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Ultraslow dynamics of free-running ring lasers: Toward a minimal model
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The dynamics of a resonant, free-running ring laser, in the common case of a fast relaxation of atomic
polarization, is unexpectedly highly singular. As shown in Politi et al. [Phys. Rev. Res. 5, 023059 (2023)],
this is due to the closeness to a pure Hamiltonian dynamics ruled by a nonlinear wave equation, herein named
the Klein-Gordon-Toda model. In this paper, we derive a quasi-Hamiltonian model which allows describing
realistic systems. In particular, we identify two nearly conserved, energy-like quantities, which “naturally”
exhibit an ultraslow dynamics confirmed and highlighted by numerical simulations. A minimal version of the
quasi-Hamiltonian model is finally derived, which not only reproduces the laser thresholds, but also helps in
understanding the origin of the nearly integrable character of the laser dynamics.
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I. INTRODUCTION

A correct description of laser dynamics requires account-
ing for the evolution of the population inversion as well as
of the atomic polarization (besides obviously describing field
propagation). It was almost 60 years ago that an appropriate
model was derived for two-level atoms: these are the Arecchi-
Bonifacio equations [1] (often cited as Maxwell-Bloch). They
were originally derived for the description of a coherent opti-
cal amplifier, but they are also commonly used, with a proper
choice of the boundary conditions, in the study of free-running
(a coherent amplifying medium only inside the cavity) reso-
nant and unidirectional ring lasers. In the following, we will
refer to this approach as the AB (ring laser) model. In such
a system the first threshold, leading to a nonzero stationary
field, has long since been determined, as well as the Risken-
Nummedal-Graham-Haken (RNGH) threshold above which
more or less irregular oscillations set in [2–4]. Sometimes the
latter is called the second threshold, even if this denomination
is traditionally reserved for the onset of instabilities in low-
dimensional contexts, where a single or a few modes are active
(see, e.g., Ref. [5] for a review of low-dimensional chaos).
In the context of extensive (high-dimensional) dynamics, a
normal form has been derived in the vicinity of the RNGH
threshold and numerically validated [6].

The existence of a mathematical model may not suffice to
draw reliable conclusions on the behavior of a free-running
ring laser. In fact, the presence of multiple scales may hinder
direct simulations, by requiring too-small integration time
steps and/or too-long integration times. Whenever the pres-
ence of short relaxation times implies a fast convergence to
some center manifold, the computational complexity can be
reduced by adiabatically eliminating one or more variables,
thereby allowing for larger integration time steps.

Lasers characterized by a fast relaxation of the atomic po-
larization belong to a particularly nasty category of dynamical
systems. This includes the broad classes of semiconductor
lasers (see, e.g., Ref. [7]) and doped-fiber based systems
[8–11]. On the one hand, direct simulations of the original

model are unfeasible. On the other hand, atomic polariza-
tion cannot be straightforwardly eliminated, as the resulting
model is improperly unstable. An alternative solution has
been proposed via, e.g., the introduction of the Haus master
equation [12], to describe mode-locking phenomena associ-
ated with pulse propagation in a ring-cavity laser. However,
although this approach proves effective in the context it
was designed for, when used to describe the laser alone it
is unable even to reproduce the “second” laser threshold,
thus missing a crucial feature of the dynamics [13]. Another
model, the so-called Vladimirov-Turaev equation, specifically
developed for semiconductors, is again unable to reproduce
the RNGH laser threshold [14] in the free-running laser
setup.

The only model we are aware of that is able to display the
RNGH threshold is the so-called coherent master equation
(CME) derived in Ref. [13], after performing an improved
(second-order) adiabatic elimination. However, this model
leaves open the question of why it is so difficult even to
reproduce qualitatively the correct behavior.

A first step toward the solution of this puzzle was made in
Ref. [15], where the spatial dependence of the AB model was
eliminated, transforming it into a purely delayed equation (the
success of the approach being due to the synchronization of
the field in a moving frame with the input field—see Ref. [15]
for a more detailed explanation).

Although this simplification was not sufficient to enable
realistic simulations of, e.g., fiber lasers, it opened the venue
toward substantial progress, thanks to the introduction of
a powerful perturbative technique based on the smallness
parameter � = √

γ‖/γ⊥, where γ‖ and γ⊥ are the decay rates
of the atomic population and polarization, respectively. In
fact, in Ref. [16] it was shown that the adiabatic elimination
of a newly introduced variable (a suitable combination of
atomic polarization and electric field) leads, to first order,
to a Hamiltonian dynamics. We name it Klein-Gordon-Toda
(KGT), since it reduces to the Klein-Gordon model in
the linear limit and is characterized by a Toda-like [17]
exponential nonlinearity. The KGT model possesses two
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conservation laws, called potential and kinetic energies (for
obvious reasons, once their definition will be given).

In this paper, we complete the project. By determining
the next-order correction terms, we obtain a model where
the energies are self-determined and turn out to evolve
over extremely long time scales. We call it the quasi-
Hamiltonian model (QHM). The QHM is very similar to the
above-mentioned CME. However, the absence of a proper
perturbative background behind the derivation of the CME
prevents recognizing (i) the closeness to a Hamiltonian dy-
namics, (ii) that some terms are negligible, and finally, (iii)
the presence of ultraslow quasi-conserved quantities.

In a sense, this paper extends Ref. [18], where it was shown
that in the limit γ⊥ � γ‖, the single-mode laser dynamics is
very close to that of a weakly perturbed oscillator moving in
a Toda potential. This relationship can already be appreciated
by looking at the rate equations for class-B lasers: as shown in
Ref. [19], the logarithm of the intensity behaves like a damped
Toda oscillator. This correspondence has been experimentally
confirmed in Ref. [20]. In this paper, the quasi Hamiltonian
character extends to multimode lasers. Even more surprising,
we find that two different energies are simultaneously (quasi)-
conserved.

The QHM allows for realistic simulations of fiber lasers,
especially thanks to the identification of an appropriate slow
time scale. The effectiveness of the model is related to the
unexpectedly small fluctuations exhibited by the field inten-
sity even much above threshold. We provide an explanation,
exploiting the interpretation of the laser regime as a nonequi-
librium steady state. Starting from the ’70s of the past century,
the laser was recognized to be a valuable instance of stationary
nonequilibrium state, since it is a device where an incoming
energy flux (necessary to ensure a steady population inver-
sion) is partially dissipated via both atomic collisions and
imperfect mirrors, but also transformed into coherent light
(the laser emission). In the present context, the interpreta-
tion is entirely different: the energy formally corresponds to
the Hamiltonian of the KGT system (unrelated to the true
physical energy), while the incoming and outgoing fluxes are
associated with suitable perturbative terms which destabilize
or stabilize the various modes.

