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Emission ghost imaging: Reconstruction with data augmentation
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Ghost imaging enables two-dimensional reconstruction of an object even though particles transmitted or
emitted by the object of interest are detected with a single pixel detector without spatial resolution. This is
possible because for the particular implementation of ghost imaging presented here, the incident beam is spatially
modulated with a nonconfigurable attenuating mask whose orientation is varied (e.g. via transverse displacement
or rotation) in the course of the ghost imaging experiment. Each orientation yields a distinct spatial pattern in
the attenuated beam. In many cases ghost imaging reconstructions can be dramatically improved by factoring
the measurement matrix which consists of measured attenuated incident radiation for each of many orientations
of the mask at each pixel to be reconstructed as the product of an orthonormal matrix Q and an upper triangular
matrix R, provided that the number of orientations of the mask (N) is greater than or equal to the number of
pixels (P) reconstructed. For the N < P case, we present a data augmentation method that enables QR factor-
ization of the measurement matrix. To suppress noise in the reconstruction, we determine the Moore-Penrose
pseudoinverse of the measurement matrix with a truncated singular value decomposition approach. Since the
resulting reconstruction is still noisy, we denoise it with the adaptive weights smoothing method. In simulation
experiments our method outperforms a modification of an existing alternative orthogonalization method where
rows of the measurement matrix are orthogonalized by the Gram-Schmidt method. We apply our ghost imaging
methods to experimental x-ray fluorescence data acquired at Brookhaven National Laboratory.

DOI: 10.1103/PhysRevA.109.023501

I. INTRODUCTION

Although first applied to quantum optics [1,2], ghost imag-
ing also has classical applications, including experiments with
pseudorandom light [3], x rays [4–7], electrons [8] and neu-
trons [9] (all of which are in transmission mode) and lidar [10]
(in reflection mode). Recently, an implementation of ghost
imaging, in emission mode, was developed for elemental map-
ping based on x-ray fluorescence signals [11,12]. Here we
focus on ghost imaging of spatially varying emission yields.
Ghost imaging is attractive because it may enable high-quality
reconstructions with lower doses of incident radiation than
doses associated with traditional methods [13]. Further, de-
tected particles need not be collimated in ghost imaging. This
aspect of ghost imaging is important because in some applica-
tions (e.g., possible emission ghost imaging based on prompt
γ rays produced by neutron illumination [9]), collimation is
not feasible.
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In ghost imaging with penetrating radiation such as neu-
trons or x rays, the incident beam is attenuated by a
nonconfigurable mask whose orientation is varied (e.g., via
transverse displacement or rotation) in the course of the ghost
imaging experiment. At each mask orientation, the spatial
variation of the attenuated incident beam is distinct. With-
out the object of interest, one acquires measurements of the
attenuated incident beam at each pixel due to each mask
orientation with a position sensitive detector. This data forms
the measurement matrix A. With only the object of interest
placed behind the mask, for each mask orientation the total
number of particles transmitted through the object (or parti-
cles emitted by the object) is (ideally) detected by a single
pixel detector termed the bucket detector. In practice, the
total solid angle subtended by the bucket detector about any
location in the object where emission occurs is less than 4π .
Hence, the expected fractions of emitted particles that are
detected in emission ghost imaging experiments depend on
solid angle effects and detector efficiency. Reconstructions
are determined given the “bucket” data and the measurement
matrix.

In many applications, ghost imaging reconstructions can
be dramatically improved when the measurement matrix A is
factored as the product of an orthonormal matrix Q and an
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upper triangular matrix R (see, for example, [6]). However,
QR factorization of A is not feasible when the number of mask
orientations N is less than the number of pixels P that are
reconstructed. As discussed in [14], the N < P case is not rare.
For the N < P case, we present a data augmentation method
that increases N and enables QR factorization of the aug-
mented measurement matrix. We remark that noisy training
data is often extended in machine learning studies with data
augmentation methods (see, for example, [15,16]). However,
these methods are very different from our data augmentation
method.

Our reconstruction algorithm based on the QR factoriza-
tion of the measurement matrix is similar to the method in
[6]. However, unlike in [6], we suppress noise effects by
determining the Moore-Penrose pseudoinverse [17–19] of the
measurement matrix with a truncated singular value decompo-
sition (TSVD) method [20,21]. We note that Chen et al. [22]
implemented a TSVD method for ghost imaging with a recon-
struction method that differs from our QR method. In general,
reconstructions obtained with our method are still noisy, hence
we denoise them with the adaptive weight smoothing (AWS)
method [23–25]. Like wavelet methods, AWS can smooth out
noise while preserving edges in images. For other denoising
methods for ghost imaging, see, for example, Refs. [26–28].

