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Determining the electronic states that contribute most to solid-state high-order harmonic radiation
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Utilizing realistic simulations of high-order harmonic generation (HHG) in several materials, we study how
different regions of the Brillouin zone contribute to the nonlinear response. It is often assumed that the electronic
trajectories that start in the vicinity of the � point are predominantly responsible for the HHG spectrum, but
it is shown here that such an approximation is generally inaccurate. While examples can be identified where
merely 0.4% of the Brillouin zone produces semiquantitatively accurate HHG spectra, in most situations one
must include at least 30%–50% of the Brillouin-zone volume to obtain accurate above-the-gap harmonics. For
the harmonic peaks below the band-gap energy, the current-density responses from the entire Brillouin zone
must always be integrated. We also identify the minimal set of electronic bands necessary for the construction
of reduced but still realistic HHG models. The results should be useful for a number of HHG applications,
including all-optical reconstructions of the band structure and light-matter couplings or considerations involving
semiclassical approaches to solid-state high-order harmonic radiation.
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I. INTRODUCTION

Ever since the first observations of the above-the-gap
harmonic generation from a solid-state medium [1], there
have been numerous efforts [2] to understand the underlying
physics and to utilize this extremely nonlinear effect [3,4]
for applications providing insight into the quantum world of
materials. Solid-state high-order harmonic generation (HHG)
has emerged as a tool to map the band structures of materi-
als and to investigate their dynamics with an unprecedented
resolution. However, harnessing its full potential as a probe
will require detailed understanding of the contributions from
different electronic states. In particular, it is necessary to quan-
tify how different parts of the Brillouin zone contribute to the
HHG signal and which bands take part in the dynamics.

As is known, a HHG experiment is unable to discriminate
between signals from different electronic states and detects
only their collective response as a coherent, i.e., an amplitude-
by-amplitude, sum. Even theoretically it is impossible to
localize sources of harmonic radiation in the sense that one
could assign a specific place in the Brillouin zone that is
exclusively responsible for a part of the material response.
It is because electronic states exposed to an external field
accelerate and acquire time-dependent k vectors. As a con-
sequence, depending on the choice of the frame of reference
in the reciprocal space, either the density matrix itself or the
material properties (i.e., k-dependent operators including the
Hamiltonian and current-density observables) move across
the coordinate system. In other words, the process is always
nonlocal, because each quantum trajectory travels through a
significant portion of the Brillouin zone.

Nevertheless, even with these limitations in mind, the ques-
tion of where in the Brillouin zone the source of the high-order
harmonic signal is has been asked many times by researchers
seeking physical insights. While we contend that the full zone
should be used in any realistic simulation, there is great value

in the intuition and in various interpretations one can gain
by examining the roles of different regions in the Brillouin
zone. Indeed, such a standpoint underlines not only some
HHG interpretations but also a number of applications, includ-
ing all-optical reconstruction of the electronic band structure
[5–7], characterization of light-matter couplings [8–12], and
probing the topological properties of materials [13–16]. The
notion of a trajectory often plays a role in these methods.
Originally inspired by the success of the strong-field approxi-
mation in the HHG from atoms, the three-step model [17–19],
its variations [6,20,21], and generalizations [22] were adopted
to the solid-state context [23]. A common feature among the
semiclassical approaches is that an electron follows a path
through the k space as it is accelerated by the external field.
While the trajectory endpoint and in particular its local band
gap determine the radiated photon energy, the initial point is
most often identified as the location of the carrier excitation.
This motivates the way we choose to assign the optical re-
sponse to a place in the Brillouin zone: Keeping in mind the
issue of nonlocality of the optical response, we label different
induced-current contributions by the initial k vector of elec-
tronic states (including all bands) that gave rise to that current.
This is similar in spirit to the semiclassical treatment, with an
important difference that all bands are accounted for on an
equal basis in our simulation, so it is perhaps more accurate
to speak about a trajectory of the mixed state described by the
density matrix.

The understanding of the relative importance between dif-
ferent trajectories is one of the motivations of this work. Our
aim is to identify the region of the Brillouin zone which the
initial k points must sample, or fill in, in order to obtain an
accurate optical response which compares well with the result
obtained from the entirety of the Brillouin zone. In the lan-
guage of semiclassical interpretations of high-order harmonic
generation in solids, we want to examine which important
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electronic trajectories contribute most to the high-order har-
monic radiation.

