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Topological states in breathing honeycomb plasmonic nanoparticle arrays
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In this paper, we investigate the topological properties of breathing honeycomb plasmonic lattices consisting
of silver nanoparticles with in-plane polarized modes. Eigenvalues of the Wilson loop matrix are employed to
distinguish the topological properties of band gaps of our model. The calculation results demonstrate that the
proposed model with in-plane polarization supports the obstructed atomic limit phase not only in the middle
gap but also in the band gaps that are opened due to the vectorization of in-plane polarizations. The topological
edge modes and corner modes are demonstrated by a ribbon supercell and a hexagonal finite-sized system,
respectively. To reveal the differences between topological states that appear in different band gaps, we explore
the robustness of these corner states by introducing two types of point defects in a finite-sized system. Our work
reveals the inherent differences between the topological properties of two-dimensional nanoparticle arrays with
in-plane or out-of-plane polarized modes and may extend the application and research of topological plasmonic
system.
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I. INTRODUCTION

The topological nature of matters is described by topolog-
ical invariants which are characterized by quantized number
[1,2]. On the boundary of two systems with different topolog-
ical phases, topological states are formed and robust against
defects and impurities due to symmetry protection [3,4]. The
robustness renders them promising for applications in many
aspects, such as topological insulator laser [5] and electronics
and quantum computing [6]. Based on similarity between
electronic and photonic systems, the remarkable properties
of topological states obtained the rapid development in some
photonic topological insulators [4,7].

Plasmonic systems is a widely employed platform to bind
the propagation and field distribution of light on the nanoscale
[8–11]. The plasmonic systems with topological effects pro-
vide a new path to precisely control light on the nanoscale
[10,12]. Nanoparticle arrays is a class of plasmonic systems
which can enhance and localized the electromagnetic waves
due to localized surface plasmon (LSP) resonances [13,14].
The optical properties of the nanoparticle arrays, such as
the resonance frequency and band structure, can be adjusted
flexibly by the individual nanoparticle elements and the lat-
tice constants of the nanoparticle arrays [11,13]. Based on
the coupled dipole method (CDM), the interaction between
nanoparticles is simplified to form a concise eigenvalue prob-
lem [11,15]. Especially in a deep subwavelength regime,
where the quasistatic approximation (QSA) can be applied,
the nanoparticle arrays can be considered as a tight-binding
model when we only include the nearest-neighbor interac-
tion [15–17]. Therefore, topological effects in nanoparticle
arrays have been widely studied, including one- [18] and
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two-dimensional (2D) [19] Su-Schrieffer-Heeger models,
kagome [16,20] and honeycomb [10,15,17] plasmonic
nanoparticle arrays. Naturally, the interaction between
nanoparticles can be decoupled into independent out-of-plane
and in-plane polarizations [14,15]. In the current literature,
most discussions about the topological properties in plas-
monic nanoparticle systems focus on the out-of-plane modes.
However, the topological effects of in-plane polarized modes
also deserve some attention. Different from out-of-plane
modes, the interaction of point dipoles between nanoparticles
is anisotropic due to the vectorization of in-plane polariza-
tions. This is similar to the interactions between neighboring
sites in graphene with the pxy orbital [21]. Therefore, it is
natural to ask whether the in-plane mode can lead to new
topological phenomena that differ with the out-of-plane mode
in breathing honeycomb lattices.