In Sec. II we discuss our ghost imaging reconstruction
method, our data augmentation method, and the adaptive
weights smoothing method. In Sec. III A, in a simulation study
we demonstrate that our method yields reconstructions with
lower root-mean-square error (RMSE) than reconstructions
obtained by a modified version of an existing method [14]
where the rows of the measurement matrix are orthogonalized
with a Gram-Schmidt procedure rather than a QR method. In
Sec. III B we apply our ghost imaging methods to experimen-
tal x-ray fluorescence data acquired at Brookhaven National
Laboratory. In Sec. IV we discuss results and summarize some
diagnostic studies.

II. METHODS

A. Reconstruction method: No QR step

First we define the measurement matrix A. Since the pho-
ton imaging detector acquires a two-dimensional (2D) image
of size 6×46, there are 276 pixels. We assign an index to each
pixel. For instance, the pixel indexes in the first row of the
photon image detector range from 1 to 46. In the second row
they range from 47 to 92. And so on. The i j(th) element of
A corresponds to the measured attenuated incident beam pro-
duced by the ith mask orientation at the jth pixel. The size of A
is N×P, where N is the number of mask orientations and P is
the number of pixels. For instance, if we reconstruct an image
of size 6×46, P = 276. We define the theoretical measure-
ment matrix to be Ã. By theoretical we mean what would be
observed in an ideal experiment without measurement errors.
We define the observed and theoretical bucket data vectors
to be b and b̃, respectively. Both b and b̃ are N-dimensional
vectors. The ith component of b, bi is the observed number of
events detected by the bucket detector for the ith orientation
of the attenuating mask. Given the theoretical measurement

matrix Ã and theoretical emission yield vector ṽ, we have that

Ãṽ = b̃. (1)

This theoretical relationship applies to transmission ghost
imaging as well. For experimental data, due to measurement
error we have that

Av ≈ b. (2)

Based on A and b, our estimate of ṽ is v. Below we describe
our approach to estimate ṽ.

The ghost imaging estimate of ṽ (which can be an attenua-
tion term for transmission studies or an emission term like in
our study) at the pixel centered at (x, y), v(x, y), satisfies the
following equation (see Eq. (7) of [6]):

v(x, y) ∗ PSF (x, y) = 1

N

N∑

i=1

(bi − b̄)Ii(x, y), (3)

where ∗ denotes convolution, N is the number of mask ori-
entations, Ii(x, y) is the measured attenuated incident beam
at location (x, y) due to the ith orientation of the attenuating
mask, and b̄ = 1

N

∑N
i=1 bi. In the ghost imaging literature, for

masks that are spatially random, the set of Ii(x, y) is typically
referred to as a speckle basis. To simplify calculations we
assume that (x, y) = �x j , where j is an integer between 1 and
P and �x j = (x j, y j ) is the midpoint of the jth pixel. Similarly,
�xk = (xk, yk ) is the midpoint of the kth pixel. For estimation
of ṽ, based on the “approximate completeness relation” dis-
cussed in Sec. 4.1 of [6] and Eq. (14) in [6], we model the
PSF as

PSF (�x j − �xk ) = 1

N

N∑

i=1

[Ii(�xk ) − Ī (�xk )]

× [Ii(�x j ) − Ī (�x j )] δ j,k, (4)

where

Ī (�x j ) = 1

N

N∑

i=1

Ii(�x j ),

(5)

Ī (�xk ) = 1

N

N∑

i=1

Ii(�xk ),

and δ j,k is the Kronecker δ function. We get that

v(�x j ) ∗ PSF (�x j ) =
P∑

k=1

v(�xk )PSF (�x j − �xk )

= v(�x j )

N

N∑

i=1

[ Ii(�x j ) − Ī (�x j ) ]2. (6)

Rewriting with �x j substituted with (x, y) yields

v(x, y) ∗ PSF (x, y) = v(x, y)

N

N∑

i=1

[ Ii(x, y) − Ī (x, y)]2, (7)

where

Ī (x, y) = 1

N

N∑

i=1

Ii(x, y). (8)
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FIG. 1. (a) Experimental measurement matrix acquired at Brookhaven National Laboratory. (b) Scan of measurement matrix [correspond-
ing to red dashed line in (a)].

Further simplifying, we get that

v(x, y) = 1

N − 1

N∑

i=1

(bi − b̄)
Ii(x, y)

σ̂ 2
I (x,y)

, (9)

where σ̂ 2
I (x,y) is the sample variance of I1(x, y),

I2(x, y), . . . IN (x, y). For a definition of the sample variance,
see, for example, Ref. [29]. We note that our Eq. (9) result has
some similarity with a result based on random matrix theory
(see Eq. (14) of [7]).

In our simulation studies each photon is detected with
probability 1. For cases where each photon is detected with
probability pdet < 1, one would scale v(x, y) by 1/pdet. A
similar comment may apply to emission ghost imaging of
experimental data.