It is a frequent assumption in semiclassical approaches
that there is an excitation step at the start of the trajectory
when tunneling from the valence band to the conduction band
occurs at or close to the � point (or at the location of the
minimal energy gap). While it has been pointed out [24] that
the minimal-gap location does not necessarily dominate the
whole HHG process, the approximation that the interband
excitation peaks sharply around the point of the minimal gap
is rarely tested in concrete situations (see, however, [16] for a
notable exception). This work should provide useful insights
into this issue.

We concentrate on three-dimensional materials and utilize
realistic numerical simulations to compare how the ensembles
of electronic-state trajectories starting from different regions
of the Brillouin zone contribute to and shape the high-order
harmonic responses. Our results will show that there is a
qualitative difference between the behaviors of the below-
gap and the above-gap harmonics. While for the lower-order
harmonic radiation the contributions from the entire Brillouin
zone are always necessary to achieve a quantitatively accu-
rate description, only 30%–50% of the Brillouin-zone volume
is sufficient to capture a great majority of the higher-order
harmonic radiation. However, it turns out that, at least for
the three-dimensional materials, the assumption that the elec-
tronic states from around the � point contribute most of the
HHG response is unrealistic in general.

Such a finding may seem to contradict the fact that the
tunneling is by far most likely where the energy gap is min-
imal. To clarify this issue, we investigate what portion of
the excited carriers are actually born in the central part of
the Brillouin zone. It will be shown that despite the local
tunneling rate being much larger around �, the rest of the zone
still generates the great majority of the excited carriers. Their
collective response to the driving field therefore cannot always
be neglected.

We also address the question concerning the minimal set of
electronic bands that should be included in a reduced model.
While some spectral features can be obtained already with a
few bands, accurate results require inclusion of bands in sets
that are connected via degenerate points or via avoided band
crossings [25,26].

II. MATERIAL MODELS

This work utilizes empirical tight-binding models for sev-
eral materials with zinc-blende and diamond structures. Most
of our simulations were performed for GaAs. Besides the fact
that it is an important material, this choice is also motivated
by the fact that many experimental results are available for this
material (see, e.g., [27,28]). Some of the measurements [28]
were previously used to verify the accuracy of the model used
in this paper. We have demonstrated that the tight-binding de-
scription of GaAs, both with and without spin-orbit coupling,
provides a nonlinear optical response which agrees quite well
with HHG measurements [29]. It was also shown that the
model correctly captures the second-order nonlinearity of the
material [30]. In other words, the tight-binding description of
GaAs, coupled with the recently introduced HHG simulator

(a) (b) (c)

FIG. 1. Electronic band structure of (a) GaAs, (b) CdTe, and
(c) Si in the sp3s∗ tight-binding approximation without spin-orbit
coupling.

[31], has been tested across the frequency range including
below-band-gap and above-band-gap harmonics. This gives
us the confidence to draw conclusions from the numerical
simulations.

The next material included in our comparative simulations
is CdTe. It was recently identified as a medium in which
harmonics up to and beyond order of 30 were generated at
a very low excitation intensity [32]. The low intensity and
flux needed for the high-order harmonic generation makes this
material very interesting. It was argued in Ref. [32] that the
special feature that makes CdTe distinct is the flatness of its
conduction band.

To broaden our set of material models, we choose crys-
talline silicon as a material which differs from GaAs and
CdTe in that it is inversion symmetric. The higher mate-
rial symmetry eliminates even-order harmonic generation and
gives rise to simpler spectra in which it is perhaps easier to
investigate which part of the Brillouin zone contributes most.
Unlike GaAs, crystalline silicon does not possess a direct gap.
Consequently, it is not straightforward to make an argument
for a specific location in the Brillouin zone to be the strongest
source of high-order harmonic radiation. It should be interest-
ing to see if direct- and indirect-gap media behave differently
in this respect.

The description of the materials in this work is based on
the same so-called sp3s∗ tight-binding model in [33]. It is
applicable to both the zinc-blende and diamond structures. As
an input for the structure-gauge-independent SBE (sgiSBE)
solver [30,31] which was used to simulate the HHG spectra,
the explicit expression for the k-dependent Hamiltonian h(k)
was obtained from [34]. The parameter sets were taken from
[33] for GaAs and silicon and from [35] for CdTe. For the
results shown in what follows, we applied the spin-degenerate
version of the material models. Figure 1 illustrates the elec-
tronic band structures of the materials investigated in this
work.

