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Quantum synchronization and quantum ϕ synchronization in a coupled optomechanical
system with Kerr nonlinearity

J. T. Sun , H. D. Liu,* and X. X. Yi
Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China

(Received 16 September 2023; revised 28 December 2023; accepted 11 January 2024; published 1 February 2024)

In this work, we study the quantum synchronization and quantum φ synchronization of two mechanical
oscillators in a coupled optomechanical system. The oscillators are coupled to an optical cavity filled with a
Kerr nonlinear medium and subjected to periodic modulation of the cavity detunings and driving amplitudes
by a common driving field. Our results show that the quantum synchronization and quantum φ synchronization
in nonlinear systems exhibit more favorable behaviors than in linear systems. In addition, we have investigated
the performances of two synchronization measurements to various parameters by analyzing the sensitivity of
φ. Accordingly, perfect synchronization can be achieved under specific parameters by periodically modulating
the cavity and driving field. Our findings could offer insights into other quantum effects and pave the way for
studying quantum correlations.
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I. INTRODUCTION

Classical synchronization is an intriguing and univer-
sal phenomenon that dates back to the 17th century when
Huygens observed the synchronization phenomenon of two
pendulum clocks with a common support [1]. Since then,
synchronization has been widely observed and studied in
classical systems. These complex systems share a common
feature in that synchronization can be achieved through mu-
tual interaction rather than exterior driving field [2]. However,
extending synchronization concepts from the classical to the
quantum regime is not a direct analogy since quantum co-
ordinates and momenta are constrained by the Heisenberg
uncertainty principle. Mari et al. proposed the concept of
quantum synchronization and quantum phase synchroniza-
tion and developed a quantum synchronization measurement
[2] to generalize the concept of classical synchronization
into continuous-variable quantum systems. Optomechanical
systems are often studied to explore quantum synchro-
nization due to their necessary properties for spontaneous
synchronization, such as existing nonlinear dynamics of op-
tomechanical coupling and limit cycles [3,4]. Subsequently,
quantum synchronization has been widely used in cavity
quantum electrodynamics [5,6], atomic ensembles [7–9], van
der Pol (vdP) oscillators [6,10–12], Bose-Einstein conden-
sation [13], superconducting circuit systems [14,15], and so
on. In addition, quantum synchronization can also be used to
achieve communication in complex networks [16–18]. Sensor
[19,20] and encryption [21–23] communication are common
applications that use quantum synchronization.

Moreover, some studies have investigated whether quan-
tum synchronization has some correlations with other prop-
erties, for example, mutual information [6], quantum discord
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[24], and entanglement [25–27]. The essence of these char-
acteristics is the interaction of subsystems. And quantum
correlations are regarded as a signal to represent quantum
synchronization [28–30]. In addition, there are several ways
to enhance quantum synchronization and other correlations.
Periodic modulation can be used as a common method and
exerting modulation on a cavity is better than a driving field
[31–33]. In addition, the quadratic optomechanical coupling
is confirmed to enhance phase synchronization between two
mechanical oscillators with different frequencies in a non-
linear system [34]. Later, some studies opened up a new
direction for using exceptional points to investigate the collec-
tive phenomenon in a nonlinear system, such as chaos [35].
And other interesting collective phenomena related to quan-
tum synchronization, such as phase synchronization [36–39]
and frequency locking [40,41], have also received attention
in the past decades. Recently, Bohmian trajectories have
been used to study how the quantum synchronization of dis-
crete variables can signal the level of synchronization more
intuitively [42].

Based on the measure of quantum synchronization pro-
posed by Mari et al., subsequently, quantum φ synchro-
nization as a more generalized measure is proposed when
mean values are out of synchronization, and quantum syn-
chronization is regarded as a special case of quantum
φ synchronization when φ = 0 [43]. Thus, it is worth
studying the distinction and correlation between quantum
synchronization and quantum φ synchronization in nonlinear
optomechanical systems. We want to know how to achieve
synchronization of mean values and enhance quantum φ syn-
chronization and quantum synchronization. In addition, the
response of two synchronization measures to different param-
eters is unknown, and whether the phase difference φ between
the two mechanical oscillators is susceptible to different pa-
rameters. To clarify these questions, we propose a scheme for
the response of two synchronization measures in a coupled
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optomechanical system, where two mechanical oscillators are
optomechanically coupled to a cavity and two oscillators are
coupled through phonon tunneling to each other. After some
numerical simulation and detailed analysis, we have found
that the behaviors of quantum φ synchronization and quantum
synchronization are quite different due to the existence of a
phase difference φ between the two mechanical oscillators.
Moreover, quantum φ synchronization is sensitive to some
specific parameters; accordingly, we have found the optimal
parameters to achieve perfect quantum synchronization and
quantum φ synchronization.

