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Influence of thermal effects on the optomechanical coupling rate in acousto-optic cavities
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Optomechanical (OM) cavities simultaneously localize photons and phonons, thus enhancing their mutual
interaction through radiation-pressure force. This acousto-optic interaction can be quantified by means of the
optical-frequency shift per mechanical displacement G. The aforesaid frequency shift can also be related to
the vacuum OM coupling rate g0, where only photoelastic and moving-boundary effects are commonly taken
into account. However, the thermo-optic and thermal-expansion effects may also play a role since the material
forming the OM cavity could be heated by the presence of photons, which should naturally affect the mechanical
properties of the cavity. In this work, we introduce a theoretical approach to determine how thermal effects
change the canonical OM coupling rate. To test the model, a complete set of optical-thermal-mechanical
simulations was performed in two OM crystal cavities fabricated from two different materials: silicon and
diamond. Our results lead us to conclude that there is a non-negligible thermal correction that is always present
as a negative shift to the OM coupling rate that should be considered in order to predict more accurately the
strength of the OM interaction.
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I. INTRODUCTION

Cavity optomechanics is a growing scientific and tech-
nological field that encompasses assorted micro- and nan-
odevices that enable the interaction between optical and
mechanical modes, giving rise to various striking phenom-
ena [1–8]. Optomechanical (OM) interaction in such devices
is mediated by the radiation-pressure force that enables the
exchange of energy and momentum between photons and
phonons. Due to the retarded nature of radiation-pressure
force, a dynamical backaction between the optical and me-
chanical modes takes place [9], resulting in the optical spring
effect [10] as well as the cooling (heating) of the OM cavity
when the driving laser is red (blue) detuned with respect to
the optical resonance [1,11,12]. To quantify this interaction,
the vacuum OM coupling rate g0 is introduced and accounts
for the coupling between a single photon and a single phonon
[3], thus resulting in the most commonly used value for com-
paring the strength of the acousto-optic interaction in OM
cavities.

Accurate calculations of g0 are necessary to predict all the
aforementioned effects in simulations as well as to optimize
OM cavities. So far, only the photoelastic (PE) and moving-
boundary (MB) effects have been considered to contribute
to the calculation of g0; i.e., only purely acousto-optic ef-
fects have been taken into account [4,13,14]. To the best of
our knowledge, how thermal effects contribute to the canon-
ical OM coupling rate has not been considered before. In
fact, such thermal effects may eventually have an impact
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on the value of g0 because previous works have reported
experimental variations of this parameter with temperature
[15,16].

In that regard, a model that describes photothermal forces
through a mathematical treatment built upon thermal modal
analysis and perturbation theory was recently proposed and
checked experimentally in a GaAs microdisk OM cavity
[17]. In that model, the photothermal and OM backactions
were simultaneously introduced in the OM structure, lead-
ing to dynamical equations mediated by thermal Langevin,
radiation-pressure, and photothermal forces. In addition, a
thermally induced frequency-shift dependence was addressed
theoretically by using perturbation theory and was described
with a new optothermal pull parameter, Gθ = ∂ω

∂T . However,
the impact of the temperature on the original OM pull param-
eter, GOM = ∂ω

∂α
, was not considered, although it would induce

deformations and frequency shifts in the cavity. Thermal ef-
fects, together with the acousto-optic PE and MB effects, must
then be considered in order to obtain accurate calculations of
the g0 parameter.