In this paper, we investigate the topological effects of
breathing honeycomb plasmonic nanoparticle arrays and
focus on the in-plane polarizations mode. The breathing hon-
eycomb plasmonic lattice is constructed by silver sphere
nanoparticles. The band structures of this model are rep-
resented in three forms: with QSA, without QSA and
eigenpolarizability [22]. The analysis of band structure shows
that the band inversion takes place not only in the middle gap
but also in the first (last) gap, topological edge states emerge
in both kinds of gap. The coexistence of topological states in
different band gaps is one of the most significant differences
between the topological properties of in-plane modes and out-
of-plane modes. Wilson loops, which describe the evolution
of Wannier centers around closed loops in the Brillouin zone,
are used to distinguish the topological characters of our model
with different lattice configurations [23–25]. We calculate the
Wilson loop matrix in the QSA due to that we are in a deep
subwavelength regime to operate our model [17,20]. Next,
we reveal the topological edge modes by a ribbon supercell
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FIG. 1. Schematic diagram of unit cells and band struc-
tures. (a) Breathing honeycomb plasmonic nanoparticle arrays.
(b) Shrunken cell and expanded cell, black edged hollow circles
correspond to the place m = 1. (c), (d) Intensity plot of Im[λ−1(ω)]
of SC and EC, respectively.

and a hexagonal finite-sized system, the eigenvalue spectrum
is calculated, respectively. We further introduce two kinds of
point defects to explore the robustness of these edge states and
the differences between the corner states in the middle gap and
first (last) gap.

II. MODEL AND BAND STRUCTURES

The honeycomb plasmonic system we consider here con-
sists of identical metallic sphere nanoparticles, as shown in
Fig. 1(a), the unit cells containing six nanoparticles of ra-
dius r arranged in a hexagon form a triangular lattice with
lattice constant a. We set the spacing R between two nearest-
neighbor nanoparticles in a unit cell is large enough compared
with r(R > 3r), then the nanoparticles can be treated as point
dipoles and higher-order resonances can be neglected [26].
Using the method of discrete dipole approximation [14], a
coupled dipole equation that describes the dipole moment of
our 2D model can be written as

1

α(ω)
Pi = Ei +

∑
i �= j

G(d j, di )P j, (1)

where Pi and di are the dipole moment and position of the
ith nanoparticle in the array, respectively. Ei is the external
electric field in di. G is the dyadic Green’s function that
describes the interaction between the jth and the ith dipole.
For the in-plane polarized mode, it can be written as

G
(
d j, di

) =
[

1

d3
(−I + 3n ⊗ n) + ik

d2
(I − 3n ⊗ n)

+ k2

d
(I − n ⊗ n)

]
eikd , (2)

where d = |d j − di|, n is the unit vector between the two
nanoparticles, k = √

εbω/c is the wave number of the incident
wave in the embedding medium with permittivity εb. α(ω)
in Eq. (1) represents the dipole polarizability which in the

quasistatic approximation can be written as

αQ(ω) = ε(ω) − εb

ε(ω) + 2εb
r3, (3)

the dielectric function of the nanoparticles follows the Drude
model ε(ω) = ε∞ − ω2

p/(ω2 + iωγ ). In this work, we con-
sider silver nanoparticles with r = 5 nm, ε∞ = 5, ωp =
1.36 × 1016 rad/s, and γ = 5.88 × 1013 rad/s, embedded in
air with εb = 1. Taking the radiative effects into account, the
modified dipole polarizability called the radiative correction
can be derived as [14]

α(ω) = αQ

1 − 2i
3 k3αQ

. (4)

The proposed unit cells are shown in Fig. 1(b). Specifically,
there are shrunken cells (SCs) and expanded cells (ECs),
which means that the nanoparticles in the unit cell are dis-
placed toward (SC) or away from (EC) the center of the unit
cell. We set R = 1

3 ma, lattice constant a = 120 nm, SC and
EC correspond to m = 0.88 and m = 1.12, respectively. The
band structures will be described in three forms. We start by
calculating the eigenpolarizability using the eigen response
theory [22,27]. The band structures can be calculated by solv-
ing the following non-Hermitian eigenequation based on the
self-consistent coupled dipole equation:[

1

α(ω)
I − H(k, ω)