III. NUMERICAL MODELING OF SOLID-STATE HHG

High-order harmonic generation simulations in this work
were done with the sgiSBE. We refer the reader to the de-
scriptions of the algorithm given in [31] and also in [30]
and include a brief summary here. For each k sampling the
Brillouin zone, the initial density matrix ρmn(k; t = 0) is set
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to be the zero-temperature density matrix representing full
valence and empty conduction bands. One integration step,
or an update from time ti to time ti+1, can be written as an
operator splitting scheme in the form

ρmn(k; ti+1) =
∑
a,b

〈mki+1|aki〉e−iεa (ki )�ρab(k; ti )e
+iεb(ki )�

× 〈bki|nki+1〉, (1)

where � = ti+1 − ti is the time step; ki = k − A(ti ), with A
representing the vector potential of the driving pulse; and |aki〉
stands for the k-dependent Bloch eigenstate in the electronic
band a. The middle terms in (1) can be understood as the
first split step which evolves the density matrix in the current
Hamiltonian eigenbasis {|aki〉}. For the next split step, the
new-time eigenbasis {|bki+1〉} is obtained by the exact diag-
onalization of the Hamiltonian h(ki+1), and then the density
matrix is transformed into the new basis as shown in the
first and last terms in (1). This update scheme is applied in
parallel, independently for all k sampling the Brillouin zone.
Dephasing is approximated as usual, in a separate split step

ρmn(k; t ) ← ρmn(k; t ) exp(−�t/T2), (2)

with T2 the dephasing time, which we set equal to 5 fs; note
that the observations we arrive at in this work are independent
of its precise value.

The total observed current density is calculated as an inte-
gral over the complete Brillouin zone

j(t ) =
∑
mn

∫
BZ

dk
(2π )3

〈nkt |∂kt h(kt )|mkt 〉ρmn(k; t ), (3)

where the Hamiltonian gradient ∂kt h(kt ) is obtained from
the tight-binding model in an analytic form, and its matrix
element in the above formula represents the operator observ-
able corresponding to the total current density. It should be
emphasized that this formulation for the observed current
density is general and does not depend on any specifics of
the model. While we choose to adopt the notation from [36],
this expression is equivalent to those utilizing derivatives of
the operator’s matrix elements such as in, e.g., [37]. For sim-
plicity, we do not decompose j(t ) into intra- and interband
currents.

An important aspect of the method is the grid of k vectors
sampling the Brillouin zone, which must be sufficiently dense
for the integral (3) to converge. The convergence properties
with respect to the Brillouin-zone sampling density were
discussed in detail in [29]. For this work, we sample the
reciprocal-space cell with an equidistant grid of 1283 grid
points. The grid is aligned with the reciprocal basis vec-
tors and it is invariant under the symmetry operations of the
material.

IV. SIMULATION RESULTS

A. Response from a portion of the Brillouin zone

For a crystalline sample with a fixed orientation, we
assume a linearly polarized optical pulse driving the current-
density response, which is subsequently converted into a
spectrum. For a given k, the integrand in (3) represents the
contribution of this k spot inside the Brillouin zone to the

total response. Because it is often assumed that k in the close
vicinity of � contribute most to the HHG spectrum, we define
a partially sampled current density as

j(r, t ) =
∑ ∫

BZ,|k|<r

dk
(2π )3

〈nkt |∂kt h(kt )|mkt 〉ρmn(k; t ).

(4)
In other words, for a given radius r we only include the
current-density contributions from the initial k vectors that are
closer to � than r. The central question in what follows is how
large r must be for j(r, t ) to be an accurate approximation of
the total current density j(t ).

B. HHG from the vicinity of the � point

Motivated by the assumption that high-order harmonic
radiation is mostly mediated by the electronic states which
are initially close to the � point of the Brillouin zone, we
first look at the spectra generated by such states. We select a
portion of the zone with a radius of r = 1 (in units of inverse
lattice constant) and calculate their collective contribution to
j(r = 1, t ) and then the corresponding HHG spectrum. Dur-
ing this and the following simulations, we make sure that
all symmetry-related k points are simultaneously included so
that the calculated response has the correct material symme-
try. This particular (i.e., for r = 1) symmetry-respecting �

vicinity contains only about 0.4% of the total Brillouin-zone
volume, so it is rather small.