Based on Eq. (9), we can express v as

v = 1

N − 1
WAT (b − b̄ �1), (10)

where �1 is an N-dimensional vector where each component is
1, AT is the transpose of A, and W is a diagonal matrix of size

P×P, where the kth diagonal value of W is 1/σ̂ 2(k). We note
that in many ghost imaging papers, W is neglected. After we
obtain the P-dimensional v, we form the 2D reconstruction
of interest by mapping the components of the vector v into a
matrix.

B. Reconstruction with QR method

Following Appendix B of [6], for the case N > P we factor
the measurement matrix A as

A = QR, (11)

where Q is an orthonormal matrix of size N×P, and R is an
upper triangular matrix of size P×P. We replace A with Q, and
b with QA+b, where A+ is the Moore-Penrose pseudoinverse
of A. To suppress noise effects, we determine A+ based on
the TSVD of A. In this approach terms in the singular value
decomposition (SVD) with singular values below the product
of the maximum singular value and an adjustable relative
threshold κSVD are excluded. For detailed discussions on com-
putation of the truncated SVD of A and A+ (based on the
truncated SVD of A), see Refs. [20,21]. We obtain the recon-
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FIG. 2. The number of pixels is P = 276. We equate the theoretical measurement matrix to 10 times the experimental measurement matrix
shown in Fig. 1. Here we show reconstructions of noise-free data determined with data augmentation, QR and TSVD steps where the relative
threshold for the truncated SVD method, κSVD, is 1.49×10−8. (a)–(d) Reconstructions for N = 275, 250, 200, and 100. (e)–(h) Associated
scatterplots of reconstructions and the digital phantom. Points that fall on the red line correspond to cases where the reconstruction and true
value agree exactly.

struction of ṽ with Eq. (9) [or equivalently, Eq. (10)]. Similar
to methods in [6], we obtain a reconstruction for each of
many permutations of the columns of A (before the QR step).
For each pixel the final reconstruction is the median value
of all the reconstructions. Since the reconstruction depends
on the order of the columns, the permutation method can
suppress noise effects. To get a permutation of the columns of
A, we simulate a permutation of the integers (1, 2, 3, . . . P).
(As in illustration, for the simple case where P = 4 and the
simulated values of the permuted integers are (3,1,4,2), the
first, second, third, and fourth columns of the new matrix A
would be the third column of the original A matrix, the first
column of the original A matrix, the fourth column of the
original A matrix, and the second column of the original A

matrix, respectively. Because the columns are permuted, the
components of v are too. That is, the first, second, third, and
fourth components of v correspond to estimates for pixels 3,
1, 4, 2. Hence the components are reordered so that the order
of the reconstructed values correspond to the first, second,
third, and fourth pixel.) For simulated and experimental data,
the number of permutations are 51 and 101, respectively. In
our simulation study, for each value of N we determine the
RMSE of each reconstruction on a grid in κSVD space by
Monte Carlo simulation. For each N we select the value of
κSVD that yields the lowest RMSE. For experimental data we
determine reconstructions at various values of κSVD and select
the best reconstruction by scientific judgment. For example,
for reconstructions of experimental data, we vary κSVD over a
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FIG. 3. We equate the theoretical measurement matrix to 10
times the experimental measurement matrix shown in Fig. 1. The
number of pixels is P = 276. We show reconstructions of simulated
noisy data where N = 275 where κSVD varies. (a) Digital phantom.
(b)–(i) Reconstructions where κSVD = 10−6, 10−5, 5×10−5, 10−4,
5×10−4, 10−3, and 5×10−3, respectively.

grid and select the value of κSVD that appears to produce the
reconstruction that best resembles the physical phantom. As a
caveat, as discussed in Sec. IV, in future research we plan to
develop data-driven methods to select κSVD.

C. Data augmentation

For the N < P case, we augment A and the bucket signal b.
In our simulation studies P = 276 and N varies from 50 to 275.
For each column of A, c = (c1, c2, . . . cN )T , we stack k copies
of c to form an augmented column caug. The stacking param-
eter k is increased until kN � P. For instance, if k = 2 the
augmented column is caug = (c1, c2, . . . cN , c1, c2, . . . cN )T .
For the case k = 3 the augmented column caug =
(c1, c2, . . . cN , c1, c2, . . . cN , c1, c2, . . . cN )T . Extensions for
larger k are similar to the above. In our augmented
measurement matrix, each column has a periodic structure.
The bucket signal is augmented in a similar manner and also
has a periodic structure. The dimension of the augmented
bucket data vector is the same as the number of rows in the
augmented measurement matrix.