]
p = λ(ω)p, (5)

where H(k, ω) is given by

Hi j =
{∑

X G(d j, di + X)eikx, i �= j∑
X �=0 G(0, X)eikx, i = j,

(6)

where k is the Bloch wave vector, X represents the trian-
gular lattice site and the nearest-neighbor approximation is
considered in this paper. However, it is difficult to find the
corresponding ω numerically under fixed k because of the
complex form of the dyadic Green’s function. Instead, we cal-
culate the eigenvalue of Eq. (5) with (k, ω) = (ke, ωe), where
ke and ωe go through the first Brillouin zone and frequency
near the surface-plasmon resonance ωsp = ωp/

√
ε∞ + 2εb,

respectively. In eigen response theory, the total power loss in
the system is proportional to Im[λ−1(ω)], the band structure
can be included by the peak of Im[λ−1(ω)] which indicates the
resonant frequency of the plasmonic system. The Im[λ−1(ω)]
of SC and EC are shown in Figs. 1(c) and 1(d), respec-
tively. Another method is to approximately linearized the
dyadic Green’s function with ω = ωsp in Eq. (2) since the
Green’s function changes slowly with ω while the polariz-
ability changes rapidly with ω for small nanoparticles in the
subwavelength regime [10]. Then, the band structures can be
calculated by solving

det

[
1

α(ω)
I − H

(
k, ωsp

)] = 0. (7)

We plot the results in Appendix A, which are highly consistent
with the peak of Im[λ−1(ω)], suggesting that the linearized
dyadic Green’s function is precise enough to describe our
models.
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The band structures in Fig. 1 and Appendix A indicate that
a doubly degenerate Dirac cone near ωsp open and close and
reopen when we deform the unit cell from SC to EC. This
is similar to the out-of-plane mode of breathing plasmonic
honeycomb lattices [17]. In addition, global band gaps also
appear in other places in both SC and EC by opening the
degenerate band on the Brillouin-zone boundary M-K lines. In
the next section, the topological properties of these band gaps
will be discussed in detail, especially the differences with the
topological states in the out-of-plane mode.

III. TOPOLOGICAL CHARACTERISTICS
AND SPECTRA OF EDGE STATES

The topological characteristics of bands can be distin-
guished by the eigenvalues of their Wilson loop matrix which
providing the information about the evolution of the Wannier
centers around closed paths in the Brillouin zone. We give
the Wilson loops in the QSA which has been widely used
in topological plasmonic systems [15,16,20], then the eigen-
equation of Eq. (5) can be simplified down to a Hermitian
eigenvalue problem. More details about the Wilson loops are
given in Appendix B. Before calculating the Wilson loops, we
give the band structure of our models in the QSA, as shown
in Appendix A. The results show that the opening and closing
of the band gaps is consistent with the red lines despite slight
deformation.

As shown in Fig. 1, a gap between the sixth and seventh
band (we call it second gap) is opened in both SC and EC.
However, the first (third) gap appear between the first (last)
and second (last but one) band in SC while appear between
the second (last but one) and third (last but two) band in
EC. We calculate the Wilson loops as presented in Fig. 2. In
Figs. 2(a) and 2(b), the Wilson loops of SC distribute near
zero, indicating the triviality of the gaps. However, for the
EC, the Wilson loops move to ±π obviously, as shown in
Figs. 2(c) and 2(d), which is representative of an obstructed
atomic limit phase [16,23]. Note that the first and third gap
have the same topological properties because of the chiral
symmetry [28].