As a first example, take GaAs excited by a 3.5-µm pulse
with the electric-field amplitude of 8.7 MV/cm, polarized in
the [011] direction. For this sample orientation, one expects
the odd harmonics to be p polarized, i.e., parallel to the exci-
tation, while the even harmonics should be s polarized.

Figure 2 shows the simulated HHG spectra, generated by
the electronic states that are initially in the � vicinity, com-
pared to the spectrum in which the entirety of the Brillouin
zone was included. For the p polarization, the two HHG
spectra are quite similar. Keeping in mind that the scale of the
figure is logarithmic, one can see that the largest deviations
between the two spectra are about one order of magnitude or
only slightly larger. For the s-polarized response, the gap be-
tween the partial and total spectra opens a bit more, especially
for the second harmonic and the harmonics above the order of
18. Nevertheless, the fact that contributions from trajectories
with initial points covering mere 0.4% of the Brillouin-zone
volume produce a HHG response so close to the total suggests
that the � point indeed dominates the HHG process, as is often
assumed in various semiclassical analyses.

This is an encouraging observation, but it would be pre-
mature to conclude that the prominence of the � point as the
HHG source is a typical behavior. For the next example, the
excitation wavelength is chosen twice as long, λ = 7 µm. The
expectation is perhaps that in response to longer wavelengths a
small vicinity of the Brillouin-zone center also generates most
of the harmonic power. Indeed, one could argue that a longer
wavelength implies a more off-resonant tunneling excitation
of electrons into the conduction bands, which should translate
into carriers being born in a tighter neighborhood of �. As a
result, an even smaller portion of the Brillouin zone could be
responsible for the harmonic response.
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(a)

(b)

FIG. 2. GaAs high-order harmonic spectrum from the full Bril-
louin zone (black, gray-filled line) compared to that generated in the
vicinity of the � point encompassing 0.4% of the total Brillouin-zone
volume (red line) for (a) parallel and (b) perpendicular polarization.
The excitation pulse, at λ = 3.5 µm wavelength, is polarized in the
y = z direction. The vertical dashed line in this and the following
figures marks the frequency corresponding to the band-gap energy of
the material.

However, Fig. 3 shows otherwise. While all conditions
with the exception of the excitation wavelength are exactly
the same as in the former example, one can see a dramatic dif-
ference between the partial and full spectra. The gap between
the two opens even more dramatically for yet longer driving
wavelength λ = 10 µm, as the example in Fig. 4 shows. So
the argument given in the preceding paragraph which invokes
the less resonant excitation does not really work. Looking for
a reason why, one may consider the effect the wavelength
has on the carrier travel through the k space. The amplitude
of the oscillation is indeed twice as large in the simulation
with λ = 7 µm than in that with λ = 3.5 µm. It is therefore
tempting to run the same simulation with a driving amplitude
decreased such that the k-space oscillations are exactly the
same as for the shorter wavelength illustrated in Fig. 2. The
results are reported in Fig. 5, showing that while one can
see a much better resemblance between the partial and full
HHG spectra in this case, there still remains a sizable gap of
several orders between certain harmonic peaks. Moreover, the
weaker excitation produces a much less developed harmonic
spectrum, so going to even lower driving amplitudes makes
little sense. The takeaway here is therefore that a weaker
pump alone does not ensure that the trajectories originating
in the central part of the Brillouin zone dominate the HHG
spectrum.

It turns out that the behavior shown in Fig. 3 is more
typical than that shown in Fig. 2. Figure 6 shows an analo-
gous comparison of partial- and full-zone spectra for CdTe. A
recent study showed that the high-order harmonic generation

(a)

(b)

FIG. 3. GaAs high-order harmonic spectrum from the full Bril-
louin zone (black, gray-filled line) compared to that generated in the
vicinity of the � point encompassing 0.4% of the total Brillouin-zone
volume (red line) for (a) parallel and (b) perpendicular polarization.
The excitation pulse, at λ = 7 µm wavelength, is polarized in the
y = z direction.