D. Reconstruction with row-orthogonalization method

For the N < P case, Luo et al. [14] orthogonalized the rows
of the measurement matrix with a Gram-Schmidt method.
Given the projection coefficients determined in the Gram-
Schmidt method, the bucket signal was also transformed (see
[14] for more details). Based on the transformed versions of A

and b, the reconstruction is

v = α

N
AT (b − b̄ �1), (12)

where α is an adjustable scale parameter. Initially, we de-
termine v with Eq. (12) with α = 1. Based on the predicted
bucket signal, b̂ = Av, and the observed bucket signal b, we
estimate the scaling factor α as α̂ where

α̂ = b1 + b2 · · · + bN

b̂1 + b̂2 · · · + b̂N
. (13)

We then adjust v by scaling it by α̂. We stress that this method
for determination of α is not discussed in [14]. In our primary
simulation study, for the cases studied α̂ ranges from approx-
imately 60 to 300.

E. Denoising with adaptive weights smoothing

We denoise reconstructions with the AWS method [23–25].
In this approach local polynomial models are fit to 2D recon-
structions by maximizing a weighted log-likelihood function
in the neighborhood about each spatial location. At each spa-
tial location the denoised value is the value predicted by the
local polynomial model. In the AWS method the weighted
log-likelihood function at point x is modeled as

L(W (x), θ ) =
∑

i

wi(x)lnp(Yi, θ ), (14)

where Yi is measured at xi, wi is the weight corresponding
to the measured value at xi, and the point of interest at x, p
is the likelihood of Yi given the polynomial model parameter
vector θ . The basic idea of the AWS approach is to adap-
tively select the size of the neighborhood about any point
of interest and the associated weights in that neighborhood.
The overall smoothness of the resulting image depends on
the choice of a bandwidth parameter hmax, which specifies the
maximum size of any local neighborhood, and a parameter
λ, which determines when to stop expanding the size of the
local neighborhood about any point according to a hypothesis
test criterion. In general, as λ increases the resulting image
becomes smoother. Like wavelet methods, the AWS method
can preserve edges while smoothing within regions between
jumps. In our studies we equate hmax to 2.5 pixel lengths,
λ = 1, and the degree of the local polynomial is 2. We im-
plement AWS in the statistical computing language and envi-
ronment R [30] by calling the function lpaws in the R package
aws.

III. RESULTS

A. Simulation study

Our simulation model is based on experimental data ac-
quired at Brookhaven National Laboratory (BNL). In the
experiment, synchrotron x rays produce fluorescent x rays
from a physical phantom. Since the incident beam flux was
too narrow in the vertical direction (1 mm) to illuminate
the entire physical phantom (which is 2.5 mm tall in the
vertical direction), the physical phantom was translated ver-
tically three times to ensure that the bucket data for all three
regions of the physical phantom had sufficiently high signal

023501-5



K. J. COAKLEY et al. PHYSICAL REVIEW A 109, 023501 (2024)

0.0

0.5

1.0

10−7 10−5 10−3

rel. threshold for SVD

R
M

S
E

(a)

0.04

0.06

0.08

0.10

0.12

10−7 10−5 10−3

rel. threshold for SVD

R
M

S
E

(b)

0.050

0.055

0.060

10−7 10−5 10−3

rel. threshold for SVD

R
M

S
E

(c)

0.0500

0.0525

0.0550

0.0575

10−7 10−5 10−3

rel. threshold for SVD

R
M

S
E

(d)

FIG. 4. We equate the theoretical measurement matrix to 10 times the experimental measurement matrix shown in Fig. 1. The number of
pixels is P = 276. For our data augmentation method (with QR and TSVD steps), we show RMSE of reconstructions of simulated noisy data
as a function of κSVD. (a) N = 275, (b) N = 250, (c) N = 200, and (d) N = 150.

to noise. We simulate one measurement matrix that applies
to all three translations of the physical phantom. For each
translation we simulate distinct bucket data and obtain a re-
construction. We patch the reconstructions together to form
an overall reconstruction (see Sec. III B for more experimental
details).

In Fig. 1 we show the measurement matrix for the BNL
experiment. The average number of counts per element of
the measurement matrix is 2.56×105. The average number of
counts per component of the bucket data vectors is 3.64×106.

In our primary simulation study, the theoretical (true) mea-
surement matrix Ã is equated to a scaled version of the
observed measurement matrix shown in shown in Fig. 1 where
the scaling factor is 10. (When a matrix is multiplied by a
scalar, each element of the matrix is multiplied by the scalar.)
The digital phantom ṽ is scaled so that the sum of the total ex-
pected counts in the three simulated bucket data vectors agrees
with 10 times the sum of the counts in the three experimental
bucket data vectors. Since the digital phantom [see Fig. 11(a)]
is a rendition of the optical image of the physical phantom
[see Fig. 11(b)], it has complexity similar to the physical
phantom. We simulate A by adding Poisson noise to each

element of the theoretical measurement matrix Ã. For each
translation we simulate bucket data by adding Poisson noise
to the theoretical bucket signal b̃ [see Eq. (1)]. We simulate
A (with size 442×276) and b with dimension 442, and then
select subsets of A and b—the first N rows of A and the first N
components of b.