The general structure of the paper is as follows. In Sec. II,
we first introduce the definition of quantum synchronization
and quantum φ synchronization. In Sec. III A, we propose a
theoretical model that consists of a cavity and two mechanical
oscillators with different frequencies, and then we calculate
the dynamics of the system. In Sec. III B, synchronization of
mean values can be achieved by directly coupling two oscil-
lators and quantum φ synchronization can be enhanced, so
perfect synchronization is shown under certain parameters. In
Sec. III C, we study the response of quantum synchronization
and quantum φ synchronization corresponding to different
parameters. In Sec. III D, we give a brief discussion of the
experimental realization of the investigated optomechanical
system. In Sec. IV, we give a summary and conclusion.

II. QUANTUM SYNCHRONIZATION AND QUANTUM
φ SYNCHRONIZATION MEASURES

Unlike the straightforward task of measuring synchroniza-
tion in a classical system, extending synchronization concepts
from the classical to the quantum regime is not a direct
analogy since quantum coordinates and momenta (dimension-
less quantities) are constrained by the canonical commutation
rules [q j (t ), p j′ (t )] = iδ j j′ . The insights of Mari et al. were
that we can use this restriction to define the measurement of
quantum synchronization as [2]

Sc = 1

〈q−(t )2 + p−(t )2〉 , (1)

where q−(t ) = 1√
2
[q1(t ) − q2(t )] and p−(t ) = 1√

2
[p1(t ) −

p2(t )] are synchronization errors, and the evolution of Sc is
described by the dimensionless canonical variables qj (t ) and
p j (t ) [2]. According to the Heisenberg principle, Sc goes
from classical to the quantum regime by excluding the mean
values of the operators (〈q−(t )〉, 〈p−(t )〉) by redefining the
variables as

q−(t ) → δq−(t ) = q−(t ) − 〈q−(t )〉,
p−(t ) → δp−(t ) = p−(t ) − 〈p−(t )〉. (2)

When

〈q−(t )〉 = 〈p−(t )〉 = 0, (3)

i.e., the mean value is synchronized [16], the above
measurement of quantum synchronization becomes

Sq = 1

〈δq−(t )2 + δp−(t )2〉 , (4)

with Sq ∈ (0, 1], and the perfect quantum synchronization
is achieved when Sq = 1. However, this measure

cannot intuitively study quantum antisynchronization or
synchronization with arbitrary phase differences, which also
have their application scenarios and practical possibilities.
One feasible solution to this problem is to generalize the
definition of quantum synchronization into the quantum φ

synchronization [43] by redefining the error operators as

qφ
−(t ) = 1√

2

[
qφ

1 (t ) − qφ

2 (t )
]
,

pφ
−(t ) = 1√

2

[
pφ

1 (t ) − pφ

2 (t )
]
,

(5)

with

qφ
j (t ) = q j (t ) cos(φ j ) + p j (t ) sin(φ j ),

pφ
j (t ) = p j (t ) cos(φ j ) − q j (t ) sin(φ j ).

(6)

The phase φ j = arctan[〈p j (t )〉/〈q j (t )〉] (φ j ∈ [0, 2π ]).
Consequently, the measure of quantum φ synchronization
takes the form [43]

Sφ = 1

〈qφ
−(t )2 + pφ

−(t )2〉 . (7)

The limit of Sφ is also (0,1), as dictated by the Heisenberg
principle. By taking the changes in variables,

qφ
−(t ) → δqφ

−(t ) = qφ
−(t ) − 〈qφ

−(t )〉,
pφ

−(t ) → δpφ
−(t ) = pφ

−(t ) − 〈pφ
−(t )〉,

(8)

when the average amplitude and period of the mean value
of the two variables are the same, the above quantum φ

synchronization becomes

Sφ
q = 1〈

δqφ
−(t )2 + δpφ

−(t )2
〉 , (9)

where φ = φ2 − φ1 denotes the phase difference of two oscil-
lators which can be determined in the following two different
ways: (a) A fixed φ configuration, in which the quantum
φ synchronization can be used to study a fixed φ phase
difference, and the quantum (anti)synchronization can be
regarded as the special case of the quantum φ synchronization
for φ = 0 (π ); (b) φ = arctan[〈p2〉/〈q2〉] − arctan[〈p1〉/〈q1〉]
is derived by the mean value of coordinates and momenta on
the steady state. In this case, we no longer need the necessary
condition of mean-value synchronization to study φ and
we can also measure the changes in phase difference with
different parameters.