Next, we show that the inversion of modes take place upon
deforming the unit cell from SC to EC in both first and second
gap. The band modes are determined by calculating the dipole
momentum distributions with the eigenstates in a unit cell
[8]. Different with out-of-plane mode which is similar to a
scalar model [10,16], the dipole moments of in-plane mode
are in-plane vectors as shown in Figs. 2(e) and 2(f). The
inversion of modes can be identified by these in-plane vectors.
For the second gap, Fig. 2(f), the dipole moments from band
five to band eight at the � point indicate the inversion between
the double degenerate points above and below the second gap
for the SC and EC. For the first gap, the inversion happens
between band one and band three, as shown in Fig. 2(e).
This kind of band gap that is far from ωsp is difficult to be
opened and appears only in the SC in out-of-plane modes
[10,17]; however, they are supported in both SC and EC in the
in-plane modes, as shown in Fig. 1 because of the anisotropic
interactions of in-plane polarized modes [16,21]. In fact, this
kind of band gap can also be created in scalar systems by
breaking the C6 symmetry [29].
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FIG. 2. Wilson loop eigenvalues of the SC (a) for the first gap
and (b) for the second gap. The same for the EC (c) first gap and
(d) second gap. The red lines in panels (b) and (d) are respectively
quadruple and double degenerate. (e) Mode of band 1 to 3 at M.
(f) Mode of band 5 to 8 at �. The red arrow in panels (e) and (f)
represents the dipole moments of the corresponding nanoparticle.

To verify the topological properties described above, we
set up a ribbon consisting of twelve ECs. The projected band
structure along the ky direction of this ribbon is shown in
Fig. 3(a). The result indicates that there are two and one lines
appearing in the second and first (third) gap, respectively.
These lines are double degenerate edge states, for example,
C1 and C2. The electric-field intensity distribution of the edge
states are shown in Fig. 3(b). The edge modes appearing in
the second gap (B, C1, and C2 in Fig. 3) are near ωsp and
are typical cases of topological edge states that are protected
by chiral symmetry [24,30]. The edge modes appearing in
the first (third) gap (A and D) are topologically protected
by mirror symmetries which have been studied extensively
in topological photonic crystals [31]. The difference in the
symmetry of the two kinds of topological states leads to the
differences of their robustness against defects, which will be
discussed in detail in Sec. IV.

IV. TOPOLOGICAL CORNER MODES AND ROBUSTNESS

To investigate corner modes, we use the ECs to construct a
hexagonal finite-sized system with a side length of four ECs.
The eigenmodes of this finite-sized system are symmetric
about the ωsp, as shown in Fig. 4(a), because of the chiral
symmetry [30]. There are three groups of edge modes with six
corner states in each group corresponding to the three gaps of
EC’s band structure, respectively. We label them as group A,
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FIG. 3. (a) Projected band structure of a ribbon consisting of
twelve ECs. (b) The electric-field intensity distribution of typical
edge states of this ribbon. C1 and C2 are double degenerate edge
modes.

B, and C, as shown in Fig. 4(a). In each group, the corner
modes can be divided into three types: concentrate at two,
four, or six corners of the hexagonal finite-size system, and
there are two of each type. The three types of corner states in
groups B and C are shown in Figs. 4(b) and 4(c), respectively.

To reveal the differences between topological states that
appear in different band gaps, the robustness of the corner
modes is explored by two kinds of defects. First, we remove
one nanoparticle at exactly the corner of the above hexagonal
finite-sized system (defect i). This defect breaks the geomet-
rical C6 symmetry, however, the mirror symmetry and chiral
symmetry, which protect the topological states of group A (C)
and B, respectively, remain. As a result, the corner modes in
group A (C) and B are robust against this defect. Another kind
of defect can be created by removing the nanoparticle next
to the corner of the complete hexagon system above (defect
ii). This defect breaks the C6 symmetry and mirror symmetry
but has little effect on the chiral symmetry, which can be
illustrated by the symmetry of eigenvalue spectrum about ωsp,
as shown in Fig. 5(a). Therefore, the corner states in group A
(C) and B should suffer different robustness against this kind
of defects.

As shown in Fig. 5(a), i and ii represent the eigenvalue
spectrum of the above finite-sized system with the defect i or
ii, respectively. In Figs. 5(b) and 5(c), we plot the electric-field
intensity distribution of those corner states that we care about.
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FIG. 4. (a) The eigenvalue spectrum of a hexagonal finite-sized
system with a side length of four ECs. The right-hand plots are zoom-
in structures of A, B, and C in panel (a). (b), (c) The three types of
corner states in B and C, respectively.