In Fig. 2 we show reconstructions of noise-free data for
P = 276 where N varies from 100 to 275, and scatterplots of
reconstructions and the digital phantom. We determine these
reconstructions with our data augmentation method with the
QR and TSVD methods. Since the data are noise-free, we set
the relative threshold for the truncated SVD, κSVD, to the very
low value of 1.49×10−8 based on machine precision consid-
erations. Here we determine the TSVD with the function ginv
in the R package MASS [31].

In our primary simulation study, we simulate 100 realiza-
tions of A and b for each of many values of N . For each
realization of A and b, we determined a reconstruction for each
of many values of κSVD on a grid. For each value of N and
κSVD, we estimate the RMSE of the reconstruction. For each
N , κSVD = 10−4 yields the lowest RMSE. As a caveat, for
N = 50, 75, 100 values of κSVD, less than 0.0001 also yield
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FIG. 5. We equate the theoretical measurement matrix to 10 times the experimental measurement matrix shown in Fig. 1. The number
of pixels is P = 276. (a)–(d) Reconstructions of simulated noisy data for N = 275, 250, 200, and 100. (e)–(h) Associated scatterplots of
reconstruction and the digital phantom. Points that fall on the red line correspond to cases where the reconstruction and true value agree
exactly.

the minimum value. If multiple values of κSVD yield the mini-
mum RMSE, we report the largest of these values. In Fig. 3 we
show reconstructions of noisy simulated data for the N = 275
case for various values of κSVD. In Fig. 4 we show how Monte
Carlo estimates of RMSE vary with κSVD for various values of
N . In Fig. 5 we show reconstructions of simulated noisy data
and associated scatterplots. In Fig. 6 we show denoised ver-
sions of the Fig. 5 reconstructions and associated scatterplots.
In Fig. 7 we compare denoised reconstructions determined
with our method and the method from Ref. [14].

For all cases considered, the RMSE of reconstructions
obtained with our method are lower than the RMSE of recon-
structions obtained with the method from [14] (see Table I).
For our method RMSE decreases as N increases (see Table I).
For the method from [14], RMSE decreases as N increases

from 50 to 150 but then increases as N increases from 150
to 275. The authors of [14] observed a similar instability
as N increased and attributed the phenomenon to numerical
instability effects. For both methods, denoised reconstructions
have lower RMSE than reconstructions that are not denoised
with AWS (see Table I).

B. Experimental results

We acquired experimental data at the National Synchrotron
Light Source II at Brookhaven National Laboratory (BNL) at
the NIST Beamline for Materials Measurement (BMM) (see
Fig. 8). The energy of the incident x-ray beam was 12 keV
(see Fig. 9). The cross-sectional area of the incident x-ray
beam, set by four-blade tungsten slits, was 8 mm×1 mm. We
acquired measurement matrix data with a Dectris Pilatus 2D
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FIG. 6. Here we show denoised versions of the Fig. 5 reconstructions. (a)–(d) Denoised reconstructions for N = 275, 250, 200, and 100.
(e)–(h) Associated scatterplots of denoised reconstruction and digital phantom. Points that fall on the red line correspond to cases where the
reconstruction and true value agree exactly.

silicon hybrid photon counting imaging detector. In this detec-
tor the pixel width is approximately 0.172 mm. We monitored
beam intensity with ionization chambers (standard beamline
equipment) during both the setup stage and the primary stage
of the experiment.

The barcode mask was fabricated by patterning and etch-
ing arrays of trenches in a Si wafer, metalizing the entire
surface with a sputtered Au seed layer and then applying
an additive-based electrochemical deposition process to se-
lectively fill the trenches with gold from the bottom upward
[32,33]. Distinct orientations of the mask were produced by
translating the mask (ideally) in the x direction (see Fig. 10).
For i = 1, 2, . . . 442, the ith translation was (i-1) 50 µm. Since
there are 276 pixels in the imaging detector, the size of the
measurement matrix is 442×276 (see Fig. 1).

The physical phantom consists of a copper wire [see
Fig. 11(b)] that is shaped to spell out “NIST.” When placed
behind the mask and irradiated with x rays, it emitted an x-ray
fluorescence spectrum. At each mask orientation, for each
translation of the physical phantom, the associated bucket
signal is the number of counts in the Cu k-edge florescence
peaks. This spectrum was acquired with a four-element Si
drift detector with Quantum Electronic XSpress 3X counting
electronics.