III. THE QUANTUM φ SYNCHRONIZATION
IN A COUPLED OPTOMECHANICAL SYSTEM

WITH KERR NONLINEARITY

A. The dynamics of the optomechanical system
with Kerr nonlinearity

To demonstrate the phase characteristics of quantum φ

synchronization and its distinctions from classical quantum
synchronization, we consider a coupled optomechanical
system containing a Kerr-type nonlinear medium [31,33].
The system consists of two mechanical oscillators and a
single cavity driven by a time-periodical modulated laser with
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FIG. 1. Schematic illustration of the optomechanical system with
two mechanical oscillators of different frequencies coupled to the
same optical cavity filled with Kerr nonlinear medium. The whole
system is excited by the driving field with periodical modulation. The
two mechanical oscillators are coupled through phonon tunneling
described by the parameter μ.

frequency ωL and intensity E , as shown in Fig. 1. The whole
system can achieve self-sustained limit-cycle oscillation
[4,44–46]. Its Hamiltonian can be written as (h̄ = 1) [47]

H =−�[1 + ηc cos(	ct )]a†a

+
2∑

j=1

{ω j

2

(
p2

j + q2
j

) − ga†aq j

}

+ iE [1 + ηD cos(	Dt )](a† − a) − χ (a†a)2 − μq1q2,

(10)

where a† and a are the dimensionless creation and
annihilation operators of the cavity with frequency ωc, and
q j (p j ) represents the dimensionless position (momentum)
operator of the jth mechanical oscillator with frequency ω j ,
respectively [48,49]. � denotes the detuning of the laser from
the cavity, which is modulated with a common frequency 	c

and amplitude ηc. g is the optomechanical coupling constant.
The driving laser has a time modulation of frequency 	D

and amplitude ηD. χ is the Kerr nonlinear coefficient, and
the interaction of the two mechanical oscillators is described
by coupling intensity μ [2,50,51]. We shall take ω1 = 1 as
a reference unit and, from now on, all the parameters are
evaluated in units of ω1.

To study the time evolution of relevant variables, we use the
Heisenberg-Langevin equation and consider the dissipation
effects in the system [4,33,52,53]. The dynamic of operators
q j, p j, a of the system can be derived as

q̇ j = ω j p j,

ṗ j = −ω jq j − γ j p j + ga†a + μq3− j + ξ j,

ȧ = −{κ − i�[1 + ηc cos(	ct )]}a + igaq j

+ E [1 + ηD cos(	Dt )] + iχ (a†a + aa†)a +
√

2κain,

(11)

where κ is the decay rate of the cavity [54,55] and
γ j is the mechanical damping rate. ain denotes the

vacuum optical noise satisfying the correlation func-
tion 〈ain†(t )ain(t ′) + ain(t ′)ain†(t )〉 = δ(t − t ′). ξ j denotes the
Brownian noise operator which satisfies the correlation func-
tion 1

2 〈ξ j (t )ξ j′ (t ′) + ξ j′ (t ′)ξ j (t )〉 = γ (2n̄bath + 1)δ j j′δ(t − t ′)
in the case of large mechanical quality Q j

m = ω j/γ j � 1
[56–58]. n̄bath = 1/[exp(h̄ω j/kBT ) − 1] is the mean occupa-
tion number of the mechanical baths [56–58]. To study the
mean and fluctuation dynamics of the system, we use the
mean-field treatment [52,59–62] to divide each operator into
a mean value and a small fluctuation and derive the linear
equations (fluctuation parts) and nonlinear equations (mean
value parts) [52,59–61]. By decomposing the operators in the
Hamiltonian H into mean values and small fluctuations, i.e.,

a(t ) = α(t ) + δa(t ), Oj (t ) = Ō j (t ) + δOj (O = q, p),

(12)

and substitute them into Eq. (11), we obtain the mean value
equations,

˙̄q j = ω j p̄ j,

˙̄p j = −ω j q̄ j − γ j p̄ j + g|α|2 + μq̄3− j,

α̇ = −{κ − i�[1 + ηc cos(	ct )]}α + igαq̄ j

+ E [1 + ηD cos(	Dt )] + 2iχ |α|2α,

(13)

and the equations for quantum fluctuations,

δq̇ j =ω jδp j,

δ ṗ j = − ω jδq j − γ jδp j + g(αδa† + α∗δa) + μδq3− j + ξ j,

δȧ = − {κ − i�[1 + ηc cos(	ct )]}δa + ig(αδq j + q̄ jδa)