The AB model includes explicitly three different scales:
(1) the relaxation time 1/γ⊥ of the atomic polarization;
(2) the decay time 1/γ‖ of the population inversion; and
(3) the round-trip time T of the cavity. The QHM shows
that the relevant time scales exhibited during the dynamical
evolution are (besides T ) (1) the period 1/

√
γ⊥γ‖ of the

self-generated fast oscillations above the RNGH threshold;
(2) the Hamiltonian time scale T

√
γ⊥/γ‖, which describes the

evolution of the coherent pseudospatial structures found in a
delay interval (see Ref. [16]); and (3) the time scale T γ⊥/γ‖
of energy variations. This, without including the subtle scale
associated to the ergodization time of the KGT dynamics,
which is very long, as the laser turns out to operate in a nearly
integrable regime.

The paper is organized as follows. In Sec. II, starting from
the delayed version of the AB model, we implement the first
step of a perturbative approach which, via the introduction
of a space-time representation, leads to the KGT model (the
relationship between the AB model and its delayed version is

briefly recalled in Appendix A). This is essentially a reformu-
lation of Ref. [16]; it is a necessary step to set the formalism
and to define the proper background for the next relevant
stage.

Section III contains the core of the model derivation (the
most technical calculations are presented in Appendix B). The
full QHM model contains several terms which are difficult to
analyze and interpret. Therefore, we have decided to focus
on a simpler version, still accurate for high reflectivity and
relatively long round-trip time, conditions satisfied in typical
experimental setups. In the same section, we perform the
linear stability analysis, which reveals the smallness of all
eigenvalues, and present the first simulations to illustrate the
properties of the expected dynamics. In particular, we investi-
gate the dependence of the stationary state on the pump value.

In Sec. IV, we compare the QHM model with the CME,
rewritten in our notations to identify the order of magnitude
of the various terms. The most important difference is perhaps
the presence, in the CME, of an evolution equation for the
(pseudospatial) average of the population inversion, absent
in our model. We justify this result by showing that such a
variable can be adiabatically eliminated, as implicitly done
within our formalism. Finally, we show that some terms of
the CME are negligible.

In Sec. V, we discuss the energy dynamics for different
values of the smallness parameter, providing an argument to
explain the observed decrease of the average energy with �.
Therein, we also provide a theoretical justification for the self-
selection of the ratio between kinetic and potential energy. The
last section is devoted to a brief summary of the main results,
a presentation of the open problems, and a discussion of future
perspectives.

II. KLEIN-GORDON-TODA MODEL

As briefly summarized in Appendix A, the AB model is
well approximated by the delayed dynamical system

F = F d + �
1 − R

R
U (1)

U̇ = R

�
[−U + GF − Ḟ d ] (2)

Ġ = −�G + I (1 − F 2 − �FU ) , (3)

where F is the field amplitude [F d ≡ F (t − T ), T being the
round-trip time in the actual time units], G is the population
inversion, and U is an auxiliary variable that can be adia-
batically eliminated. Moreover, R is the mirror reflectivity,
while I is the rescaled pump parameter, herein denoted as
the “effective” pump. From its definition (A5), given in Ap-
pendix A, it turns out that the first laser threshold is I = 0,
which corresponds to a pump value a = 1 − R in the original
formulation.

From the point of view of nonlinear dynamics, this model
is peculiar, since the delayed variable contributes both as itself
and via its time derivative. This means that the equation is
neutrally stable (see, e.g., Ref. [21]), i.e., it belongs to a not
yet fully understood class of dynamical systems.

The most relevant laser systems are characterized by a very
small �. It is, therefore, tempting to implement a perturbative
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approach, by expanding in powers of �. In the following, the
order of approximation of the three variables F , G, and U is
identified by a subscript number.

For � → 0, we assume that all variables stay finite: this
hypothesis has been verified by running several simulations
for different � values (see Ref. [16]), and it is confirmed a
posteriori by the consistency of the results. Hence, at zero
order, we are authorized to set � = 0 in Eqs. (1) and (3),
finding that they reduce to

F0 = F d
0 (4)

Ġ0 = I
(
1 − F 2

0

)
(5)

while the variable U turns out to be irrelevant.
Condition (4) implies that any periodic function F0(t ) of

period T is a valid solution, provided that∫ T

0
dtF 2

0 (t ) = 1,

which follows from Eq. (5), since also G0 must be periodic.
This result shows that the original model is close to a very
degenerate scenario.

At first order in �, all terms in Eqs. (1) and (3) must be
retained,

F1 = F d
1 + 1 − R

R
�U1 (6)

Ġ1 = −�G1 + I
(
1 − F 2

1 − �FU1
)
, (7)

showing that the U dynamics must now be included. Since
U is characterized by a fast relaxation, we can perform a
standard adiabatic elimination, setting its time derivative equal
to zero,

U1 = G1F1 − Ḟ d
1 . (8)

Upon inserting this U1 value into Eq. (6), we obtain

F1 = F d
1 + ε

(
G1F1 − Ḟ d

1

)
, (9)

where we have defined the new smallness parameter,

ε = 1 − R

R
� . (10)

We will generically refer to both parameters as the “small-
ness” parameter, selecting the definition we deem more
appropriate in each given context.

Equations (7) and (9) provide a first self-consistent rep-
resentation of the laser model. One should insert the U1

expression also into Eq. (7), but we leave it implicit, as we
are going to show that such a term is not relevant at this order
of approximation.

The model dynamics is better understood by introducing
the space-time representation t → (σ, τ ) shown in Fig. 1,

σ = t mod T (11)

τ = ε[�(t/T )	 + σ/T ]. (12)

The space-like variable σ identifies the position along a single
delay unit; τ is a new time variable which quantifies the
rescaled number of elapsed delay units. This is a refined
version of the spatiotemporal representation introduced in

FIG. 1. Space-time representation: The solid black line rep-
resents the initial one-dimensional time axis, which we imagine
wrapped around a circular cylinder. σ and τ increase from left to
right and from bottom to top, respectively. The dashed line corre-
sponds to a constant τ line, obtained via an interpolation from two
neighboring world lines.

Ref. [22] and first used in Ref. [23] to derive the normal form
of delayed equation. We remark that such representation is
valid in general, and not limited to the case of long delays as
in the above references. For the sake of simplicity, the two
fields F and G are denoted in the same way as before, as the
number of arguments suffices to identify the underlying sys-
tem of reference. The spatial boundary conditions are periodic
(here we drop the subscript, since the conditions are valid at
any approximation order): F (σ = 0, τ ) = F (σ = T, τ ) (and
analogously for G).

In view of the small variation of F from one to the next
delay unit, we assume the τ dependence to be effectively
continuous (and smooth), and write

F d = F (σ, τ − ε) ≈ F − ε∂τ F + ε2

2
∂2
τ F . (13)

Moreover, from Eq. (12), the original time derivative of a
generic variable H (t ) can be expressed in terms of the new
variables as

Ḣ = ∂σ H + ε

T
∂τ H. (14)

With the help of Eqs. (13) and (14) (and retaining only
terms linear in ε), Eq. (9) reduces to

∂τ F1 + ∂σ F1 = G1F1. (15)

Notice that the explicit ε dependence disappears, since all
leading terms are of order ε.