is significantly stronger in this material and the relatively
flat conduction-band shape was identified as a possible rea-
son. The higher density of states around � should further
emphasize its contribution to the response, and this is why
the material was selected for our next example. Here we
have chosen to change the excitation-pulse polarization to
[111], for which both even and odd harmonics appear in the
p polarization, while the s-polarized response vanishes. The
figure shows a range of frequencies similar to that observed
in the experiments [32]. In qualitative agreement with the
experiment, a rather strong set of harmonics forms between
order 20 and 30 and their relative powers appear to be within
reasonable limits. We therefore trust that this simulation also

FIG. 4. GaAs high-order harmonic spectrum from the full Bril-
louin zone (black, gray-filled line) compared to that generated in the
vicinity of the � point encompassing 0.4% of the total Brillouin-zone
volume (red line). The excitation pulse, at λ = 10 µm wavelength, is
polarized in the y = z direction.
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FIG. 5. GaAs high-order harmonic spectrum from the full Bril-
louin zone (black, gray-filled line) compared to that generated in the
vicinity of the � point encompassing 0.4% of the total Brillouin-zone
volume (red line). The conditions are as in Fig. 3, except the field
amplitude is reduced to 1

2 .

is sufficiently realistic. The important takeaway from this
numerical experiment is that the small central portion of the
Brillouin zone provides a poor approximation of the actual
HHG spectrum. While the qualitative shape and relative peak
powers are qualitatively very similar between the two spectra,
the partial response is orders of magnitude stronger.

As yet another example, we choose crystalline silicon as an
inversion-symmetric material with an indirect band gap. The
sample orientation and the properties of the excitation pulse
are the same as in the previous case, i.e., λ = 7 µm, and the
electric-field oscillation direction is [1,1,1]. Figure 7 shows
once again that the immediate neighborhood of � does not
produce a HHG response which could be compared to that
from the full Brillouin zone. One could even argue that the
difference here is larger than that in the previous examples.
Indeed, the harmonic orders 7–11 appear to be four to five
orders of magnitude stronger than those generated from the
full Brillouin zone. We speculate that this could be the mani-
festation of the indirect gap of this material.

To summarize this section, we have shown that the high-
order harmonic spectra generated from electronic states that
initially reside in a small neighborhood of the Brillouin-zone
center are not, at least not in general, a good approximation of
the full response. Thus, one needs to go beyond the immediate
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FIG. 6. CdTe high-order harmonic spectrum from the full Bril-
louin zone (black, gray-filled line) compared to that generated in the
vicinity of the � point encompassing 0.4% of the total Brillouin-zone
volume (red line). The excitation pulse, at λ = 7 µm wavelength, is
polarized in the x = y = z direction.
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FIG. 7. Silicon high-order harmonic spectrum from the full Bril-
louin zone (black, gray-filled line) compared to that generated in the
vicinity of the � point encompassing 0.4% of the total Brillouin-zone
volume (red line). The excitation pulse, at λ = 7 µm wavelength, is
polarized in the x = y = z direction.

vicinity of the � point to obtain a more precise representation
of the HHG spectra. In the following section we quantify how
large the integration region should be.

C. Mapping the HHG sources

In order to map the strength of the HHG source across the
Brillouin zone, we set up a series of simulations for each of the
studied materials. We increase the radius r of the �-centered
subset of the Brillouin zone in steps of 1a−1, calculating the
current density j(r, t ) and the corresponding spectrum S(r, ω)
at each step, until the entirety of the zone is included. Note that
the values r = {1, 2, 3, 4, 5, 6, 7}a−1 represent 0.4%, 3.4%,
11%, 27%, 54%, 86%, and 99.99%, respectively, of the full-
zone volume. The goal of this mapping is to identify how large
a portion of the Brillouin zone must be included and populated
by the initial states for a reasonably accurate HHG simulation.

For the sake of visualization, the integrated harmonic-
band power P(r, h) is calculated from the simulated
spectrum S(r, ω) in the given simulation as P(r, h) =∫ (h+0.5)ω0

(h−0.5)ω0
|S(r, ω)|2dω. The integration interval is always cen-

tered on the integer multiple of the fundamental frequency
ω0, whether that particular harmonics is allowed by symmetry
or not, and the interval is one harmonic order wide. The
two-dimensional maps of R(r, h) = P(r, h)/P(r = 8, h) are
plotted versus the order h and r ∈ (1, 8)a−1. This quantity,
or more precisely its approach to unity, reflects the spec-
trum convergence since for r = 8 the entire Brillouin zone
is already included in the integration. (Note that r ≈ 7.025,
corresponding to |�W |, represents the entire zone.) To make
the resulting graphs easier to interpret, at least for their global
features, the interpolation order of the plot routine is set equal
to three (resulting in an artificially smooth plotted surface).
Since the logarithmic scale is natural for simulated spectra,
log10[R(r, h)] is depicted in the following two figures.