In this work, we develop a theory that considers the
thermo-optic (TO) and thermal-expansion (ThE) effects,
which account for the optical resonance shift due to tem-
perature absorption and thermal expansion in the material,
respectively. These effects are incorporated as corrections to
the calculation of the OM coupling rate g and vacuum OM
coupling rate g0 in OM crystal cavities. Theoretical work is
combined with numerical simulations in silicon and diamond
OM crystal cavities using COMSOL MULTIPHYSICS. Numerical
results confirm the theoretical predictions and highlight the
need to consider the new gTh

0 term, in particular in materials
showing large thermo-optical coefficients.
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FIG. 1. OM and photothermal dynamical backaction loops.
OM backaction is mediated by radiation-pressure force F RP and
electrostriction (ES) from optical to mechanical modes and by pho-
toelastic (PE) and moving-boundary (MB) effects from mechanical
to optical modes. The whole process is coupled, causing fluctuations
in the optical and mechanical resonances. Photothermal backaction
is mediated by photothermal forces which include both thermo-optic
(TO) and thermal-expansion (ThE) effects. The first one closes the
photothermal backaction, whereas the second connects to the OM
backaction.

II. THEORETICAL APPROACH

Figure 1 sketches the dynamical backaction loops arising
from the OM and photothermal effects taking place in an
OM cavity and how they are connected by the ThE effect. In
the OM dynamical backaction picture, mechanical modes and
deformations α are excited by the optical energy in the cavity
by means of the radiation-pressure force and electrostriction
(ES) effects. Photons can exchange energy and momentum
with the material, creating coherent phonons at frequencies
of the mechanical modes of the cavity. Once a mechanical
mode is excited, it exchanges energy back to the optical mode,
inducing fluctuations in the optical resonance by two different
phenomena: photoelastic and moving-boundary effects [4].
In the former, mechanical vibrations and deformations δα

change the stress in the material, thus modifying the refractive
index and therefore producing fluctuations in the optical reso-
nance frequency δω. In addition, excitation of the mechanical
modes dynamically changes the position of the boundaries of
the cavity, thus provoking a variation of the refractive index
and, consequently, changing the optical mode (MB effect).
This closes the OM dynamical backaction loop. It is worth
noting that ES and PE are volumetric acousto-optic effects,
whereas F RP and MB are surface effects [4].

Conversely, photothermal backaction follows a predom-
inantly unidirectional path, characterized by a loop that
progresses solely in one direction. Refractive index vari-
ations produced by tiny optical fluctuations produce an
optical-absorption pattern that depends on the optical-mode
profile. It makes the material absorb the optical power and
increases its temperature, creating a gradient profile. This gra-
dient produces photothermal forces that can be described by
two phenomena: the thermo-optic and the thermal-expansion
effects. TO refers to the phenomenon where changes in
temperature produce variations in the refractive index of a ma-
terial, causing a redshift in the optical resonance. This effect
has been widely explored in OM cavities and resonators [18].
On the other hand, ThE refers to the tendency of a material to
expand or contract in response to changes in temperature [19].
The former closes the photothermal backaction loop, whereas
the latter connects with the OM dynamical backaction con-
tributing to both PE and MB effects.

Accounting for the thermal effects in an OM cavity, its
optical resonant frequency can generally be parameterized as

ω = ω(α, T ), (1)

where α is the overall scaling parameter of the generalized
coordinate of the displacement field and T = T (�r) is the tem-
perature profile. Because of the interaction between the optical
and mechanical modes, the optical resonance depends on the
mechanical resonance as follows:

ω(α, T ) ≈ ω(α0, T0) + α

(
∂ω

∂α

)
T

+ (T − T0)

(
∂ω

∂T

)
α

. (2)

Here, α0 is the initial maximum amplitude of the material due
to the mechanical amplitude or deformation of the cavity, and
T0 is the temperature in the cavity.

We have added a thermal contribution that changed the
optical resonance compared with the typical mechanical con-
tribution to the optical frequency [3]. Thus, we can take the
full derivative of the cavity resonance to obtain the OM pull
parameter as follows:

dω(α, T )

dα
=

(
∂ω

∂α

)
T

+
(

∂ω

∂T

)
α

dT

dα
. (3)

We can identify the first term on the right side, ( ∂ω
∂α

)T , as the
contribution of the PE and MB effects to the OM coupling,
( ∂ω

∂α
)T = GPE + GMB. Likewise, we can consider the second

term, ( ∂ω
∂T )α dT

dα
= GTh, as the thermal contribution to the

overall OM coupling rate, G = dω(α,T )
dα

= GPE + GMB + GTh.
Specifically, ( ∂ω

∂T )α is the TO effect, while dT
dα

is the ThE term.
Therefore, the new thermal term can be interpreted as a

correction of the canonical OM pull parameter. It is, indeed,
the contribution that accounts for how thermal deformations
and optical-frequency shifts due to such thermal effects alter
the OM pull parameter of the OM cavity.