By proceeding in a similar way with Eq. (7) and retaining
the leading terms [which, in this case, are of O(1)], the second
equation can be written as (notice that it is equivalent to the
zero-order approximation)

∂σ G1 = I (1 − F 2
1 ) . (16)

By dropping the subscripts and introducing lower-case no-
tations, the model equations are written as

∂τ f = −∂σ f + gf (17)

∂σ g = I (1 − f 2) . (18)
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By introducing s = ln f , the model can be rewritten as (in a
moving frame with unit velocity)

∂τσ s = I (1 − e2s) , (19)

where, to avoid unnecessary complications, the spatial vari-
able is still denoted with σ . It can be easily verified that these
equations are parameterless, since the effective pump I can
be eliminated by suitably rescaling the system scales: time
[τ ′ = τ

√
I)], space (σ ′ = σ

√
I), and the population inversion

(g′ = g/
√

I). Thus, the system-energy gain (pump) and the
losses (dissipation) only contribute to the extensivity of the
dynamics.

In Ref. [16], it was found that Eqs. (17) and (18) describe
a perfectly Hamiltonian dynamics, characterized by two con-
servation laws.

The first invariant is the kinetic-like energy density

EK =
〈
s2
σ ′

〉
2

=
〈
s2
σ

〉
2I

; (20)

here and in the following, the angular brackets denote a spatial
average. Since in this paper we will keep referring to τ and
σ , we will always refer to the rightmost definition of kinetic
energy.

The second conserved quantity is the pseudopotential
energy density

EP = 〈e2s − 2s − 1〉 ≡ 〈V (s)〉 , (21)

where V (s) is a Toda-like potential, which provides a nonlin-
ear contribution to the overall dynamics. Cela va sans dire,
these energies have nothing to do with the physical energy
pumped into the laser and partially transformed into electro-
magnetic fields.

Altogether, the total energy (density) is

ET = EK + EP (22)

evidently conserved. Its value quantifies the strength of the
nonlinearity. For ET � 1, the dynamics is effectively linear
and thereby integrable (i.e., there are infinitely many con-
served quantities). In this limit, the model reduces to the
Klein-Gordon equation. Since nonlinearities arise from the
Toda-like potential, we name Eqs. (17) and (18) the KGT
model.

For relatively large ET values, one expects chaos to set in,
accompanied by more or less fast relaxation phenomena. The
value of the two energies EK and EP is fixed by the initial
condition; hence, even if the model is parameterless, it is
necessary to fix these two quantities to determine the resulting
dynamics. In the next section we will see that higher-order
terms break the Hamiltonian structure and contribute to select
the values of the “conserved” quantities, otherwise undeter-
mined.

Numerically, given the current amplitude profile f (σ, τ ),
one starts integrating Eq. (18) (in space) to generate

g(σ, τ ) = I[σ − f̂ 2(σ, τ )] + C1(τ ), (23)

where the hat denotes a generic integral over σ of the underly-
ing function, while C1 is a (yet unknown) integration constant.

Periodic boundary conditions require that

f̂ 2(T, τ ) = T ⇔ 〈 f 2〉 = 1 . (24)

Since this condition must be valid at all times, the time
derivative of 〈 f 2〉 must be constant. From the dynamical equa-
tions (17) and (18),

0 = ∂τ 〈 f 2〉 = 2

T

∫ T

0
gf 2dσ = 2

T

∫ T

0

(
g − 1

I
g∂σ g

)
dσ

= 2

T

∫ T

0
gdσ = g̃(0, τ ) , (25)

where g̃(0, τ ) is the zeroth-order Fourier mode. Therefore,
selecting C1(τ ) such that g̃(0, τ ) = 0 implies that 〈 f 2〉τ = 0
at all times.

The model can be integrated by expanding the field in
Fourier modes. By using a sufficiently large number of modes
(typically, N = 214 suffices), no numerical instability emerges
and there is no need to include an empirical smoothing as
previously done in Ref. [16].

III. QUASI-HAMILTONIAN MODEL

The KGT model is characterized by two conserved
quantities that we have called potential and kinetic en-
ergy: their value is encoded in the initial conditions.
Afterwards, they are left invariant by the dynamics. Higher-
order perturbative terms contribute to the selection of the
two energy values as well as to determine their stability
properties.

A general second-order model accounting for all relevant
corrections is derived in Appendix B. Given its computational
complexity, here we consider the simplified version, which
emerges in the limit 1 − R � 1 and for not-too-short delay
T � 1 − R. Both approximations are valid in realistic physi-
cal conditions. Under the above assumptions, Eqs. (B17) and
(B19) reduce to

∂τ f + ∂σ f = gf − �
[
I f (1 − f 2) + g∂σ f − ∂2

σ f
]

(26)

∂σ g = I (1 − f 2) − �[g + I f (gf − ∂σ f )], (27)

where, for the sake of simplicity, we have reintroduced the
smallness parameter �.

The term ∂σ f in Eq. (27) can be eliminated by choosing
a frame moving with velocity 1. To avoid another change of
notations, we keep using σ to denote the spatial position. A
last simplification can be made by noticing that the term I (1 −
f 2) multiplying f in Eq. (26) can be replaced by ∂σ g [see
Eq. (27)] without lowering the order of approximation. Hence,
the field equation can be written as

∂τ f = gf − �
[
∂σ ( f g) − ∂2

σ f
]
. (28)

Equations (27) and (28) represent the final version of the
QHM we are going to investigate in the following.

A. Linear stability

Here, we show that the QHM reproduces the stability of
the AB model. We proceed by assuming

f = 1 + q
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FIG. 2. Linear stability analysis for I = 139.

so that q = g = 0 corresponds to the stationary lasing
state. By linearizing Eqs. (27) and (28), we obtain

∂τ q = g + 2�∂σ g + �∂2
σ q (29)

∂σ g = −2Iq − �(1 + I )g + �I∂σ f . (30)

Now, introducing the ansatz

q = q0 exp(λt + ikσ ), g = g0 exp(λt + ikσ ) , (31)

the above equations can be rewritten as

λq0 = g0 − �(ikg0 + k2q0) (32)

ikg0 = −2Iq0 − �(1 + I )g0 + ik�Iq0. (33)

From this equation

g0 = I
−2 + ik�

ik + �(1 + I )
q0. (34)

Hence, neglecting �2 terms,

λ � I
−2 + 3ik�

�(1 + I ) + ik
− �k2

� I
−2(1 + I )� + 3�k2 + 2ikI

k2
− �k2, (35)

so that the real part of λ is

λR

�
� −2I (1 + I )

k2
+ 3I − k2. (36)

The rates are all of order � (independently whether stable
or unstable). The shape of the curve is reported in Fig. 2
for I = 139. This result confirms the need to go one step
beyond the first-order analysis, to remove the degeneracy of
the Hamiltonian dynamics generated by the KGT equation.