As mentioned earlier, the narrow beam width necessitated
three measurements to cover the entire height of the phantom.
Bucket data was acquired for each of three translations of the
physical phantom. The translations (in the y direction) were 0
δ, 6 δ, and 12 δ, where δ ≈ 0.172 mm is the width of each pixel
in the imaging detector. The rectangular areas associated with
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TABLE I. Estimated expected value of RMSE of reconstructions for primary simulation study. Theoretical measurement matrix equated
to 10 times the experimental measurement matrix shown in Fig. 1. (a) Estimated RMSE of data augmentation reconstruction. (b) Estimated
RMSE of reconstruction determined with method from [14]. (c) Ratio of (b) and (a). (d) Estimated RMSE of denoised data augmentation
reconstruction. (e) Estimated RMSE of denoised reconstruction determined with method from [14]. (f) Ratio of (e) and (d).

N (a) (b) (c) (d) (e) (f)

50 0.0608 0.065 1.07 0.0616 0.0643 1.04
75 0.0570 0.0604 1.06 0.0555 0.0569 1.02
100 0.0547 0.0580 1.06 0.0524 0.0531 1.01
150 0.0499(1) 0.0522(1) 1.04 0.0427 0.0427 1.00
200 0.0470(1) 0.0644(3) 1.37(1) 0.0384 0.0400(1) 1.04
225 0.0452(1) 0.0811(6) 1.79(1) 0.0367 0.0413(1) 1.12
250 0.0435(1) 0.1310(14) 3.01(3) 0.0352(1) 0.0505(2) 1.44(1)
260 0.0429(1) 0.1880(26) 4.39(6) 0.0346 0.0642(5) 1.85(2)
265 0.0428(1) 0.2450(42) 5.71(10) 0.0344(1) 0.0789(9) 2.29(3)
270 0.0425(1) 0.3780(130) 8.88(31) 0.0341(1) 0.1090(17) 3.20(5)
275 0.0423(1) 0.8020(441) 19.00(104) 0.0340(1) 0.3610(348) 10.60(102)

the translations did not overlap. For each translation we obtain
a reconstruction of size 6×46. We patch these reconstructions
together to form an overall reconstruction of size 18×46.

In our experimental study, based on the measurement
matrix shown in Fig. 1, we determine reconstructions of ex-
perimental data without the QR step and with the QR and
TSVD steps [see Figs. 11(d) and 11(h)]. We show denoised
versions of these reconstructions in Figs. 11(f) and 11(j).
Based on visual inspection, the denoised reconstruction of
experimental data determined with the QR and TSVD steps
[see Fig. 11(j)] appears to reveal the “N” and “I” features more
clearly than the denoised reconstruction determined without

(a) (b)

(c) (d)

(e) (f)

FIG. 7. We equate the theoretical measurement matrix to 10
times the experimental measurement matrix shown in Fig. 1. The
number of pixels is P = 276. We show denoised reconstructions of
simulated noisy data. (a), (c), and (e) Reconstructions determined
with the method from [14] for N = 275, 250, and 200. (b), (d), and
(f) Reconstructions determined with our method for N = 275, 250,
and 200.

the QR step [see Fig. 11(f)]. In both of these reconstructions,
the “N,” “I,” and “T” features are visible; however, the “S” fea-
ture is not visible in either reconstruction. Overall, it appears
that the Fig. 11(j) reconstruction is better than the Fig. 11(f)
reconstruction.

As a diagnostic check, we simulate data based on the Fig. 1
measurement matrix. In this simulation the expected number
of counts in the observed measurement matrix and the sum
of the expected counts in the three bucket data vectors agree
with the BNL experiment. The denoised reconstruction of the
simulated data determined with the QR and TSVD steps [see
Fig. 11(i)] is vastly superior to the denoised reconstruction
of simulated data determined without the QR and without the
TSVD step [see Fig. 11(e)]. However, for the experimental
data the denoised reconstruction with the QR and with the
TSVD step is better but not vastly superior to the denoised
reconstruction without the QR and without the TSVD step.
Further, the denoised reconstruction of the simulated data
determined with the QR and TSVD steps [see Fig. 11(i)] is
vastly superior to the denoised reconstruction of experimental
data determined with the QR and TSVD steps [see Fig. 11(j)].
(The above remarks about denoised reconstructions apply to
comparisons of reconstructions as well.) Plausible system-
atic errors that might explain these results are relative mask

FIG. 8. Experimental setup at the NIST Beamline for Materi-
als Measurement at the National Synchrotron Light Source II at
Brookhaven National Laboratory.
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FIG. 9. An x-ray fluorescence spectrum excited by a monochromatic x-ray beam at 12 keV incident on the physical phantom made with
copper wire [see photograph in Fig. 11(b)]. The bucket signal is obtained by summing the counts under the Cu Kα and Cu Kβ peaks. X rays
that undergo elastic scattering or Compton scattering do not contribute counts to the bucket data.

orientation errors in the experiment that acquires the measure-
ment matrix, and the experiment that acquires the bucket data.