The thermal term of the vacuum OM coupling rate gTh
0 is

related to GTh as

gTh
0

2π
= Xzpf

2π

(
∂ω

∂T

)
α

dT

dα
, (4)

where Xzpf is the zero-point fluctuation displacement of the
cavity mechanical mode. We must highlight that the previous
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FIG. 2. Defect unit cells of the (a) silicon and (b) diamond OM
crystal cavities studied in this work. The silicon unit cell has a lattice
period a = 325 nm, width w = 570 nm, thickness t = 220 nm, ra-
dius r = 84.5 nm, and lateral corrugation dimensions hx = 130 nm
and hy = 215 nm. On the other hand, for the diamond cavity, we
have a = 464 nm, w = 929 nm, rx = 163.5 nm, ry = 144.5 nm, and
θ = 35◦.

equations have considered the interaction between one photon
and one phonon. However, if we increase the power so that
the number of intracavity photons is n̄cav � 1, the parameter
that we obtain is gTh. So far, the total vacuum contribution to
the OM coupling rate g0 has been obtained by normalizing to
the total number of photons when n̄cav � 1 [3]. Then, as we
consider the thermal contribution as an additive correction, we
also have to make this normalization, so gTh

0 is recalculated as
follows:

gTh = gTh
0

√
n̄cav, (5)

where n̄cav is related to the intracavity power P, the detuning
between the laser and the optical cavity frequency �, the
optical linewidth κ , and extrinsic optical losses κex [3]:

ncav = κex

�2 + (κ/2)2

P

h̄ωL
≈ 4βQP

ω2h̄
. (6)

Here, we consider κex to be a fraction of the value of κ , κex =
βκ . In addition, κ is related to the cavity optical quality factor
Q as κ = ω/Q. For simplicity, we assume � = 0 (ωL = ω),
which means that we are always measuring the shift in gTh

0
exactly at the cavity resonance, although it changes with the
power due to the TO effect.

From all the previous assumptions, we can write the ex-
pression of gTh

0 as

gTh
0

2π

∣∣∣∣
n̄cav>1

= Xzpf

2π

(
∂ω

∂T

)
α

dT

dα
ω

√
h̄

4βQ

1√
P

. (7)

III. SILICON AND DIAMOND OM CAVITIES

To test our model via numerical simulations, we chose
released OM crystal cavities made of two different materials:
silicon and diamond. It is worth noting that although we do
not perform an experimental study in this paper, both cavities
were fabricated and experimentally tested [12,20]. In princi-
ple, one may expect a larger thermal response in the silicon
cavity since both TO and ThE effects are larger in silicon
than in diamond [21]. The unit cells employed to build both
kinds of OM cavities are depicted in Fig. 2. For silicon, the
unit cell [Fig. 2(a)] consists of a circular hole and two lateral
corrugations, and it is designed to have a TE photonic band
gap and a full phononic band gap [12,22–24]. On the other
hand, the diamond unit cell [20] [Fig. 2(b)] has a triangular

FIG. 3. Silicon OM crystal cavity with optical and mechanical
modes. (a) Top view of the cavity where the geometry is divided
into three different parts: the defect cells (where the optical and
mechanical modes exist), the mirror cells (where the desired modes
are reflected), and the transition cells (tapering between defect and
mirror cells to smooth the geometry and avoid radiative losses). A
quadratic tapering along six transition cells is applied to the param-
eters of the cells to finally reach the mirror values: am = 500 nm,
rm = 150 nm, hxm = 200 nm, hym = 465 nm. Normalized mechan-
ical displacement of the (b) flexural megahertz-scale mechanical
mode (� = 15.36 MHz) and the (c) defect gigahertz-scale �/2π =
4.01 GHz mechanical mode. (d) Electric-field pattern of the optical
mode of the cavity at λ = 1570 nm, which can be coupled to both
mechanical modes by OM interaction.