The (in)stability is ruled by three terms: (1) the first one
contributes to the stability of long wavelengths: it originates
from the term �(1 + I )g in Eq. (30), where it appears as
a dissipative term in the spatial evolution; (2) the last term
contributes to the stability of the short wavelengths: it origi-
nates from the diffusive term in Eq. (29); (3) the second term
provides a destabilizing wavelength-free contribution: it arises
from the last two � terms, which involve the first derivative of
g and f , respectively.

The most unstable (least stable) mode is

kmax = [2I (1 + I )]1/4 . (37)

For I = 139 (the value typically considered in our simula-
tions), kmax = 14.04 . . .. The corresponding eigenvalue is(

λR

�

)
max

= 3I − 2
√

2I (I + 1). (38)

It is positive if I > Iθ = 8, a value which represents the laser
threshold for space-time dynamics. Recalling the relationship
between I and the pump a = (I + 1)(1 − R), it corresponds
to aθ = 0.45, to be compared with the original exact result
0.488 . . . (see, e.g., Ref. [24]). This threshold value coincides
also with the value determined by Perego et al. (see the Ap-
pendix in Ref. [13]). For large pump values, the instability is
proportional to I , λR/� � (3 − 2

√
2)I = (0.17 . . .) × I .

The leading term of the imaginary part is

λI = 2I

k
.

It remains finite in the limit � → 0, representing the fre-
quency of the kth eigenmode.

Finally, notice that above the threshold, the unstable modes
cover a finite interval. For I = 139, k ∈ [11.875 : 16.612] (see
Fig. 2).

B. Numerical simulations

The QHM consists of a single “dynamical” equation,
Eq. (28), which determines the evolution of the electric field
f . The population inversion g is a “slaved” variable: at any
time τ , the spatial profile g(σ, τ ) is obtained by integrating in
space Eq. (27) for the given field f (σ, τ ). The equation for g
is dissipative and linear: f plays the role of a periodic modula-
tion. The integration requires determining a periodic solution
g(σ, τ ) = g(σ − T, τ ). Given the linearity of the equation,
it follows that gfin = vgin + w, where gin is the hypothetical
initial condition (for σ = 0) and gfin is the final value reached
for σ = T , while v and w are the (unknown) coefficients
resulting from the integration of the equation; v and w can be
determined by integrating Eq. (27) for two different choices
of gin after determining the two corresponding gfin. Once they
are known, the periodic solution is obtained by imposing
vg∗ + w = g∗, i.e., setting g∗ = w/(1 − v).

Once g(σ ) is obtained, one can integrate the differential
equation (28) over time. We proceed by expanding ∂τ f in
Fourier modes, using a time step δτ typically of the order of
10−3. N = 2048 modes suffice for � <≈ 10−4 (otherwise N
must be doubled and δτ lowered possibly down to 10−4). The
resulting intensity profiles exhibit an approximately constant
number n of oscillations, typically clustered in bursts of three
to five peaks which form, propagate, and annihilate along
the τ axis. Two exemplary profiles are reported in Fig. 3:
they have been obtained by integrating the QHM for I = 139,
� = 10−3, and a length T = 10. The number of oscillations
(n ≈ 21–22) is consistent with the wavelength of the most
unstable mode as from the linear stability analysis; indeed,
n � (Lkmax)/(2π ).

A more quantitative representation is presented in Fig. 4,
where the corresponding power spectra are plotted in linear
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FIG. 3. Two spatial profiles sampled during a simulation for T =
10, � = 10−3, and I = 139.

and semilogarithmic (see the inset) scales. From the body of
the figure it is clear that the relevant Fourier modes are those
emerging from the linear stability analysis, while the exponen-
tial decrease of the spectrum hints at the smoothness of the
profiles. The final plateau above k ≈ 300 is an unavoidable
effect of the finite computational accuracy.

We conclude this section by discussing the dependence of
the (time) average of the energy density ET on the effective
pump I . The results of numerical simulations are reported in
Fig. 5: they have been obtained for � = 10−4. The dashed
vertical line at Iθ = 8 identifies the RNGH threshold, while
I = 0 denotes the first laser threshold, below which the laser is
not active. Both thresholds are independent of �. Approaching
Iθ from above, the energy vanishes. This is obvious, since the
field amplitude is constant below the RNGH threshold. Upon
increasing the pump, the energy rapidly reaches a saturation
around 0.17. This awkward behavior is less surprising if we
recall that the energy is defined with reference to the rescaled
field intensity 〈 f 2〉 ≈ 1. Hence, since ET is, in the linear
approximation, a quadratic function of f , we can conclude
that it is approximately proportional to the pump, if expressed
in physical units.

FIG. 4. Power spectra of the two profiles in the previous figure.

FIG. 5. Dependence of the average energy on the effective pump
I for � = 10−4. Simulations for different pump values have been
made for different lengths T , in such a way that the number of unsta-
ble modes is kept constant; this means that for I = 14, T ≈ 31.5.

The dependence of ET on � is a more subtle issue that we
address in Sec. V.

IV. THE COHERENT MASTER EQUATION

In this section, we critically compare Eqs. (27) and (28)
with the only model available in the literature, able, to our
knowledge, to reproduce the RNGH threshold. Such a model
was derived in Ref. [13] by applying a second-order adiabatic
elimination of the atomic polarization to the AB model. It has
been named coherent master equation (CME) to stress the fact
that it overcomes the shortcomings of the Haus model (known
as the master equation in the field of mode locking systems).

Here, we discuss the CME in the free-running (ring) laser
configuration (i.e., in the absence of intracavity devices). Us-
ing our notations, the CME can be cast as

∂τ f = (
g + �∂2

σ

)
f − �∂σ (h f ) (39)

�
(1 − R)

RT
∂τ 〈g〉 = I (1 − 〈 f 2〉) − �〈g〉 − I�〈gf 2〉 (40)

∂σ h = I (〈 f 2〉 − f 2) − �h − �Ig f 2 + �I

2
∂σ f 2 + �I〈gf 2〉,

(41)

where h = g − 〈g〉.
In practice, at any instant of time, given f (σ ) and the cur-

rent value of 〈g〉, one can spatially integrate the equation for h
under the condition 〈h〉 = 0. Once h (and hence g = 〈g〉 + h)
is determined, the first two equations can be then integrated in
time.

At variance with the CME, 〈g〉 in the QHM is implicitly
obtained from the knowledge of the instantaneous field profile
f , instead of having to be integrated over time. The corre-
sponding equation is determined by integrating Eq. (B19) over
space,

−�(〈g〉 + I〈gf 2〉) + I (1 − 〈 f 2〉) = 0 . (42)
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FIG. 6. Time average of 〈g〉 for different � values. The slope of
the power-law fit is 1.3.