+ 2iχ (2|α|2δa + α2δa†) +
√

2κain. (14)

In Eq. (14), we have ignored the second-order smaller
terms of the fluctuation equations. By defining u =
(δx, δy, δq1, δp1, δq2, δp2)
 with δx = 1√

2
(δa + δa†), δy =

1√
2i

(δa − δa†), Eq. (14) can be written as [61–64]

u̇ = Mu + n, (15)

where n = (
√

2κxin,
√

2κyin, 0, ξ1, 0, ξ2)
 is the noise vector
and xin = 1√

2
(ain + ain†

), yin = 1√
2i

(ain − ain†
). M is a time-

dependent matrix,

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

B− A− −√
2gαI 0 −√

2gαI 0
A+ B+

√
2gαR 0

√
2gαR 0

0 0 0 ω1 0 0√
2gαR

√
2gαI −ω1 −γ1 μ 0

0 0 0 0 0 ω2√
2gαR

√
2gαI μ 0 −ω2 −γ2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(16)

with A± = ±{�[1 + ηc cos(	ct )] + gq̄ j + 4χ |α|2} + 2χ [α2
R

− α2
I ], B± = −κ ± 4χαRαI , αR = Re(α) and αI = Im(α).

The evolution of matrix M(t ) can be derived from solving
Eq. (13).

Then, we define a 6 × 6 covariance matrix which contains
fluctuation operators,

Vi j ≡ 1
2 〈uiu j + u jui〉. (17)
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So, the definition of Sq and Sφ
q can be rewritten as

Sq = [
1
2 (V33 + V44 + V55 + V66 − V35 − V53 − V46 − V64)

]−1
,

Sφ
q = [

1
2 (V33 + V44 + V55 + V66 + 2V45 sin φ − 2V36 sin φ

− 2V46 cos φ − 2V35 cos φ)
]−1

. (18)

By substituting Eqs. (15) and (17) into the covariance ma-
trix, we can get the time evolution of V [33,61–64],

V̇ = MV + V MT + N. (19)

Here, N = diag[κ, κ, 0, γ1(2n̄bath + 1), 0, γ2(2n̄bath + 1)] is
the noise matrix, satisfying Ni jδ(t − t ′) = 1

2 〈ξ̂i(t )ξ̂ j (t ′) +
ξ̂ j (t ′)ξ̂i(t )〉.

By Eqs. (19) and (18), the evolution of the two synchro-
nization measures can be derived. In addition, we redefine the
synchronization measure S(φ)

q as the calculated time-averaged

synchronization lim
T →∞

1
T

∫ T
0 S(φ)

q (t )dt in the asymptotic steady

state of the system.

B. Perfect quantum φ synchronization
and quantum synchronization

To underscore the importance of quantum φ synchro-
nization, we first investigate the time evolution of quantum
synchronization Sq and quantum φ synchronization Sφ

q under
different parameter configurations. The parameters consid-
ered as variables include two periodic modulation methods
(periodic modulation on cavity detuning and driving ampli-
tude), the nonlinear coefficient χ , and the direct coupling
intensity of the two mechanical oscillators, denoted as μ.

Under specific parameter settings, both quantum φ syn-
chronization and quantum synchronization can reach stable
states without direct coupling of the two mechanical os-
cillators, as shown by the limit-cycle trajectory of two
mechanical oscillators in the phase space of Fig. 2(a).
The parameters selected in Fig. 2 are similar to those in
Refs. [2,31,45,59,62,65,66]. After a procedure of the param-
eters optimization and selection in the reasonable range, the
optimal values of quantum synchronization and quantum φ

synchronization are Sq = 0.94 and Sφ
q = 0.87 on the steady

state, as shown in Figs. 2(b) and 2(c), which illustrate that both
the quantum synchronization and quantum φ synchronization
are nearly perfect. However, even though q̄1(t ) and q̄2(t ) ex-
hibit steady oscillations, their evolutions are not identical, as
shown in Fig. 2(d), as well as the evolutions of p̄1(t ) and p̄2(t )
in Fig. 2(e). Their mean values have a small phase difference,
φ = −0.24π . The condition stated in Eq. (3) is not satisfied.
As a result, no matter how perfect quantum synchronization
may be, it lacks significance. Consequently, in this scenario,
it becomes imperative to employ quantum φ synchronization
with a phase offset of φ = −0.24π to investigate the synchro-
nization between the two mechanical oscillators.

