the figure we see that no EIT occurs for
either polarization component if the control field is absent,
i.e., 
c = 0; see the single-peak absorption spectra Im(K+)
and Im(K−) shown in Fig. 9(b). However, when the control
field is applied (
c = 2π×6.37 MHz), an EIT transparency
window is opened in both Im(K+) and Im(K−); see the two-
peak absorption spectra plotted in Fig. 9(d). This means that a
double EIT occurs in the present inverted-Y system. In partic-
ular, when B = 0, the two polarization components are nearly
degenerate (and hence the level configuration is symmetric)
and K+ and K− nearly coincide with each other.
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APPENDIX D: DERIVATION OF THE
RYDBERG-DEFECT POTENTIAL

The preparation of the gate atom results in a position-
dependent detuning �d (z), which induces a Rydberg-defect
potential for the propagation of the probe pulse. To show
this, we note that Eq. (9) can be written in the form (when
neglecting the Langevin noise terms)

ih̄
∂

∂τ

˜̂Epj (z, ω) = Vj (z, ω) ˜̂Epj (z, ω), (D1)

with τ ≡ ct and Vj (z, ω) ≡ −h̄cKj (z, ω) ( j = +,−). One
sees that V+(z, ω) and V−(z, ω) act as external potentials for
the σ+ and σ− polarization components, respectively. Ob-
viously, the z dependence of V±(z, ω) is a reflection of the
Rydberg-defect potential.

Here, for simplicity, we discuss in detail V±(z, ω) near the
center point of the EIT transparency windows, i.e., at ω = 0.
Based on the result of (10b) and (10c), we have V±(z, 0) ≡
V±(z) = −h̄cK±(z, 0) = Re[V±(z)] + i Im[V±(z)], with the
detailed expressions given by

Re[V+(z)] = Naωp|ep+ · p31|2
4ε0

[�d (z) + �1]{|
c|2 + (�3 − �1)[�d (z) + �1]} + (�3 − �1)γ 2
41 − [�d (z) + �1]γ31γ41

||
c|2 − d31[d41 − �d (z)]|2 ,

(D2a)

Re[V−(z)] = Naωp|ep− · p32|2
4ε0

[�d (z) + �2]{|
c|2 + (�3 − �2)[�d (z) + �2]} + (�3 − �2)γ 2
42 − [�d (z) + �2]γ32γ42

||
c|2 − d32[d42 − �d (z)]|2 ,

(D2b)

Im[V+(z)] = −Naωp|ep+ · p31|2
4ε0

[�d (z) + �1]2γ31 + |
c|2γ41 + γ31γ
2
41

||
c|2 − d31[d41 − �d (z)]|2 , (D2c)

Im[V−(z)] = −Naωp|ep− · p32|2
4ε0

[�d (z) + �2]2γ32 + |
c|2γ42 + γ32γ
2
42

||
c|2 − d32[d42 − �d (z)]|2 . (D2d)

In deriving the above formula, we have set the two-photon
detuning �4 = 0, which is required to obtain a significant EIT
effect.

APPENDIX E: INFLUENCE DUE TO THE GATE-ATOM
DELOCALIZATION

The calculation results presented in Sec. III were obtained
based on the assumption that the gate atom is located exactly
at a fixed position z = zg = L/2. This is, strictly speaking,
hard to achieve since one cannot determine the exact position
of the gate atom due to the intrinsic quantum motion of the
atom and also due to other possible noise acting on the atom
[17–19]. To be rigorous and also realistic, the influence of
gate-atom delocalization should be considered.

To estimate the deviation due to the gate-atom delocal-
ization, we assume that the gate atom may occupy different
spatial positions around zg in a random way. This can be
described by the random density distribution of the gate
atom with the form ρg(z′

g, ξ ) = f (ξ )δ[z′
g − (zg + ξ )]. Here

f (ξ ) ≡ (1/
√

πσ ) exp[−(ξ/σ )2] is a normalized statistical
distribution function [

∫ ∞
−∞ f (ξ ) = 1], with σ the distribution

width and ξ a random variable describing the gate-atom co-
ordinate deviated from the center position z = zg. Hence the
position-dependent detuning �d (z) given in (5) is changed to
the form �d (z, ξ ) = − f (ξ ) C6

|(zg+ξ )−z|6 .
Figure 10 shows the result of the numerical simulation

on the influence of the gate-atom delocalization to the qubit
switch, phase shift, and magnetic-field measurement in the
system. Figure 10(a i) illustrates the phase shift φ+ of the σ+
polarization component of the qubit wave packet as a function
of one-photon detuning �3. The green curve in the figure is
the statistical average of φ+ by taking 200 different values

of ξ , while the red curve is the one for ξ = 0, which corre-
sponds to the case where the gate atom is fixed at z = zg. Blue
curves in the insets of the figure are the results (describing
the fluctuations of φ+) obtained by taking different values
of ξ . The system parameters are L = 80 µm, B = 1.4 G, and
Na = 3×1012 cm−3. Figure 10(a ii) shows the result for the
amplitude attenuation factor η+ (the parameter describing the
switch behavior of the system) of the qubit wave packet. In
the simulation, 200 different ξ values are chosen between 30
and 50 µm. Since φ− and η− of the σ− component behave
similarly to those of the σ+ component, they are not shown
here.