This equation is equal to Eq. (40) of the CME, except for the
missing time derivative, a term that would be recovered if one
averaged the full equation Eq. (B18) instead of Eq. (B19).
Within the framework of the QHM derivation, the absence
of an explicit 〈g〉 dynamics is justified under the assumption
(1 − R)/T significantly smaller than 1. It can be viewed as a
standard adiabatic elimination. On the other hand, whenever
the ∂τ 〈g〉 term cannot be neglected, similar terms included
neither in the QHM nor in the CME should also be added to
the equation for f .

In order to complete the comparison, it is necessary to
assess the amplitude of 〈g〉. At leading order,

I〈gf 2〉 = I

T

∫ L

0
(gf 2)dσ ≈ 1

T

∫ σ

0
g(I − gσ )dξ = I〈g〉,

(43)

so that Eq. (42) can be rewritten as

〈g〉 = I

�(1 + I )
(1 − 〈 f 2〉) . (44)

This equation expresses the relationship between the size of
〈g〉 and the deviation of 〈 f 2〉 from 1. In the Hamiltonian limit,
both quantities vanish (being 〈 f 2〉 a conserved quantity); for a
small but finite �, we see that 〈g〉 is one order lower in � than
(1 − 〈 f 2〉). However, scaling considerations do not suffice to
establish the smallness of 〈g〉. Hence, we have performed sev-
eral simulations to determine the time average 〈g〉 for different
� values. The results, reported in Fig. 6, suggest that 〈g〉 is
even smaller than � (a power-law fit suggests a scaling �δ

with δ � 1.3). Consequently, (1 − 〈 f 2〉) is smaller than �2.
By now, returning to the first equation of the CME, we see

that it is equivalent to Eq. (26), since the replacement of h f
with gf yields a correction at least of order �2 (if not smaller)
and is thus irrelevant. Similar arguments show that h can be
replaced by g in the last equation and 〈 f 2〉 by 1, generating
corrections of order �2 again negligible.

Altogether, we can conclude that the CME is essentially
equivalent to the QHM, although slightly more complicated.
An important conceptual difference is that the absence of
a perturbative representation in the CME hides in general

the closeness of the model to a Hamiltonian system and, in
particular, the existence of a slow energy dynamics.

V. ENERGY DYNAMICS

At first order the laser dynamics is described by the KGT
model, which displays (in physical units) (1) the “fast” time
scale (γ⊥γ‖)−1/2, corresponding to the period of the amplitude
oscillations unstable above the RNGH threshold, and (2) the
“slow” time scale T /�, encoding the spatiotemporal Hamil-
tonian evolution. Additionally, the KGT model exhibits two
conserved quantities: EK and EP.

This degeneracy is removed at the next order, by the per-
turbative terms of the QHM. The energy dynamics is better
described by referring to s = ln f . In Appendix C, it is shown
that EK and EP satisfy the following differential equations:

(EK )τ
�

= − 1

2

〈
s2
σ

〉 + 7

2

〈
e2ss2

σ

〉
− (1 + I )〈s(e2s − 1)〉 − 1

I

〈
s2
σσ

〉
, (45)

(EP )τ
2�

= − 1

I
〈g2〉 − 〈g2e2s〉 + 〈e2s(e2s − 1)〉

− 〈
e2ss2

σ

〉 + 〈gsσ 〉 − 〈
s2
σ

〉
. (46)

The two derivatives are both proportional to �, showing that
the energy evolves over the yet slower time scale T/�2.

Altogether, the laser dynamics can be interpreted as a
nonequilibrium steady state. The KGT equation describes the
underlying Hamiltonian system, whose statistical properties
we are interested in, while the terms proportional to � of the
QHM can be formally interpreted as coupling terms with a
fictitious external environment, which absorbs and releases
energy. The stationary regime is the result of a balance of the
incoming and outgoing fluxes, represented by the terms on the
right-hand side of Eqs. (45) and (46).

The two energy equations are not closed and even involve
collective observables that are not conserved at first order.
Hence, they cannot be directly used to determine the energy
dynamics. We can nevertheless proceed indirectly by simulat-
ing the full QHM. In Fig. 7, we report the time trace of the
total energy density ET and of the ratio ρ = EK/EP, for � =
1.25 × 10−3. The energy density exhibits significant fluctua-
tions, analogously to the behavior reported in Ref. [16], where
the original delayed model was integrated for the same param-
eter values. The jumps are a consequence of a changement in
the number of bursts along the spatial profile (see Fig. 3). On
a more quantitive level, the energy values are slightly smaller
than those displayed by the delayed laser model (in which
case the energy fluctuates in the range [0.28,0.36] [16]). The
discrepancy is quite likely due to higher-order corrections not
included in the QHM. On the other hand, the ratio ρ exhibits,
instead, small fluctuations around 0.35, in full agreement with
the original laser model.

In Fig. 8 we report the average total energy density ET

numerically determined for a series of � values down to � =
2.8 × 10−5, a realistic value for erbium-doped fiber lasers.
All data are affected by large statistical fluctuations, difficult
to quantify. Anyway, it is clear that ET decreases with �,
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FIG. 7. Total energy density (black) and ratio between ki-
netic and potential energy (red) for I = 139, � = 1.25 × 10−3,
and T = 10.

possibly following a power law �η. Without pretending to be
too reliable, we find η ≈ 0.25.

In order to test, at least qualitatively, the relevance of the
perturbative terms for the smallest meaningful � value, we
have compared the pattern obtained by integrating the QHM
with that obtained by integrating the KGT model, starting both
from the same initial conditions. The results are presented in
Fig. 9. The effect of the � terms becomes visible on a time
scale larger than τ ≈ 100.

A. Minimal model

An important question is still open: how is the ET value
selected by the dynamics? Here, we develop some scaling
arguments based on a further simplification of the QHM. The
data reported in Fig. 8 show that ET is small for realistic �

values; this means that also the (relative) field fluctuations
are small (the zero-energy state corresponds to the stationary
regime f = 1). Actually, in the QHM [Eqs. (27) and (28)]
there are two types of nonlinear terms: (1) those of leading
order, responsible for the nonlinear Toda force within the

FIG. 8. Average total energy vs � in log-log scales. The dashed
line corresponds to a slope of 0.25.

Hamiltonian dynamics, and (2) those proportional to �. It
is logical to conjecture that the latter ones are negligible,
being at the same time much smaller than the former ones
(because of the proportionality to �) and smaller than their
linear perturbative counterparts. Within this approximation,
gf can be replaced by g and gf 2 by g (in practice, setting
f = 1), obtaining

fτ = gf − �gσ + � fσσ (47)

gσ = I (1 − f 2) − �[g(1 + I ) − I fσ ]. (48)

The quality of this approximation has been checked compar-
ing this minimal model (MM) with the QHM for � = 5.0 ×
10−5. In Fig. 10, we see that the energy of the MM is slightly
larger than that of the QHM (the average ET is around 0.16
instead of 0.13). Another difference is the larger fluctuations
exhibited by the QHM. A posteriori, we can attribute both
discrepancies to the nonlinearity of the perturbative terms,
which tailor losses and amplifications according to the local
field amplitude.