cross section parametrized by the etch angle θ , and it has
elliptic instead of circular holes. The values of the unit-cell
parameters in the central region of the cavities employed in
the simulations are given in the caption of Fig. 2.

Figure 3(a) shows a sketch of the silicon OM cavity,
which in essence consists of a one-dimensional photonic and
phononic crystal nanobeam cavity in which a TE optical mode
(λ ≈ 1570 nm) and a mechanical mode (� ≈ 4 GHz) are well
confined in the central region of the nanobeam [see Figs. 3(c)
and 3(d)]. This colocalization results in a large OM coupling
rate [24]. In addition, a mechanical flexural mode oscillating
at � ≈ 15 MHz [Fig. 3(b)] can be coupled with the same
optical mode [25].

On the other hand, we considered an OM crystal cavity
constructed from diamond [110] that was previously ad-
dressed in [20]. The structure of this cavity is similar to the
previous silicon one: there is a defect cell and two lateral
regions composed of an array of mirror cells with a photonic
and phononic band gap [Fig. 4(a)]. There are also transition
cells that prevent the leakage of photons and phonons out of
the cavity. A main difference is that in the diamond cavity
the circular holes are replaced with ellipses, and there are no
lateral corrugations. In this case, the cavity displays a breath-
inglike mechanical mode at � ≈ 6 GHz [Fig. 4(b)] excited by
an optical mode at λ ≈ 1470 nm [Fig. 4(c)]. The mechanical
properties of both cavities can be found in [20,26].

IV. THERMAL SIMULATIONS

All the simulations were performed using the numerical
tool COMSOL MULTIPHYSICS. In order to model the thermal
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FIG. 4. Diamond OM crystal cavity with optical and mechanical
modes. (a) Sketch of the diamond OM cavity, where the geometry is
divided into three different parts: the defect cells (where the optical
and mechanical modes exist), the mirror cells (where the desired
modes are reflected), and the transition cells (tapering between defect
and mirror cells to smooth the geometry and avoid radiative losses).
A quadratic tapering along six transition cells is applied to the pa-
rameters of the cells to finally reach the mirror values: am = 580 nm,
rxm = 125 nm, rym = 295 nm. (b) Normalized displacement of the
mechanical mode oscillating at �/2π = 5.95 GHz. (c) Electric field
of the optical mode of the cavity at λ = 1470 nm.

contribution, we split the study into thermo-optic and thermal-
expansion substudies. Both thermal derivatives in Eq. (3) were
obtained by simulating the frequency shift and the thermal
expansion of the cavity for several input powers. Each simula-
tion corresponds to a point in both graphs ω − T and α − T .
Hence, by fitting the best curve of the sequence of points, one
can obtain the derivative of that curve that coincides with the
TO ( ∂ω

∂T )α and ThE dT
dα

terms.
If only PE and MB effects are considered, an eigenmode

analysis allows one to obtain the desired optical and mechan-
ical modes, and then, by using the coupling equations shown
in [27], one can calculate the PE and MB contributions to
g0. Now, with the aim of including the thermal part, we
have to add the corrective thermal term to the PE and MB
calculations. To do so, the steps in Figs. 5 and 6 must be
followed. The first step consists of performing an eigenmode
analysis to obtain the optical-mode frequency and its profile.
The obtained modes [see Figs. 5(a) and 6(a) for the silicon and
diamond OM cavities, respectively] seem to be well confined
in the defect region of the cavity. We then use the optical-mode
profile as a heat source [see Figs. 5(b) and 6(b)] by assigning

a distributed power to it, following

Q = Q0
Qh∫

Qh dV
. (8)

Here, Q is the average power weighted by the power-density
distribution in the domain (measured in W/m3), and Q0 is
the input power (measured in watts), which is distributed
into the cavity considering Qh (the power-dissipation density
measured in W/m3).