Figure 10(b i) illustrates the results of the phase shift φ+
and amplitude attenuation factor η+ as functions of magnetic
field B. Red lines in the figure are for ξ = 0 and green lines are
for the statistical average by taking 200 random ξ values. The
inset of the figure (where blue curves denoting fluctuations are
plotted) shows the result obtained by taking different values
of ξ . The system parameters chosen here are �3 = 0, Na =
3×1012 cm−3, and L = 100 µm, with 40 µm � ξ � 60 µm.
Figure 10(b ii) is similar to Fig. 10(b i) but for the phase
shift φ− and the amplitude attenuation factor η− of the σ−
polarization component.

By inspecting Figs. 10(a i), 10(a ii), 10(b i), and 10(b ii),
we see that the green curves (the results of the statistical
average for many different random values of gate-atom po-
sition) are very closed to the red curves (the results for the
fixed position of the gate atom), which means that the influ-
ence caused by gate-atom delocalization is small and has no
qualitative impact on the main conclusions given in the main
text. Thereby, the single-photon qubit switch, phase shifts, and
weak-magnetic-field measurement can still be achieved in the
system even in the presence of gate-atom delocalization.
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FIG. 10. Influence of the gate-atom delocalization. (a i) Phase shift φ+ of the σ+ component of the qubit wave packet as a function of
one-photon detuning �3. The green curve is the result of the statistical average by taking 200 different random ξ values (ξ is a random variable
describing the coordinate deviation of the gate atom from the center position z = zg = L/2); red line is the result for ξ = 0, corresponding to
the gate atom fixed at z = zg. Blue curves in the insets are results for different values of ξ . (a ii) Similar to (a i) but for the amplitude attenuation
factor of η+ of the qubit wave packet. (b i) Phase shift φ+ and amplitude attenuation η+ of the σ+ component as functions of the magnetic
field B. (b ii) Similar to (b i) but for φ− and η− of the σ− component. The system parameters are (a i) and (a ii) L = 80 µm, B = 1.4 G,
and Na = 3×1012 cm−3 and (b i) and (b ii) �3 = 0, Na = 3×1012 cm−3, and L = 100 µm. One sees that the gate-atom delocalization has no
significant influence on the qubit switch, phase shifts, and magnetic-field measurement in the system.
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linear optics with single photons enabled by strongly interacting
atoms, Nature (London) 488, 57 (2012).

[35] S. Baur, D. Tiarks, G. Rempe, and S. Dürr, Single-photon
switch based on Rydberg blockade, Phys. Rev. Lett. 112,
073901 (2014).

[36] H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, and
S. Hofferberth, Single-photon transistor mediated by inter-
state Rydberg interactions, Phys. Rev. Lett. 113, 053601
(2014).

[37] D. Tiarks, S. Baur, K. Schneider, S. Dürr, and G. Rempe,
Single-photon transistor using a Förster resonance, Phys. Rev.
Lett. 113, 053602 (2014).

[38] H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I.
Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth,
Enhancement of Rydberg-mediated single-photon nonlineari-
ties by electrically tuned Förster resonances, Nat. Commun. 7,
12480 (2016).

[39] D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, Optical π phase
shift created with a single-photon pulse, Sci. Adv. 2, e1600036
(2016).

[40] F. Ripka, H. Kübler, R. Löw, and T. Pfau, A room-temperature
single-photon source based on strongly interacting Rydberg
atoms, Science 362, 446 (2018).

[41] D. Tiarks, S. Schmidt-Eberle, T. Stolz, G. Rempe, and S. Dürr,
A photon-photon quantum gate based on Rydberg interactions,
Nat. Phys. 15, 124 (2019).

[42] D. P. Ornelas-Huerta, A. N. Craddock, E. A. Goldschmidt, A. J.
Hachtel, Y. Wang, P. Bienias, A. V. Gorshkov, S. L. Rolston,
and J. V. Porto, On-demand indistinguishable single photons
from an efficient and pure source based on a Rydberg ensemble,
Optica 7, 813 (2020).

[43] J. Vaneecloo, S. Garcia, and A. Ourjoumtsev, Intracavity
Rydberg superatom for optical quantum engineering: Coher-
ent control, single-shot detection, and optical π phase shift,
Phys. Rev. X 12, 021034 (2022)

[44] T. Stolz, H. Hegels, M. Winter, B. Röhr, Y.-F. Hsiao, L. Husel,
G. Rempe, and S. Dürr, Quantum-logic gate between two opti-
cal photons with an average efficiency above 40%, Phys. Rev.
X 12, 021035 (2022).

[45] S. Shi, B. Xu, K. Zhang, G.-S. Ye, D.-S. Xiang, Y. Liu,
J. Wang, D. Su, and L. Li, High-fidelity photonic quantum
logic gate based on near-optimal Rydberg single-photon source,
Nat. Commun. 13, 4454 (2022).