Since we are not interested in a fully quantitative agree-
ment, but simply in understanding the selection mechanisms
of a specific average energy, we feel authorized to proceed
with the discussion of the MM.

Let us consider a hypothetical initial condition such that
nonlinearities are negligible. So long as this is true, the evo-
lution can be decomposed into the independent dynamics
of the Fourier eigenmodes. Hence, according to the stabil-
ity analysis presented in Sec. III A, the amplitude of those
modes with a wave number inside the unstable range would
diverge, while all the others would decrease exponentially to
zero. According to linear stability analysis, we can therefore
approximately state that the perturbative linear terms of the
MM contribute to an incoming energy flux toward the unstable
modes �u ≈ αu�Eu, proportional to � and to the energy Eu

contained in such modes. Similarly, we expect an outgoing
flux Es ≈ αs�Es from the stable modes.

However, at some point, nonlinearities enter the game,
transferring energy among the various modes. This phe-
nomenon is qualitatively illustrated in Fig. 11, where we plot
the evolution starting from a unimodal [Fig. 11(a)] and a
bimodal [Fig. 11(b)] state [25].

In both cases, kinetic and potential energy have been
selected to be very close to those of the simulations in Fig. 9.
In both cases, there is a relatively fast transfer to other modes,
but the observed patterns are different between themselves
and different from that of the QHM, indicating the (expected)
presence of yet longer time scales, due to weak nonlinear
mechanisms, i.e., to the quasi integrability.

The flux �us from unstable toward stable modes is the last
ingredient needed to determine the properties of a stationary
nonequilibrium state: it indeed acts as a bridge compensating
the above mentioned fluxes exchanged with the “external”
environment.

It is natural to assume that �us depends mostly on Eu

(the source of energy): we assume �us ≈ Eβ
u with β > 1.

A stationary state exists if and only if the energy fluxes
balance each other in both families of modes. With ref-
erence to the unstable modes, αu�Eu ≈ Eβ

u , so that Eu ≈
�1/(β−1). Compensation for the stable modes requires that
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FIG. 9. (a) Spatiotemporal pattern of the field intensity sampled from a simulation of the QHM for � = 2.8 × 10−5; (b) pattern generated
by integrating the KGT model, starting from the same initial condition as in (a). Only points where the intensity is larger than 1.7 are reported.
In both cases the selected frame moves with velocity 2.42.

Es scales in the same way, Es ≈ �1/(β−1). Hence, also the
total energy ET scales in the same way. Since the intramode
flux is determined by nonlinearities of the KGT, we expect
β > 1, which means that ET is expected to decrease with
�, as indeed seen from the direct simulations reported in
Fig. 8. From the empirical scaling therein observed (ET ≈
�0.25) we can conclude that since 1/(1 − β ) ≈ 0.25, then
β = 5, but this value should be taken with tongs, given
the sketchiness of the argument. The important point is
that the average total energy decreases with �, because this
is the only way for the internal nonlinear fluxes to compen-
sate the decreasing flux (proportional to �) with the external
environment.

B. Ratio of energies

So far, we focused on the total energy, without distin-
guishing EK from EP. Numerical simulations performed for

0 2000 4000 6000 8000 10000

t

0.1

0.12

0.14

0.16

0.18

0.2

E
T

FIG. 10. Total energy for � = 5 × 10−5 as from the simulation
of the QHM (black solid line) and the MM (red dashed line).

different � and pump values consistently supply ρ values
around 0.35.

Below we provide a simple justification of this numerical
result. From the stability analysis, it turns out that the range of
unstable modes is rather narrow. For I = 139, we have seen
that k = 2πn/T ∈ [11.87, 16.61]; if T = 10, as selected in
our simulations, the unstable modes are those such that the
integer n belongs to the interval [19, 26]. This is consistent
with the number and wavelength of active modes revealed by
direct numerical simulations as seen in Fig. 4.

By taking the narrowness to the extreme, we assume a
strictly unimodal state

s(σ ) = A cos kσ , (49)

where k is a yet unspecified wave number. The ratio of kinetic
to potential energy is

ρ = EK

EP
= A2k2

4I[〈e2A cos kσ 〉 − 1]
. (50)

In the linear limit (A � 1)

ρ = EK

EP
= k2

4I
. (51)

With reference to the most unstable wave number kmax

ρ � 1

4

√
2(1 + 1/I ).

For I = 139 (the value chosen in our simulations), ρ =
0.354, extremely close to the value observed in direct
simulations (see Fig. 7). This explains the origin of the
spontaneous selection of ρ: it corresponds to the ratio ob-
served for the most unstable spatial frequencies in the small
amplitude limit.
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FIG. 11. Two spatiotemporal patterns of the field intensity obtained by integrating the KGT model starting from an initial condition of
the type s = a1 cos(2πk1σ/T ) + a2 cos(2πk2σ/T ) − b. (a): a = 0.29, k1 = 22, a2 = 0, and b = 0.04119; (b): a = 0.26, k1 = 22, a2 = 0.13,
k2 = 21, and b = 0.04166. The offset b is chosen so as to ensure 〈 f 2〉 = 1. Only points where the intensity is larger than 1.7 are plotted; the
frame moves with velocity 2.55 in both panels.

VI. CONCLUSIONS AND OPEN PROBLEMS

In this paper we have derived and analyzed the QHM,
a set of two partial differential equations that can be ef-
fectively used to perform realistic numerical simulations of
ring-laser dynamics in the presence of a fast relaxation of
the atomic polarization. It turns out that the overall dynam-
ics is nearly Hamiltonian. Accordingly, extremely long time
scales are naturally present, emerging from the slow evolution
of two global quasi conserved quantities (the “kinetic” and
“potential” energy). The two pseudoenergies are self deter-
mined by the second-order correction terms; interestingly, in
the limit � → 0, the energies become progressively smaller,
meaning that the dynamics is increasingly integrable (lin-
ear). As a result, an additional source of complexity arises
due to the exceptionally long thermalization times. In the
attempt to capture the relevant features of the laser dynam-
ics, we propose a simplification of the QHM—we call it
the minimal model—which helps to understand how non-
linearities contribute to the establishment of a stationary
regime. Still, the mechanisms responsible for the relevant
energy variations observed in long simulations are unclear.
We have noticed they are associated with structural changes
of the intensity profiles (number of “bursts”), but a less phe-
nomenological analysis is surely required to make further
progress.