Next, we demonstrate the equivalence between these two
measures of synchronization in the context of mean-value syn-
chronization by introducing a direct coupling between the two
mechanical oscillators. As shown in Figs. 3(b) and 3(c), the
value of Sq is 0.93 and Sφ

q is enhanced from 0.87 to 0.94 when
compared to that in Fig. 2(c), owing to the coupling between

FIG. 2. (a) The evolution of the mean values q̄1, q̄2 and p̄1, p̄2

(dimensionless variables) of the two mechanical oscillators’ position
and momentum (blue and red lines). (b) Time evolution of Sq(t ).
(c) Time evolution of Sφ

q (t ). (d) Time evolution of the mean value
q̄1(t ) (red solid line) and q̄2(t ) (blue dashed line). (e) Time evolution
of the mean value p̄1(t ) (red solid line) and p̄2(t ) (blue dashed line).
Here, we set ω1 = 1 as a reference unit of frequency, and the other
parameters that have been used in the simulation are ω2 = 1.0025ω1,
ηc = 1.5ω1, 	c = 3ω1, ηD = 0.65ω1, 	D = 2.5ω1,  = 1.5ω1, E =
210ω1, χ = 0.00033ω1, μ = 0, g = 0.003ω1, k = 0.15ω1, and γ1 =
γ2 = 0.005ω1. In all of the plots, time is in units of ω1.

the two oscillators. The phase difference φ between the two
mechanical oscillators is φ = 0.05π . The oscillation of the
mean value of the position q̄(t ), as well as the mean values
of the momentum p̄(t ), are nearly synchronized, as shown in

FIG. 3. (a) The evolution of the mean values q̄1, q̄2 and p̄1, p̄2

(dimensionless variables) of the two mechanical oscillators’ position
and momentum (blue and red lines). (b) Time evolution of Sq(t ).
(c) Time evolution of Sφ

q (t ). (d) Time evolution of the mean value
q̄1(t ) (red solid line) and q̄2(t ) (blue dashed line). (e) Time evolution
of the mean value p̄1(t ) (red solid line) and p̄2(t ) (blue dashed line).
Here, we set ω1 = 1 as a reference unit of frequency, and the other
parameters that have been used in the simulation are ω2 = 1.0025ω1,
ηc = 1.5ω1, 	c = 3ω1, ηD = 0.65ω1, 	D = 2.5ω1,  = 1.5ω1, E =
210ω1, χ = 0.00033ω1, and μ = 0.01ω1. In all of the plots, time is
in units of ω1. Other parameters are the same as in Fig. 2.
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FIG. 4. The quantum synchronization measure Sq (red solid
line), quantum φ synchronization measure Sφ

q (blue dashed line), and
discontinuity points of phase φ as a function of (a) Kerr nonlinear co-
efficient χ with ηc = 1.5ω1, 	c = 3ω1, ηD = 0.65ω1, 	D = 2.5ω1,
(b) the amplitude ηc of the cavity detuning modulation with 	c =
3ω1, and (c) the frequency 	c of the cavity detuning with ηc = 1.5ω1.
The other parameters are the same as in Fig. 2.

Figs. 3(d) and 3(e). In this scenario, both the conditions for
quantum synchronization and quantum φ synchronization are
met, rendering both synchronization metrics valid. Evidently,
the coupling between the two mechanical oscillators assumes
a pivotal role in achieving mean-value synchronization and
elevating quantum φ synchronization in the nonlinear system.

In the aforementioned two scenarios, it becomes evident
that quantum φ synchronization holds greater validity when
the two mechanical oscillators have a phase difference φ.
Furthermore, it exhibits similarity to quantum synchronization
in cases where mean-value synchronization is satisfied for
φ = 0.

C. The response of two synchronization measures
to different parameter configurations

To further investigate the universality of quantum φ syn-
chronization compared to quantum synchronization in terms
of the mean-value incomplete synchronization with a change
of parameters, we next study how these two synchronization
measures and the phase difference φ respond to changes in
the system parameters. As shown in the top panel of Fig. 4(a),
both quantum synchronization and quantum φ synchroniza-
tion can be enhanced by increasing the nonlinear intensity χ .
Compared to the quantum synchronization measure Sq, the
quantum φ synchronization measure Sφ

q exhibits some discon-
tinuities with changes in nonlinear intensity. These turning
points are attributed to the existence of phase difference φ

between the two oscillators, as shown in the bottom panel
of Fig. 4(a). As we discussed, in the case of nonzero φ,
even if the quantum synchronization measure is more stable,
it is still invalid since the mean value is not synchronized.
The quantum φ synchronization is more applied to arbitrary
φ. With the change of the Kerr nonlinear intensity χ , dif-
ferent φ is generated and the behaviors of φ are correlated
to nonlinear intensity χ with great sensitivity. In addition,
these two quantum synchronizations can both reach the per-
fect synchronization for several nonlinear intensities χ as
φ = 0. When χ = 0.0007ω1, the values of both the quantum

synchronization measure and quantum φ synchronization
measure reach 0.9, i.e., perfect quantum synchronization.