The temperature profile is then modeled by the heat-
transfer equations as [28]

ρCpu · ∇T + ∇ · q = Q,

q = −k∇T .
(9)

Here, ρ is the density of the material, Cp is the solid heat ca-
pacity at constant pressure, k is the solid thermal conductivity,
u is the velocity field, and Q is the heat source which coincides
with the Q calculated in Eq. (8). We highlight that we have
considered the temperature dependence of ρ, k, and Cp as well
as the refractive index n in the numerical simulations to make
the heat study accurate [29,30].

Now, undertaking a stationary thermal study in which
Eq. (9) is solved, we perform a mechanical mode analysis to
apply a thermal deformation to the cavity [see Figs. 5(c) and
6(c)]. Due to the geometry differences, the largest deformation
in the silicon OM cavity is concentrated at the transition and
mirror cells, whereas for the diamond cavity, the deformation
is localized at the center. Then, the ”moving-mesh” interface
in COMSOL MULTIPHYSICS is used to store the position of each
deformed node, i.e., to obtain the thermally deformed cavity.
Finally, the optical mode is recalculated in the deformed cav-
ity by performing an eigenmode study [Figs. 5(d) and 6(d)],
allowing us to parametrize frequency shifts due to thermal
effects and completing the loop.

To summarize, these are the paths of the simulations in
Figs. 5 and 6 that must be followed in order to calculate the
TO and ThE terms: (1) for TO ( ∂ω

∂T )α , (a) → (b) → (d) and (2)
for ThE dT

dα
, (a) → (b) → (c). Notice that for the TO effect, we

only need to measure the frequency shift due to temperature
changes without any mechanical vibration or deformation. For
the case of the ThE contribution, we want to quantify the
material deformations caused by the thermal gradient field.

FIG. 5. Optothermomechanical loop in the silicon OM crystal cavity. (a) Optical eigenfrequency profile at λ = 1570 nm. (b) Thermal
field provoked by using (a) as a heating source. (c) Mechanical deformations induced by the thermal profile in (b). (d) Recalculation of the
optical-frequency mode including the mechanical deformations.
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FIG. 6. Optothermomechanical loop in the diamond OM crystal cavity. (a) Optical eigenfrequency profile at λ = 1470 nm. (b) Thermal
field provoked by using (a) as a heating source. (c) Mechanical deformations induced by the thermal profile in (b). (d) Recalculation of the
optical-frequency mode including the mechanical deformations.

V. NUMERICAL RESULTS

Here, we test the model by calculating and comparing
the thermal contribution gTh

0 to gOM
0 in the two OM cavities

introduced above with the parameters given in Figs. 3 and 4.
Once we follow the paths described in the previous section to
evaluate the TO and ThE effects, we only need to make a
sweep increasing the power Q0 that is absorbed into the cavity.
That provides us with several points in the graphs ω − T and
T − α, respectively, for the silicon and diamond OM cavities,
with T being the maximum temperature value in the cavity.
These results are shown in Fig. 7.

After drawing all the points with their regressions, we can
numerically calculate ( ∂ω

∂T )α and dT
dα

by taking the derivative of

FIG. 7. Data extracted from thermal simulations of the OM
cavities showing the linear behavior of (a) ThE and (b) TO ef-
fects. (a) Maximum deformation with temperature of the cavity.
(b) Optical-frequency shift with temperature without deformation.
The data have been calculated by following the simulations in Figs. 5
and 6. The steps to obtain both the ThE and TO terms are described
in Sec. IV.

the curve that best fits the behavior of the points. One might
notice that all tendencies are linear, and that implies constant
values in all derivatives. Remarkably, this result is almost
independent of the mechanical mode being analyzed, as the
TO and ThE effects primarily depend on the material proper-
ties rather than the optical and mechanical modes. Hence, the
results in Fig. 7 are common for all mechanical modes shown
in Figs. 3(b) and 3(c).