Moreover, there is still much to do from a mathemati-
cal point of view. Can one recast the adiabatic elimination
of the field U within the general framework of an infinite-
dimensional center (inertial) manifold? Can one reformulate
our space-time representation in rigorous terms by imple-
menting a multiple-scale technique? These tasks are probably
quite hard since the starting model is a neutral delayed equa-
tion, i.e., it belongs to a largely unexplored class of dynamical
systems. Furthermore, the final QHM itself is quite peculiar; it

formally involves two fields, but the population inversion does
not have its own dynamics. It is a pseudo mean field which
induces long-range interactions via the integration along the
spatial direction.

Experimental tests are more than welcome to validate our
theoretical predictions. Erbium-doped fiber lasers are perhaps
the most appropriate experimental testing ground since there
� � 10−4 if not smaller. First of all, it would be worth finding
evidence of the extremely slow evolution of coherent struc-
tures in the pseudo spatiotemporal representation associated
with the energy dynamics. It should be noticed, however, that
the nature of the QHM implies that the underlying evolution is
highly sensitive to perturbations (them being either stochastic
or deterministic), because they may easily induce significant
variations of the pseudoenergies. Real fiber lasers are surely
affected by various kinds of noise, not to mention possible
perturbations due to nonperfect resonance, or propagation
losses, herein neglected. We plan to address these questions
in a future work.

Furthermore, it will be worth it to make additional theo-
retical efforts to extend the perturbative approach (based on
the assumption of � � 1) to the off-resonance case. Long
ago, it was found that the center manifold technique, de-
veloped to unravel the quasi-Toda behavior of single-mode
resonant class-B lasers [19], can be successfully extended
out of resonance [26]. We do not see conceptual reasons
why this robustness should not hold in the general multimode
case.

A last enlightening venue to explore is the laser behavior
in the presence of intracavity devices, a setup where, e.g., the
Haus equation has proven effective. This would help to clarify
the role of the pseudoenergies in a context where experiments
are more easily doable and to better understand the differences
with a model which instead fails to reproduce the free-running
dynamics.
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APPENDIX A: FROM AB TO DELAYED MODEL

The Arecchi-Bonifacio equations are the reference model,
introduced in 1965 to describe the coherent amplification of
electric field in a two-level medium and, later on, broadly
used to study the onset of longitudinal instabilities in a ring
laser with unidirectional propagation. Here, we consider this
setup, restricting ourselves to the resonant case, starting from
the assumption that the polarization P and the electric field F
are real. With reference to a comoving frame, the model can
be written as [15]

∂F
∂y

= a

2
P,

∂P
∂ t̂

= DF − P,

∂D
∂ t̂

= γ [1 − D − FP )] , (A1)

where D is the population inversion, while y is a suitably
scaled spatial variable (y ∈ [−1, 1]); γ is the ratio γ‖/γ⊥
between the population and the polarization decay rate, re-
spectively; and the time t̂ is expressed in units of γ −1

⊥ , while a
is the pump parameter controlling the energy flux injected into
the laser. The boundary condition is F (y = −1, t ) = RF (y =
1, t − T ), R being the mirror reflectivity and T the round-trip
time across the cavity.

In Refs. [15,16], it was shown that this set of equations is
well approximated by a spaceless delayed model, here pre-
sented in the most compact form,

F = F d + �
1 − R

R
U (A2)

U̇ = R

�
[−U + GF − Ḟ d ] (A3)

Ġ = −�G + I (1 − F 2 − �FU ) . (A4)

Here, � = √
γ will play the key role of a smallness parameter,

used in the perturbative expansion discussed in the body of
the paper. The new time variable is t = �t̂ , so that the delay is
T = �T . The pump parameter is also rescaled to the system
losses, introducing the “effective” pump as

I = a

1 − R
− 1 . (A5)

Hence, the field is F (t ) = F (1, t̂ )/
√

I , scaled in such a way
that the stationary value is equal to 1 [consequently F d (t ) ≡
F (t − T )]. The population inversion has been redefined as
G = (〈D〉(I + 1) − 1)/�: in practice, it is equal to zero in the
stationary regime, while the rescaling by � is useful to deal
with a variable of order 1 in the small-� limit. Finally, the
most tricky change of variable is

U = [〈P〉(I + 1) − F (1, t̂ )]/(�
√

I ), (A6)

justified by the fact that its zero-order adiabatic elimination
suffices to obtain a meaningful set of equations, even though

it is still insufficient to describe the laser dynamics. In fact,
this is the starting point of this work.

APPENDIX B: SECOND-ORDER
PERTURBATIVE EXPANSION

The next order in the adiabatic elimination of U yields
[see Eq. (2)]

U2 = U1 − �

R
U̇1 , (B1)

With the help of Eq. (8), Eq. (B1) can be rewritten as

U2 = G2F2 − Ḟ d
2 − ε

1 − R

[
Ġ2F2 + G2Ḟ2 − F̈ d

2

]
. (B2)

It is useful, for later convenience, to eliminate the delayed
functions in the right-hand side. This can be done by approxi-
mating F̈ d

2 , at leading order, with F̈2, while the replacement of
Ḟ d

2 requires including first-order corrections. Altogether,

Ḟ d
2 ≈ Ḟ2 − ε(Ġ2F2 + Ḟ2G2 − F̈2). (B3)

As a result,

U2 = G2F2 − Ḟ2 − εR

1 − R
[Ġ2F2 + G2Ḟ2 − F̈2]. (B4)

Finally, it is legitimate to approximate Ġ2 with the Ġ1 expres-
sion of Eq. (16), obtaining

U2 = G2F2 − Ḟ2 − εR

1 − R

[
I
(
1 − F 2

2

)
F2 + G2Ḟ2 − F̈2

]
.

(B5)

We can now replace this U2 expression in the field equa-
tion (1), obtaining

F2 = F d
2 + ε(G2F2 − Ḟ2)

− ε2R

1 − R

[
I
(
1 − F 2

2

)
F2 + G2Ḟ2 − F̈2

]
. (B6)

Equation (3) is easier to process as we do not need to include
the term of order ε in the U expression. Proceeding as above,
we obtain

Ġ2 = I
(
1 − F 2

2

) − εR

1 − R
[G2 + IF2(G2F2 − Ḟ2)] (B7)

Equations (B6) and (B7) represent the full model at second
order.

As for the first order, it is convenient to introduce a space-
time representation. Moreover, from now on, we drop the
subscript for the sake of simplicity and use lowercase letters.

With the help of Eqs. (13) and (14), Eq. (B6) can be
rewritten as

∂τ f
(

1 + ε

T

)
+ ∂σ f =

= gf + ε

2
∂2
τ f − εR

1 − R

[
I (1 − f 2) f + g∂σ f − ∂2

σ f
]
.

(B8)

The perturbative terms formally enlarge the phase-space
dimensionality, as they include a second-order time derivative.
However, thanks to their perturbative nature, one can remove
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the higher-order derivatives, expressing them as approximate
functions of the field f (and g).