To sum up, both of the degrees of two synchronization
measures can be enhanced in the nonlinear system for appro-
priate parameters [32,33]. However, the impressionable phase
difference φ between the two mechanical oscillators results
in a sensitivity enhancement of quantum φ synchronization
compared with quantum synchronization. Next, we study the
effects of the two different types of periodical modulations,
i.e., cavity detuning and driving laser, on two synchronization
measures. As shown in the top panel of Fig. 4(b), the sim-
ilar discontinuous phenomenon of Sφ

q as in Fig. 4(a) can be
observed with the changes of cavity modulation amplitudes
ηc. The quantum φ synchronization deviates from quantum
synchronization Sq, when ηc is in the range of 0.5ω1 to 1.3ω1,
and the value of Sφ

q has a sudden jump, corresponding to the
flips of the phase difference φ in the same range of amplitude
of modulation on cavity ηc as shown in the bottom panel
of Fig. 4(b). Therefore, within the range of 0.5ω1 to 1.3ω1,
the sensitivity of the variable Sφ

q to the phase difference φ

is increased under the influence of the cavity modulation
amplitude ηc. It is easy to observe that the phenomenon of a
phase flip occurs when the phase difference φ between the two
mechanical oscillators transitions approximately from 0 to π .
This is a classical nonlinear behavior induced by the ampli-
tudes of periodic modulation within the cavity. Consequently,
we can predict synchronization behaviors by examining the
phase difference φ between the two oscillators.

While the above analysis indicates that quantum φ syn-
chronization is notably influenced by the nonlinear strength
χ and the cavity modulation amplitude ηc in a nonlinear
optomechanical system, it remains highly stable about the
cavity modulation frequency 	c. As shown in Fig. 4(c), the
time evolution of two synchronization measures nearly coin-
cides for 	c, and it reveals the expected agreement of two
synchronization measures under the influence of modulation
frequency on the cavity, which indicates that the mean values
of two mechanical oscillators are completely synchronized
with phase difference φ = 0. As we introduced in Sec. II,
when φ = 0, quantum synchronization is equal to quantum
φ synchronization. When 	c/ω1 < 4.3, two measures and
φ are not sensitive to modulation frequency 	c. The values
of the two synchronization measures remain unchanged and
accordant with each other, resulting from the phase difference
being independent φ = 0 without any variation. As 	c/ω1

exceeds 4.3, both Sq and Sφ
q exhibit a significant decrease,

leading to a deterioration in quantum synchronization. This
means that proper parameters with ηc = 1.5ω1, 	c = 3ω1 are
an essential precondition for perfect synchronization.

Similar to the cavity modulation, the periodical modulation
of the driving laser can also affect the quantum synchro-
nization Sq and quantum φ synchronization Sφ

q . As shown
in Fig. 5(a), the value of quantum synchronization is bet-
ter when ηD/ω1 is in a small range of 0.1 to 0.7. As the
amplitude of the driving laser modulation ηD increases, the
quantum synchronization measure Sq is nearly unchanged.
The quantum φ synchronization initially coincides with quan-
tum synchronization at φ = 0. Subsequently, when ηD/ω1 is
in the range of 0.3 to 0.4, it diminishes due to the presence
of a phase difference φ between the two oscillators. This

023502-5



J. T. SUN, H. D. LIU, AND X. X. YI PHYSICAL REVIEW A 109, 023502 (2024)

FIG. 5. The quantum synchronization measure Sq (red solid
line), quantum φ synchronization measure Sφ

q (blue dashed line), and
discontinuity points of phase φ as a function of (a) the amplitude of
the driving laser modulation ηD with 	D = 2.5ω1, (b) the frequency
	D of the driving laser modulation with ηD = 0.65ω1, (c) discon-
tinuity points of phase φ as a function of the amplitude ηD of the
driving laser modulation with 	D = 2.5ω1, and (d) direct coupling
μ between the two mechanical oscillators with ω2 = 1.005ω1. The
other parameters are the same as in Fig. 2.