In an attempt to suppress relative mask orientation errors
in the two experiments, we aggregate the measurement ma-
trix and bucket data. In this scheme the measurement matrix
elements in each column are grouped into blocks of size m.
For instance, if m = 3, the first three elements go into the

first block. The next three go into the second block, and so
on. Elements in each block are summed. A similar proce-
dure applies to the bucket data. For the m = 3 choice, the
number of rows in A is reduced from 442 to 147. Similarly,
the number of components in b is reduced from 442 to 147.
In three aggregation schemes, the number of rows in A and
the dimension of the bucket data are reduced from 442 to

FIG. 10. The computer-designed barcode mask was fabricated by bottom-up gold filling of nominally 20.7-µm-deep trenches patterned
and etched into the surface of a silicon wafer. The “gold bars in the barcode pattern are actually arrays of 8-µm-wide Au-filled trenches and
2-µm-wide Si spacers that have been repeated as needed for the bar width. Illumination of the system was defined by stepping the barcode
mask through a sequence of 50-µm displacements parallel to the barcode, generating a total of 442 spatial patterns that were captured by a
CCD camera. The same sequence of illumination patterns was repeated with the specimen in place for x-ray fluorescence data acquisition. The
patterns and the corresponding x-ray fluorescence signals were processed offline for ghost imaging reconstruction.
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FIG. 11. In the “Simulation” column, we show the digital phantom and reconstructions and denoised reconstructions of simulated data with
signal-to-noise similar to experimental data. In the “Experiment” column, we show the physical phantom and reconstructions and denoised
reconstructions of experimental data. For all cases the number of pixels is P = 276. Except for (k), the number of mask orientations is N =
442. In an effort to suppress systematic errors, we aggregate the experimental data so that N is reduced from 442 to 147. To enable analysis
with the QR and TSVD steps, we augment the aggregated data so that N = 294. In (k) we show the denoised reconstruction of the augmented
data.

147, 110, and 55, respectively. After data augmentation, the
associated resulting denoised reconstructions for the three
aggregation schemes are not dramatically improved relative
to the denoised reconstruction computed from the full data
with the QR and TSVD steps. Based on visual inspection,
the aggregation scheme corresponding to 147 rows in A [see
Fig. 11(k)] appears to produce a slightly better result than the
other aggregation schemes.

As discussed in Sec. II B, when reconstructing experimen-
tal data with a QR step, we determine a reconstruction for
each of 101 permutations of the columns of the measurement
matrix. For each pixel we report the median value of the
associated 101 reconstructions. To understand how results
vary with the number of permutations Np, for the N = 442
case we determine a reference reconstruction at Np = 1001.
For this case reconstructed values fall in the interval (–0.049,
0.558), and denoised reconstructed values fall in the inter-
val (–0.041, 0.313). We determine a reconstruction from the
observed measurement matrix (Np = 0) and reconstructions
at Np = 5, 11, 25, 51, 101. At each pixel we compute the

difference � between each reconstruction and the reference
reconstruction and the difference �dn between each denoised
reconstruction and the denoised reference reconstruction. In
Table II we show the minimum and maximum value of � and
�dn for each value of Np.

Based on Table II, it appears that the choice of Np = 11 (or
higher) yields sufficiently stable results. For simulated data

TABLE II. Stability of reconstructions and denoised reconstruc-
tions of experimental data determined with QR and TSVD steps as a
function of the number of permutations Np.

Np min(�) max(�) min(�dn) max(�dn)

0 −1.04×10−1 4.98×10−2 −9.02×10−2 2.99×10−2

5 −5.10×10−4 4.63×10−4 −2.37×10−4 2.13×10−4

11 −1.13×10−4 1.63×10−4 −5.78×10−5 9.40×10−5

25 −1.28×10−4 1.35×10−4 −7.45×10−5 2.31×10−4

51 −7.99×10−5 8.91×10−5 −8.38×10−5 2.56×10−5

101 −5.06×10−5 3.45×10−5 −2.25×10−5 1.36×10−5
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we expect that reconstructions (determined with a QR step)
are also sufficiently stable for Np = 11 (or higher).

IV. DISCUSSION

Our research on data augmentation was motivated by
the goal of understanding x-ray fluorescence emission rate
measurements determined with ghost imaging. In future ex-
periments we plan to investigate possible mask orientation
errors that may have affected our measurements.

For reconstructions obtained from simulated data without
the QR step and without the column permutation method, it is
straightforward to show that the reconstruction of the original
data and the reconstructions of its augmented versions agree
exactly (if computed with an infinite precision computer).
This observation is consistent with the claim that data aug-
mentation is a reasonable procedure.