From Fig. 7(a) we can obtain the ThE contributions, i.e.,
the slopes of the lines: dT

dα
= 2.59 × 1011 K/m and dT

dα
=

9.07 × 1010 K/m for the silicon and diamond cavities, respec-
tively. On the other hand, the TO contributions can be obtained
from Fig. 7(b): ( ∂ω

∂T )α = −4.40 × 1010 Hz/K for the sili-
con cavity and ( ∂ω

∂T )α = −3.95 × 109 Hz/K for the diamond
cavity.

Furthermore, we can compare the TO derivatives with a
very simple calculation that relates the magnitude to the ex-
perimental TO coefficient [31]: ∂ω

∂T = −ω
n k, with n being the

refractive index of the material and k = ∂n
∂T being the TO co-

efficient. Therefore, by taking from the literature [31–33] the
TO coefficients of silicon and diamond we obtain the results
∂ω
∂T

Formula = −5.93 × 1010 Hz/K for silicon and ∂ω
∂T

Formula =
−8.33 × 109 Hz/K for diamond. Both results have the same
order of magnitude. The differences from simulations are
probably because the aforementioned formula is an approx-
imation that considers changes in refractive index by the
same proportion throughout the cavity. However, since we
have an optical pattern, that assumption is not strictly correct.
Nevertheless, our approach works nicely as a toy model and
successfully predicts the order of magnitude of the effect in
the cavities under study. We can then conclude that we can
obtain a good approximation of the thermal contribution to
the OM coupling rate from all these previous calculations.

Indeed, considering the Xzpf value for both cavities and us-
ing Eq. (4), we can calculate gTh, as shown in Table I. We can
see that we obtain a constant value of the thermal coupling rate
gTh for each mechanical mode since all derivatives are also
constant. This means that the thermal contribution correction
is constant and does not depend on either the temperature or
the optical power injected into the cavity. For that reason, in
order to compare the thermal contribution with the combined
PE and MB effects, the latter was multiplied by a reasonable
number of photons (n̄cav = 40 400). The reverse process was
applied to gTh in order to obtain gTh

0 and compare it to gOM
0 ;

i.e., it was normalized to n̄cav = 40 400, Eq. (7). That number
corresponds to 1 mW of absorbed power in the silicon cavity,
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TABLE I. Thermal contributions to the OM couplings of the silicon and diamond OM cavities under study.

Xzpf (m) λ (nm) �/2π gPE/2π (kHz) gMB/2π (kHz) gOM/2π (kHz) gTh/2π (kHz) gOM
0 /2π (kHz) gTh

0 /2π (kHz)

Silicon 2.69 × 10−15 1570 4.01 GHz −79 797 −4783 −84 580 −4879 −420 −24
4.34 × 10−14 1570 15.36 MHz −82 83 150 83 068 −7872 413 −39

Diamond 6.74 × 10−16 1470 5.95 GHz 14 874 12462 27 336 −38 136 −0.19

and it was calculated using Eq. (6) with the following param-
eters: Q = 5915, β = 0.26, and λ = 1570 nm. As we can see
in Table I, gTh/2π is considerably smaller than gOM/2π for all
mechanical modes.