phenomenon is also evident in Fig. 5(c), where the noticeable
jump in Sφ

q corresponds to the transition of φ from −0.11π to
0.8π . Similarly, when ηD = 0.4ω1, the straight rise of the Sφ

q
corresponds to the flip of phase difference φ, transiting from
0.77π to −0.25π . It indicates that φ becomes sensible under
the influence of ηD for the same parameters regime. After
ηD/ω1 > 0.4, the two lines are almost parallel to each other,
which indicates that the phase difference is a fixed value with
φ = −0.25π and is not affected by the amplitude of driving
laser ηD. In general, similar to the case in modulation on
cavity detunings, the sudden variation of Sφ

q is involved in the
transition of phase difference φ.

Furthermore, as shown in Fig. 5(b), both Sq and Sφ
q ex-

hibit significant fluctuations in response to the modulation
frequency 	D. The system is sensitive under the modulation
of driving laser 	D. Although the two synchronization mea-
sures can reach the same sensitivity, the phase difference φ

is not susceptible to the parameter 	D, which φ is always
equal to 0 and remains unchanged as the two lines for the two
quantum synchronization measures coincide with each other.
Therefore, we can choose ηD = 0.65ω1, 	D = 2.5ω1 as the
optimal parameters for better quantum synchronization. And,
we consider the direct coupling term μq1q2 through a phonon
tunneling. As shown in Fig. 5(d), it is shown that the value
of Sq and Sφ

q can be slightly enhanced, with increasing the
coupling parameters μ, and a better quantum synchronization
can be reached.

Moreover, as shown in Fig. 6, we have performed the two
synchronization measures Sq and Sφ

q versus optomechanical
coupling g in Fig. 6(a) and optical detunings � in Fig. 6(b) for
the optimal modulation parameter configurations. Figure 6(a)

FIG. 6. The quantum synchronization measure Sq (red solid
line), quantum φ synchronization measure Sφ

q (blue dashed line), and
discontinuity points of phase φ as a function of (a) the optomechan-
ical coupling g and (b) the optical detunings � under the optimal
modulation parameter configurations. The other parameters are the
same as in Fig. 2.

reveals that the quantum synchronization Sq remains stable
at 0.9 against the optomechanical coupling g. However, the
quantum φ synchronization Sφ

q behaves differently, i.e., the
value of Sφ

q decays with increasing coupling strength g. Notice
that it exhibits a direct rise at g = 2.3 × 10−3ω1 and the step
is followed by a continuous decline. The discontinuity of Sφ

q
corresponds to the existence of phase φ, as depicted in the
bottom panel of Fig. 6(a). The effects of optical detunings
� are displayed in Fig. 6(b); within the range of 0.65ω1

to 1.4ω1, quantum φ synchronization Sφ
q is separated from

quantum synchronization Sq. At the boundary of this range
(0.65ω1 ∼ 1.4ω1), the great leap resulting from the phase φ

between the two mechanical oscillators, as depicted in the
bottom panel of Fig. 6(b), implies that the results of Sφ

q are
more susceptible to optical detunings � compared with Sq.
When the phase φ disappears, it indicates that mean-value
synchronization is achieved, resulting in a consistency be-
tween the two synchronization measures.

After the parameters selection in the reasonable range, we
have found a set of optimized parameters, i.e., ηc = 1.5ω1,
	c = 3ω1, ηD = 0.65ω1, 	D = 2.5ω1, χ = 0.00033ω1, � =
1.5ω1, g = 0.003ω1, and E = 210ω1, in which perfect quan-
tum synchronization and quantum φ synchronization can be
achieved. Therefore, quantum synchronization or quantum φ

synchronization can be enhanced with optimal parameters,
which is better than in the linear system with the same pa-
rameters [32,33].