The other corner states concentrated at four or six corners of
the finite-sized system have no significant difference with the
original ones and are not shown here. As we can see from iBa,
iBb and iiBa, iiBb, the electric-field intensity of the corner
states appearing in the middle gap similarly distribute against
the two kinds of defects. However, they are different between
the finite-sized system with defect i or defect ii when it comes
to group A (C). Specifically, the corner states of defect i, iCa
and iCb in Fig. 5(c), are similar to the original ones, as shown
by C3 in Fig. 4(c), because of the remain of mirror symmetry
under defect i. However, the two corner states of defect ii are
concentrated at one or three corners of the finite-sized system,
as shown in Fig. 5(c) iiCa and iiCb since the mirror symmetry
that protects the corner states is broken and new symmetrical
characteristics are met after this kind of defect is created.

V. CONCLUSION

In conclusion, we have presented a study of topological
edge modes in breathing honeycomb plasmonic nanoparticle
arrays with the in-plane polarized mode. Different with
the out-of-plane mode, topological edge states can be
maintained not only in the middle gap, but also in the first
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FIG. 5. (a) The eigenvalue spectrums of the hexagonal finite-sized system with defect i or ii. The middle and right-hand plots are zoom-in
structures of corresponding areas in panel (a). (b) The electric-field intensity distribution of the corner states in group B against defect i or ii.
(c) The electric-field intensity distribution of the corner states in group C against defect i or ii. The black edged hollow circle in panels (b) and
(c) corresponds to the place of point defects.

(last) gap of EC. The calculation of Wilson loops indicates
that the topological effects in both kinds of band gaps are
the result of an obstructed atomic limit. The edge modes
appearing in the middle gap are topologically protected
by chiral symmetry while the edge modes appearing in
the first (third) gap are topologically protected by mirror
symmetries. As a result, these edge modes show different
robustness against point defects. Our work indicates the
intriguing differences between the topological states in
breathing honeycomb nanoparticle arrays with in-plane or
out-of-plane polarized modes and provides a new path for the
coexistence of topological states in a plasmonic system which
could have potentially importance and novel applications in
nanophotonics.
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APPENDIX A: BAND STRUCTURE WITH LINEARIZED
DYADIC GREEN’S FUNCTION

We have calculated the Band structures by solving Eq. (7).
Figure 6 shows the results.

APPENDIX B: THE CALCULATION OF WILSON LOOPS

The Wilson loops in this work involve a group of degener-
ate bands. It can be defined as

W (ki ) = −Im

⎡
⎣log

⎛
⎝∏

k j

S(ki,k j ),(ki,k j+1 )

⎞
⎠
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⎦, (B1)

(a)

SC EC

(b) (c)

R
e(

ω
)/

ω
sp

1.003  

1.001  

0.997  

0.999  

R
e(

ω
)/

ω
sp

1.003  

1.001  

0.997  

0.999  

R
e(

ω
)/

ω
sp

1.003  

1.001  

0.997  

0.999  

K           Γ           Μ            K K           Γ           Μ            K K           Γ           Μ            K

FIG. 6. Panels [(a)–(c)] show the band structure of SC, m = 1, and EC, respectively. The red lines and gray lines are the band structure
calculated with and without QSA, respectively.
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where the Sk1,k2 is the overlap matrix and can be expressed as

Sk1,k2 =

⎡
⎢⎢⎣

〈
u1

k1

∣∣u1
k2

〉 〈
u1

k1

∣∣u2
k2

〉 · · ·〈
u2

k1

∣∣u1
k2

〉 〈
u2

k1

∣∣u2
k2

〉 · · ·
...

...
. . .

⎤
⎥⎥⎦, (B2)

where un
k1,2

is the periodic part of the Bloch wave func-
tion, k1 and k2 are the Bloch wave vectors, and n
is the index of degenerate bands. The eigenvalues of
W give information about the position of the Wannier
centers.
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