With the help of Eq. (17), we can approximate

∂2
τ f ≈ −∂στ f + f ∂τ g + g∂τ f . (B9)

Now, again with the help of Eq. (17), we can eliminate the
time derivatives in the first and last term in the right-hand side,

∂στ f ≈ −∂2
σ f + f ∂σ g + g∂σ g, ∂τ f ≈ −∂σ f + gf ,

(B10)

so that

∂2
τ f ≈ ∂2

σ f − f ∂σ g − 2g∂σ f + g2 f + f ∂τ g. (B11)

More elaborate is the perturbative treatment to get rid of ∂τ g.
From the time derivative of Eq. (18) (i.e., neglecting ε terms),
we find that

∂τσ g ≈ −2I f ∂τ f . (B12)

Still in the same approximation, we can integrate in space this
equation, obtaining

∂τ g/I ≈ −2
∫

dξ f ∂τ f + C2

≈ −2
∫

dξ f (−∂σ f + gf ) + C2 ≈ f 2 − 2ĝ f 2 + C2,

(B13)

where C2 represents an integration constant to be suitably
determined. It can be fixed by considering the spatial average
of the above equation. At zero order, we know that 〈g〉 = 0.
Therefore, at the same order of approximation, its time deriva-
tive vanishes so that

0 = 〈 f 2〉 − 2〈ĝ f 2〉 + C2 (B14)

and hence,

C2 = 2〈ĝ f 2〉 − 1. (B15)

Practically, once a generic integral ĝ f 2 has been determined,
this equation yields the proper C2 value.

Altogether, Eq. (B11) can be written as

∂2
τ ≈ g2 f − 2g∂σ f − f ∂σ g + ∂2

σ + I f ( f 2 − 2ĝ f 2 + C2).

(B16)

Hence, the field equation of the second-order model can be
written as

∂τ f
(

1 + ε

T

)
+ ∂σ f

= gf − ε

1 − R

[
RI f − 1 + R

2

(
I f 3 + ∂2

σ f
) + g∂σ f

]

+ ε

2
[g2 f − f ∂σ g − 2I f ĝ f 2 + I f C2]. (B17)

Now, we process the g equation in a similar way. The
original Eq. (3) can be written as

∂σ g − I (1 − f 2) = − ε

T
∂τ g − εR

1 − R
[g + I f (gf − ∂σ f )].

(B18)

Once again we can remove the time derivative with the help
of Eq. (B13),

gσ = I (1 − f 2) − ε

T
[I ( f 2 − 2ĝ f 2 + C2)]

− εR

1 − R
[g + I f (gf − ∂σ f )]. (B19)

APPENDIX C: ENERGY EVOLUTION

In order to derive the energy evolution equations it is con-
venient rewrite Eqs. (27) and (28) by introducing f = ln s,

sτ = g − �(gσ + gsσ ) + �
(
s2
σ + sσσ

)
(C1)

gσ = I (1 − e2s) − �[g + I (g − sσ )e2s] . (C2)

1. Kinetic energy

From the definition (20) of EK ,

I (EK )τ = 〈sσ sτσ 〉 . (C3)

From the s evolution equation (C1),

sτσ = gσ − �(gσσ + gσ sσ + gsσσ )

+�(2sσ sσσ + sσσσ ) . (C4)

Hence,

I (EK )τ = 〈gσ sσ 〉 − �
(〈gσσ sσ 〉 + 〈

gσ s2
σ

〉 + 〈gsσσ sσ 〉)
+�(2

〈
s2
σ sσσ

〉 + 〈sσσσ sσ 〉). (C5)

The second-to-last term vanishes since it is the average of the
derivative of a strictly periodic functions and we can write

I (EK )τ = 〈gσ sσ 〉 − �
(〈gσσ sσ 〉

+ 〈
gσ s2

σ

〉 + 〈gsσσ sσ 〉 − 〈sσσσ sσ 〉). (C6)

Now, from Eq. (C2),

〈gσ sσ 〉 = 〈I (1 − e2s)sσ 〉 − �〈(g + I (g − sσ )e2s)sσ 〉
= −�〈(g + I (g − sσ )e2s)sσ 〉. (C7)

By inserting this expression into Eq. (C6),

I (EK )τ = −�
[〈gσσ sσ 〉 + 〈

gσ s2
σ

〉 + 〈gsσσ sσ 〉
− 〈sσσσ sσ 〉 + (1 + I )〈gsσ 〉 − I

〈
e2ss2

σ

〉]
. (C8)

This equation confirms that the kinetic energy is indeed a
constant of motion in the limit � = 0 and provides an ex-
pression for its derivative, which is explicitly proportional
to �. The equation can be simplified by inserting first-order
approximations in the right-hand side. For instance,

〈gσσ sσ 〉 = −2I
〈
e2ss2

σ

〉
, (C9)

and 〈
gσ s2

σ

〉 = I
〈
s2
σ

〉 − I
〈
e2ss2

σ

〉
. (C10)

As a result,

I (EK )τ = − �
[
I
〈
s2
σ

〉 − 4I
〈
e2ss2

σ

〉 + 〈gsσσ sσ 〉
− 〈sσσσ sσ 〉 + (1 + I )〈gsσ 〉] . (C11)
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One can eliminate the variable g by using the following two
transformations:

2
∫

gsσσ sσ dσ =
∫

g(s2
σ )σ dσ = gs2

σ −
∫

s2
σ gσ dσ

= gs2
σ − I

∫
s2
σ (1 − e2s)dσ

and∫
gsσ dσ = gs −

∫
sgσ dσ = gs − I

∫
s(1 − e2s)dσ.

The final result is
(EK )τ

�
= − 1

2

〈
s2
σ

〉 + 7

2

〈
e2ss2

σ

〉
− (1 + I )〈s(e2s − 1)〉 − 1

I

〈
s2
σσ

〉
, (C12)

where we have also made use of the identity 〈sσσσ sσ 〉 =
−〈s2

σσ 〉 (proved, integrating by parts).

2. Potential-energy evolution

From the definition (21) of the potential energy, it follows
that

(EP )τ = 2〈(e2s − 1)sτ 〉 , (C13)

and then
1
2 (EP )τ = 〈(e2s − 1)g〉 + �

[ − 〈e2sgσ 〉 − 〈e2sgsσ 〉 + 〈
e2ss2

σ

〉
+ 〈e2ssσσ 〉 + 〈gsσ 〉 − 〈

s2
σ

〉]
. (C14)

At first order

I〈(e2s − 1)g〉 = −�(〈g2〉 + I〈g2e2s〉 − I〈gsσ e2s〉) . (C15)

Hence,

1

2�
(EP )τ = − 1

I
〈g2〉 − 〈g2e2s〉 + 〈e2s(e2s − 1)〉

− 〈
e2ss2

σ

〉 + 〈gsσ 〉 − 〈
s2
σ

〉
. (C16)
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