For the cases studied, for reconstructions determined with
the QR step, the predicted number of total counts in the bucket
data agrees with the observed number of total counts in the
bucket data to six significant digits or more. This observation
is consistent with the claim that our Eq. (9) approach is valid.

For simulated data shown in Fig. 2(e), reconstruction and
phantom values are nearly the same. This observation is con-
sistent with the claim that our Eq. (9) approach is valid.
Results shown in Figs. 2(f), 5(e), and 5(f) also support the
above claim.

For the case where N = 442 and P = 276, we recon-
structed high signal-to-noise simulated data (with κSVD =
10−6) as well as its augmented versions where N = 884,
1326, and 1768 with QR but without permutation of the
columns of the measurement matrix. The RMSE values for
reconstructions for N = 442, 884, 1326, and 1768 are 0.0278,
0.0281, 0.0280, and 0.0279. The RMS deviation between the
reconstruction of the N = 442 data, and reconstructions at
N = 884, 1326, and 1768 are 0.0010, 0.0008, and 0.0011.
Scatterplots show that the reconstructions of the augmented
data and the N = 442 data are almost the same. Even though
data augmentation is not expected to improve reconstructions
for the N > P case considered in this simulation study, data
augmentation did not significantly degrade the reconstruction.
This diagnostic study suggests that data augmentation is rea-
sonable.

In simulation studies, for the N < P case our method yields
reconstructions with lower RMSE compared to the method
from [14]. This is plausible because the Gram-Schmidt or-
thogonalization scheme implemented in [14] may be unstable
compared to the QR scheme that we implement in our method.
See Ref. [7] for discussion of this point. Second, the TSVD
step in our method improves results (especially for large N)
(see Fig. 4). Another possibility is that our method performs
better because we account for the PSF function whereas the
method in [14] does not.

In our primary simulation study, the theoretical mea-
surement matrix was equated to 10 times the experimental
measurement matrix shown in Fig. 1. For each N , RMSE took
its minimum value when κSVD = 10−4. In a secondary simu-
lation study, the theoretical measurement matrix was equated
to the experimental measurement matrix shown in Fig. 1.
For each N , the relative RMSE for the method from [14]

increased relative to our method. For N � 100, RMSE takes
its minimum value at κSVD = 10−3. For each N above 100,
RMSE takes its minimum value at κSVD = 5×10−4. Since the
data is noisier in the secondary study, it makes sense that a
larger κSVD is required to minimize RMSE.

We remark that compressive sensing has been broadly
applied to reflection ghost imaging [10], transmission ghost
imaging [34,35], and recently to emission ghost imaging [11].
Compressive sensing methods are appropriate for cases where
signals of interest are sparse. In ghost imaging applications,
signals of interest are typically sparse. For the case where
signals of interest are not sparse, we expect the performance
of compressive sensing methods to deteriorate. In contrast,
we expect our method to apply to both sparse and nonsparse
signals of interest. We expect compressive sensing to apply to
the N < P case. For the data analyzed here, comparison of our
method to the compressive sensing method is a worthy topic
for future research but beyond the scope of this study. Other
methods relevant to the N < P case include pseudoinverse
methods [9,36], singular value decomposition methods [37],
and deep learning [27,38–40].

For analysis of experimental data, we selected the thresh-
old for the truncated SVD method by visual inspection of the
reconstructions determined with different thresholds for the
truncated SVD method. Future research will focus on data-
driven threshold selection methods such as cross-validation or
related methods (see, for example [41]).

As stated earlier, the AWS denoising method is designed
to smooth out noise and preserve edges in images. In our
simulation study, the denoised versions of the Fig. 5 recon-
structions (shown in Fig. 6) have well-preserved edges and
noise is significantly suppressed. A similar comment applies
to the denoised version of the Fig. 11(g) reconstruction that is
shown in Fig. 11(i).

In this work we report RMSE statistics. As discussed in
[42], there are other candidate metrics as well. For example,
how well the mean value of ṽ is determined in a region of
interest is a possible alternative metric. We note that other
metrics were studied in [14]. How well our method performs
for higher-dimensional cases is a topic for further study.

In our simulation studies, for the cases studied we demon-
strated that denoising ghost imaging reconstructions with
AWS reduces RMSE. However, in some analyses it may be
best to extract quantitative information from reconstructions
rather than denoised reconstructions. For instance, it may be
best to determine the mean emission yield in a region of
interest as the sample mean of reconstructed emission yields.

We expect our methods for ghost imaging to be directly ap-
plicable to other emission signals, including neutron capture
prompt γ rays. Our long-term goal is to develop methods for
elemental mapping based on ghost imaging of neutron capture
prompt γ rays.
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