[46] G.-S. Ye, B. Xu, Y. Chang, S. Shi, T. Shi, and L. Li, A photonic
entanglement filter with Rydberg atoms, Nat. Photon. 17, 538
(2023).

[47] J. Sinclair, D. Angulo, N. Lupu-Gladstein, K. Bonsma-Fisher,
and A. M. Steinberg, Observation of a large, resonant, cross-
Kerr nonlinearity in a free-space Rydberg medium, Phys. Rev.
Res. 1, 033193 (2019).

[48] Y. Mu, L. Qin, Z. Shi, and G. Huang, Giant Kerr nonlinearities
and magneto-optical rotations in a Rydberg-atom gas via double
electromagnetically induced transparency, Phys. Rev. A 103,
043709 (2021).

[49] Z. Shi and G. Huang, Self-organized structures of two-
component laser fields and their active control in a cold Rydberg
atomic gas, Phys. Rev. A 104, 013511 (2021).

023508-15

https://doi.org/10.1103/PhysRevLett.117.113601
https://doi.org/10.1088/1367-2630/18/9/092001
https://doi.org/10.1038/nature20823
https://doi.org/10.1103/PhysRevLett.123.113605
https://doi.org/10.1103/PhysRevLett.117.053601
https://doi.org/10.1103/PhysRevA.93.040303
https://doi.org/10.1364/OPTICA.3.001095
https://doi.org/10.1103/PhysRevLett.119.233601
https://doi.org/10.1103/PhysRevA.96.023853
https://doi.org/10.1126/science.aao7293
https://doi.org/10.1038/s41567-020-0917-6
https://doi.org/10.1103/PhysRevLett.125.093601
https://doi.org/10.1364/OL.469347
https://doi.org/10.1126/science.adh5315
https://doi.org/10.1103/PhysRevApplied.19.014017
https://doi.org/10.1088/1361-6455/ab52ef
https://doi.org/10.1126/science.1217901
https://doi.org/10.1038/nature11361
https://doi.org/10.1103/PhysRevLett.112.073901
https://doi.org/10.1103/PhysRevLett.113.053601
https://doi.org/10.1103/PhysRevLett.113.053602
https://doi.org/10.1038/ncomms12480
https://doi.org/10.1126/sciadv.1600036
https://doi.org/10.1126/science.aau1949
https://doi.org/10.1038/s41567-018-0313-7
https://doi.org/10.1364/OPTICA.391485
https://doi.org/10.1103/PhysRevX.12.021034
https://doi.org/10.1103/PhysRevX.12.021035
https://doi.org/10.1038/s41467-022-32083-9
https://doi.org/10.1038/s41566-023-01194-0
https://doi.org/10.1103/PhysRevResearch.1.033193
https://doi.org/10.1103/PhysRevA.103.043709
https://doi.org/10.1103/PhysRevA.104.013511


YAO OU AND GUOXIANG HUANG PHYSICAL REVIEW A 109, 023508 (2024)

[50] Z. Shi and G. Huang, Selection and cloning of periodic optical
patterns with a cold Rydberg atomic gas, Opt. Lett. 46, 5344
(2021).

[51] Y. Mu and G. Huang, Stern–Gerlach effect of vector light bul-
lets in a nonlocal Rydberg medium, Opt. Lett. 47, 6221 (2022).

[52] P. Kok and W. B. Lovett, Introduction to Optical Quantum In-
formation Processing (Cambridge University Press, Cambridge,
2010).

[53] D. Petrosyan and Y. P. Malakyan, Magneto-optical rotation and
cross-phase modulation via coherently driven four-level atoms
in a tripod configuration, Phys. Rev. A 70, 023822 (2004).

[54] J. Zhu, Q. Zhang, and G. Huang, Quantum squeezing of slow-
light solitons, Phys. Rev. A 103, 063512 (2021).

[55] J. Zhu and G. Huang, Quantum squeezing of slow-light
dark solitons via electromagnetically induced transparency,
Phys. Rev. A 105, 033515 (2022).

[56] J. Zhu, Y. Mu, and G. Huang, Simultaneous quantum squeezing
of light polarizations and atomic spins in a cold atomic gas,
Phys. Rev. A 107, 033517 (2023).

[57] D. A. B. Miller, Are optical transistors the logical next step?
Nat. Photon. 4, 3 (2010).

[58] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information (Cambridge University Press,
Cambridge, 2000).

[59] Optical Magnetometry, edited D. Budker and D. F. Jackson
Kimball (Cambridge University Press, Cambridge, 2013).

023508-16

https://doi.org/10.1364/OL.434364
https://doi.org/10.1364/OL.475924
https://doi.org/10.1103/PhysRevA.70.023822
https://doi.org/10.1103/PhysRevA.103.063512
https://doi.org/10.1103/PhysRevA.105.033515
https://doi.org/10.1103/PhysRevA.107.033517
https://doi.org/10.1038/nphoton.2009.240