Figure 8 illustrates the convergence of the simulated spec-
trum with the increasing radius r of the portion of the Brillouin
zone included in the simulation. The material here is GaAs
and all conditions are the same as for Fig. 2. Thus, this fig-
ure shows how the red curves in Fig. 2 gradually approach
(with increasing r) the black curves corresponding to the full-
zone spectrum.
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FIG. 8. Convergence of the simulated spectrum for GaAs excited
in the [011] direction at λ = 3.5 µm (as in Fig. 2). The quantity
log10[R(r, h)] (see the text for details), representing the ratio of the
partial- (r < 7.025 . . .) to full-zone spectral power integrated over
the harmonic band h, is shown on a logarithmic scale. Results are
shown for the (a) p- and (b) s-polarized HHG spectra.

Several features become evident. First, the below-gap har-
monics are never accurate until r ≈ 7a−1, i.e., essentially
until the entire zone is included in the simulation. Second,
for the higher-order harmonics it takes r ≈ 4a−1, i.e., about
25% of the full-zone volume, to obtain an accurately sim-
ulated spectrum. Third, while quantitatively different, the
convergence behaviors of the p- and s-polarized responses are
similar.

Figure 9 shows similar results for the longer excitation
wavelength λ = 7 µm and corresponds to the transition be-
tween the extreme cases depicted in Fig. 3. Comparison to
Fig. 8 shows that while the small-r results are an order of
magnitude less accurate (note the different vertical scale in
the two figures), a good convergence (but for higher-order
harmonic only) is achieved at about the same rate, and perhaps
even faster at the high-frequency end of the spectrum. We
note that the convergence behavior is very similar also in
the cases of silicon and CdTe, and this is illustrated Fig. 10,
where Figs. 10(a) and 10(b) correspond to Figs. 6 and 7,
respectively.

For a more quantitative representation of the convergence
of the simulated spectra as functions of the portion of the

FIG. 9. Simulated spectrum convergence for GaAs excited in the
[011] direction at λ = 7 µm (as in Fig. 3) for (a) the p-polarized
response and (b) the s-polarized response.

Brillouin zone included, Figs. 11 and 12 show the ratio
R(r, h) = P(r, h)/P(r = 8, h) between the partial-spectrum
and full-spectrum power integrated over the given harmonic
band. Figures 11(c) and 12(c) show that the lower-order
harmonics cannot be obtained accurately unless the entire
zone is integrated. The medium-high harmonic orders [shown
in Figs. 11(b) and 12(b)] converge faster, with the partial-
zone results accurate within an order of magnitude once
the integrated zone portion is larger than about one-third.
The high-order harmonics [Figs. 11(a) and 12(a)] become
quite accurate already at about 25%–50% of the entire zone
included.

So, to answer the question about the size of the zone
that needs to be included in the simulation, it is 100% and
roughly 50% for the below-gap and the above-gap harmonics,
respectively. From the simulation standpoint, a 50% increase
in speed is probably not worth the trouble.

On the other hand, this result is important for the inter-
pretations of HHG dynamics in those cases where any kind
of trajectory comes into consideration. It indicates that the
starting points of the contributing trajectories should cover
at least 30%–50% of the Brillouin-zone volume and that the
corresponding contributions should be coherently added up to
represent the total response of the material.
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FIG. 10. Convergence of the simulated spectrum of the p-
polarized response for (a) CdTe (as in Fig. 6) and (b) Si (as in Fig. 7).

D. Mapping the tunneling rate

The finding that the Brillouin zone center in general does
not contribute most of the HHG response seems to contradict
the highest tunneling probability in this region. Indeed, if
the valence- to conduction-band excitation does behave as
the tunneling ionization in atoms, then the rate of excitation
should be exponentially sensitive to the k-dependent band
gap and therefore fall off quickly upon departure from the
zone center. Based on this argument, one sometimes assumes
that the carriers are only created at the point of the minimal
gap.