Furthermore, the comparison between the vacuum OM
coupling rates gOM

0 of all the mechanical modes and the vac-
uum thermal contribution gTh

0 is represented in the graph gTh
0 -P

(Fig. 8). In contrast to gTh, we obtained a power-dependent
value for the thermal vacuum OM coupling rate in Fig. 8,
which means that at high power, the thermal correction to
the OM coupling rate is lower than at low temperatures
since the correction is negative. The underlying mechanism
of the power dependence in the OM coupling rate is related
to the fact that higher optical powers lead to an increase in
temperature, causing a change in the mechanical properties.
Consequently, the cavity is no longer identical to its initial
state, thereby influencing the coupling rate. This means that
the total vacuum OM coupling rate gTh

0 depends on the power
injected, in agreement with the observations in [15]. We can
also notice in Fig. 8 that the trend is exactly the constant
value gTh modulated by a square-root function

√
n̄cav for all

the cases (see inset). Although this function has a maximum
(negative) value for n̄cav = 1, it is not representative since our
model is classical, and it does not work for small numbers
of photons where a quantum correction must be considered.
In addition, in both silicon and diamond cavities, a mini-
mum optical power in the cavity is required to transduce
the optical and mechanical modes and then obtain the pho-
tothermal backaction. Therefore, our theoretical model makes

FIG. 8. Thermal vacuum OM coupling rate gTh
0 calculated using

the simulated value of gTh for all mechanical modes of the silicon
and diamond cavities. The plot is represented on a logarithmic scale
to display all curves, with a negative sign applied as necessary. Inset:
the gTh

0 curve at �/2π = 4.01 GHz is included to illustrate the actual
behavior of gTh

0 .

sense for optical power at least of the order of hundreds
of microwatts. It is also remarkable that for the gigahertz
mode of the diamond cavity, the thermal correction is almost
negligible (0.13% correction), whereas it becomes a 5.7%
correction for the gigahertz mechanical mode in silicon. This
is consistent with silicon having much higher thermal effects
than diamond.

VI. CONCLUSIONS

In this work, we presented a theoretical approach to
study the OM coupling in OM crystal cavities that takes
into account the influence of the thermo-optic and thermal-
expansion effects. By considering these thermal contributions,
we extended the conventional OM coupling equation, which
traditionally includes only the photoelastic and moving-
boundary effects, to a more comprehensive model that
encompasses the complete dynamical backaction loops aris-
ing from the optomechanical and photothermal effects. Using
numerical simulations in COMSOL MULTIPHYSICS, we obtained
the TO and ThE contributions for silicon and diamond OM
crystal cavities. We found that the TO and ThE effects exhibit
a linear behavior, and their values are almost independent of
the mechanical modes being analyzed, primarily depending
on the material properties. From these simulations, we cal-
culated the thermal OM coupling rate gTh, which represents
a thermal correction to the conventional OM coupling rate.
Comparing gTh with the conventional OM coupling rates (gPE

and gMB) multiplied by a reasonable number of intracavity
photons, we found that the thermal contribution is signif-
icantly smaller than the conventional contributions for all
mechanical modes.

Furthermore, we analyzed the thermal vacuum OM cou-
pling rate gTh

0 , which depends on the power injected into the
cavity. We observed that gTh

0 follows a square-root depen-
dence on the average number of photons in the cavity n̄cav

for all mechanical modes. The fundamental reason behind the
power dependence in the OM coupling rate is that higher op-
tical powers raise the material temperature, therefore altering
mechanical properties and deforming the cavity, ultimately
impacting the OM coupling rate. However, this behavior is
only valid for powers starting from hundreds of microwatts
since quantum corrections should be considered for lower
photon numbers. Although we have studied thermal effects
on silicon and diamond cavities, the same approach could be
followed for cavities made of other materials such as gallium
arsenide and lithium niobate [13,15,29].

Moving forward, an important future direction will be to
experimentally measure this thermal correction, which will
require higher precision in measuring the OM coupling rate
to ensure that the measurement error does not exceed the
thermal contribution magnitude. By precisely characterizing
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the thermal contributions to the OM coupling rates, re-
searchers could better understand and control the thermal
effects in optical microcavities. This experimental validation
would also enable the refinement and optimization of OM
devices for a wide range of applications, including sensing
[34], signal processing [5], and quantum applications such as
quantum information processing [35,36] and quantum nonlin-
earities [37,38].

The data that support the findings of this study are freely
available from Zenodo [39].
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