D. The experimental realization of the investigated
optomechanical system

Based on our previous considerations, we briefly discuss
the experimental parameter setting and the experimental re-
alization in the investigated optomechanical system. In our
simulations, we have adopted the dimensionless parameters
that are similar to Mari’s work [2], and these parameters can
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also be applied in the relevant experiments of most optome-
chanical systems. We have chosen reasonable experimental
parameters from current experiments [62,66,67]. The optome-
chanical system consists of two mechanical oscillators and
a Fabry-Pérot cavity of length L and finesse F . We assume
that L = 25 mm, F = 2 × 104, ω1 = 2π MHz, ω2 = 2π ×
1.003 MHz, m = 40 ∼ 150 ng, γ j = 5 × 10−3ω1, and g =
3 × 10−3ω1. The decay rate of the cavity mode is defined
as κ = πc/(2FL) (c is the speed of light). The coupling
interaction between the two mechanical oscillators through
a phonon tunneling is also studied in some research [2,68].
The mechanical modes are placed in the middle of the optical
cavity, and the cavity mode is driven by a red-detuned laser
� � ω1 with the wavelength λ = 1064 nm. The intensity of
the driving field is E0, while it has a periodical modulation of
frequency 	D and amplitude ηD, E = E0[1 + ηD cos(	Dt )] =
E0 + E1 cos(	Dt ), and the modulation coefficients En are
given by En = √

2κPn/(h̄ωL ) which corresponds to the power
with P0 = 10 mw and the modulation sidebands equal to P1 =
2 mW [3,62]. The periodical modulation of cavity detuning
can be realized by the piezoelectric transducer, which can
apply to the periodic modifications of cavity lengths through
converting the electrical signal to mechanical vibration [69].

Then, we briefly present an experimental realization in the
investigated optomechanical system. Various experimental re-
search has facilitated the coupling of optomechanical systems
via the interaction between cavities or mechanical oscillators
[4,70]. Likewise, the implementation of micromechanical os-
cillator arrays has also been achieved in recent studies [71].
Meanwhile, quantum correlations have already been studied
in experiments, and some studies have proposed an experi-
mental scheme to characterize the entangled state [72] and
measure the chaos of the cavity [73]. Our studies focus on
a theoretical model constituted of a driven high-finesse Fabry-
Pérot cavity containing two coupled mechanical oscillators,
and the corresponding experiments have been successfully
carried out [74–76]. To investigate the properties of the op-
tical and mechanical in an optomechanical system, we have
introduced a similar method to that proposed in Refs. [75,76].
We utilize a laser beam with the wavelength of λ = 1064 nm.
The laser beam splits into two beams: one is a probe beam
modulated by an electro-optical modulator (EOM), and the
other is a pump beam modulated by an acousto-optic mod-
ulator (AOM) with detuning � from the cavity to facilitate
optomechanical interaction and achieve the mechanical modes
driven by laser beams. The reflected probe beam has two
effects: one is used to lock the cavity to the laser frequency
by using the Pound-Drever-Hall technique, and the other is
used to analyze the motions of mechanical oscillators through
homodyne detection.

In our scheme, we also study the effects of second-order
nonlinearity χ on quantum synchronization and quantum
φ synchronization. The cavity is filled with a Kerr-type
medium, and the nonlinearity of the optomechanical interac-
tion of the quantum level is taken into account. Moreover,
the second-order nonlinearity χ has been theoretically and
experimentally introduced to different schemes in an optome-
chanical system, including photon blockade [77,78] and chaos
[79]. We have adopted the experimental parameter from the
study [80] and the second-order nonlinearity is χ ∼ 0.4π kHz
and χ/ω1 ∼ 10−4, which is close to the parameters in our
numerical simulation.

IV. CONCLUSIONS

In summary, we have proposed an optomechanical sys-
tem composed of one cavity and two oscillators to study the
response of quantum synchronization and quantum φ syn-
chronization to different parameters. The values of quantum
synchronization and quantum φ synchronization are differ-
ent under some specific parameters; the underlying physical
mechanism is the appearance of phase difference φ between
the two mechanical oscillators. Then the sensitivity of two
synchronization measures to different parameters is compared
and discussed. We have found that the phase difference φ is
susceptible to Kerr nonlinear coefficient χ , amplitude ηc and
ηD of two periodical modulation ways, detuning �, and op-
tomechanical coupling g, resulting in a sharp drop or straight
rise of quantum φ synchronization.

However, under the influence of modulation frequency 	c

and direct coupling μ on the cavity, the values of quantum
synchronization and quantum φ synchronization are the same,
resulting from the phase difference φ stably tending to 0, and
it shows that phase difference φ in this optomechanical system
remains practically unaffected by the modulation frequency.
Although the system is sensitive to modulation frequency 	D

on the driving field and the values of quantum synchronization
and quantum φ synchronization have some fluctuations, the
φ is not susceptible and steadily approaches 0. Finally, we
can find the optimal parameters to achieve good quantum syn-
chronization and quantum φ synchronization. Therefore, it is
worth studying quantum synchronization and other quantum
effects in a Kerr nonlinear medium, as it has some profound
impacts on quantum correlations.
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