The explanation is actually very simple. It turns out that
the difference between the tunneling rates is counteracted by
the fact that the volume of the Brillouin zone overshadows the
vicinity of the � point. To illustrate this, we have measured the
total population in all conduction bands combined. Figure 13
shows the result for the examples of GaAs and CdTe excited
with a λ = 7 µm pulse. Figure 13(a) makes a case for the
great majority of carriers being generated away from the �

point. Figure 13(b) depicts the total excited population in the
integrated subset of the Brillouin zone divided by the volume
of the latter. As such it is a measure of the (averaged) tunnel-
ing rate. This quantity indeed shows that the excitation rate is
greatly larger around the zone center, precisely as expected.
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FIG. 11. Convergence of the p-polarized HHG spectrum for
GaAs excited by a pulse polarized in the y = z direction at λ = 7 µm.
Shown is the ratio R(r, h) between the spectral power (integrated
over a harmonic band) obtained from a portion of the Brillouin zone
and the corresponding power for the entire zone. Lines connecting
the symbols serve as a guide for the eye. Percentages shown in
(c) represent the volume portion of the whole zone.

It is just that the contrast is not large enough to compensate
for the much bigger volume of the peripheral regions of the
Brillouin zone.
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FIG. 12. Convergence of the s-polarized HHG spectrum for the
same conditions as in Fig. 11.
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FIG. 13. (a) Total population fraction of excited states inside the
reciprocal-space integration volume centered on the � point. The top
horizontal axis shows the size of the volume as a percent fraction of
the full Brillouin zone. (b) Population divided by the volume which
gives the average tunneling rate for the states inside the volume of
radius r. As expected, the tunneling rate peaks in the center of the
zone.

E. Relevant energy bands

One sometimes makes an argument that a HHG spectrum,
or perhaps just one of its peaks, is generated by the contribu-
tions from a limited number of electronic bands, possibly from
only a single valence-conduction pair. Indeed, this kind of
assumption underlies a number of approaches for all-optical
reconstruction applied to the band structures or to the k-
dependent dipole moments.

To test which electronic bands give relevant contributions
in the materials studied here, we have repeated the simulation
with restricted sets of states. The restriction is realized by
projecting the density matrix [or equivalently by projecting
the k-dependent Hamiltonian h(k)] onto a subspace spanned
by the select bands at each integration step. The results will
be illustrated for the case of GaAs, excited with a λ = 3.5 µm
pulse (the situation corresponding to that illustrated in Fig. 2),
but the observations are similar in all situations investigated
in this work.

First, we select the bands 1–4 (labeling the lowest-energy
band as 0). This selection accounts for the three highest va-
lence bands and the lowest-energy conduction band. It seems
reasonable to expect that these are the most important bands
above and below the gap. We compare the resulting HHG
spectrum to that obtained from the full simulation in Fig. 14
for the p-polarized component of the response. It is encourag-
ing that the spectra are quite close to each other for harmonics
lower than 19. However, one can see pronounced artifacts at
the high-frequency end of the spectrum, where strong har-
monic peaks appear which do not exist or which are about
five orders of magnitude weaker in the full spectrum.

L G X U,K G

0 10 20 30
frequency (harmonic order)

10
-10

10
-5

sp
ec

tr
al

 p
ow

er
 (

ar
b.

un
its

)

all bands
bands 1-4 (inset: red)

FIG. 14. High-order harmonic spectrum from a reduced model.
The black line and gray-shaded area shows the spectrum obtained
from the full simulation. The thin red line represents the result of
a simulation restricted to the bands shown by red solid lines in the
inset.

So if we ask which bands need to be included such that
the corresponding spectrum is accurate across all frequen-
cies, the set of 1–4 appears to be inadequate. We speculate
that the reason is that the conduction band 4 makes a close
approach to the group of higher-energy bands shown by
dash-dotted line in the inset of Fig. 14. In a time-dependent
external field they become coupled and the populations
and polarizations resulting from this coupling affect the
dynamics.

Inclusion of the next conduction band does not improve
the situation (data not shown); the artifacts at the higher-
frequency side of the spectrum actually become slightly
worse. Only after including the whole group 5–7 (dark green
dash-dotted lines in Fig. 14) do we obtain a HHG spectrum
that is very close to the full spectrum with the exception of
small deviations for the lowest-order harmonics.

So we arrive at the conclusion that while an individual
harmonic peak could be approximated with a limited set of
electronic bands, to guarantee the accuracy for all harmonics,
one should include all energetically connected bands below
and above the band gap. This observation is in line with the
band-to-band excitation mechanism described in [25,26].

V. CONCLUSION

Numerical simulations of the high-order harmonic gen-
eration in zinc-blende materials GaAs and CdTe and in
crystalline silicon were executed for two different excitation
wavelengths while gradually including the nonlinear-response
contributions from larger and larger portions of the Brillouin
zone. The goal of this work was to determine how large the
region in the Brillouin zone must be in a numerical simulation
in order to produce quantitatively accurate spectra. It turns out
that there is no simple answer to the question posed in the title
of this work. Nevertheless, our comparative simulations offer
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useful insights into certain trends and behaviors which seem
quite universal.

The assumption that the Brillouin-zone center dominates
the high-order harmonic processes has been used in a num-
ber of HHG interpretations, especially those incorporating
aspects of semiclassical approaches. However, we have found
that this assumption is not justified, at least not in general.
While we have identified an example where the � neigh-
borhood encompassing merely 0.4% of the Brillouin zone
volume does provide a HHG spectrum accurate within one
order of magnitude globally and with much better accuracy
locally (specifically for the medium-order harmonic orders),
we have also found several cases where the contribution from
the zone center is orders of magnitude different from the total
spectrum. Interestingly, in such cases the central contribution
appears to be stronger than that of the whole zone, which indi-
cates that destructive interferences occur across the Brillouin
zone.

On the other hand, it turns out that for (only) the
above-the-gap frequencies, the center of the zone produced
qualitatively correct spectra in all cases studied in this work.
The zone-center HHG spectra exhibited stronger peak-to-
valley contrast, but the overall spectrum shapes were good.
We therefore think that, in light of these results, the approxi-
mations restricted to the � point (or to a small vicinity of it)
remain justified for qualitative investigations into underlying
physics. However, it should be emphasized that no matter how
small a portion of the Brillouin zone is used, the sampling grid
must have the symmetry of the material.

For the simulations which aim for higher accuracy, we
conclude that a significant portion of the Brillouin zone must
be integrated over. Of course, precisely how large it should
be depends on the expected accuracy, material, and excita-
tion wavelength. As a rough estimate, 30%–50% of the zone
volume should be included for a simulated spectrum with
the harmonic peaks accurate within an order of magnitude
or better. In terms of the excitation wavelength, we observed
that while the spectra generated from the zone center were
more accurate for the shorter wavelength, the convergence
toward the full-zone solution seems somewhat faster for the
longer wavelength, i.e., a smaller part of the Brillouin zone
can suffice.

We trust that these observations will prove useful for
a number of applications concerning solid-state high-order

harmonic generation, including all-optical band-structure re-
construction and/or optical measurements of Berry curvatures
and shift vectors. Analyses which rely on the assumption of
specific starting points for the relevant trajectories could be
generalized to account for the fact that in reality a distribution
or a bundle of trajectories should provide a physically more
realistic picture.

Another finding with potential impact on such applications
is that care should be exercised when one wants to restrict
the number of electronic bands believed to account for the
relevant response contributions. We have found that in order
to obtain good accuracy across all frequencies, all bands that
are connected or that closely approach each other somewhere
in the Brillouin zone must be included. In other words, it
should be safer to apply various reconstruction algorithms to
the whole connected group of electronic bands.

A rather surprising outcome of this study is that the
lower-order, below-the-gap harmonics always require the in-
tegration of all response contributions across the entirety of
the Brillouin zone. This finding is important for the future
microscopic-level modeling of laser materials, such as zinc-
blende wide-gap semiconductors. Whenever the nonlinear
propagation of optical pulses plays a role, the second- and
third-order harmonic responses in particular must be suffi-
ciently accurate. This work shows that the Brillouin zone
center alone is insufficient to yield an accurate description of
the nonlinear properties at frequencies below the gap.

Our work concentrated on the three-dimensional materials
and it is not a given that the results apply to the (effectively)
two-dimensional systems, where the central part of the Bril-
louin zone constitutes a much larger fraction of its volume.
On one hand, one could argue that such an investigation is
less important from the practical standpoint, because even
complete sampling of two-dimensional Brillouin zones does
not present any significant numerical challenge. On the other
hand, it would be interesting to extend the present study to
two-dimensional materials for conceptual reasons, for exam-
ple, to improve the semiclassical interpretations.
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