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Mediated interactions and damping effects in superfluid mixtures of Bose and Fermi gases
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We investigate the homogeneous superfluid mixtures of a Bardeen-Cooper-Schrieffer (BCS) superfluid orig-
inating from pairing two-species fermionic atoms and superfluidity stemming from condensation of bosonic
atoms. By integrating out the freedoms associated with the BCS superfluid, we derive the fermion-mediated
interactions between bosons, which is attractive and can be tuned from long range in the BCS region to short
range in the region of Bose-Einstein condensation of molecular dimers. By analyzing the Bogoliubov spectrum
and the damping rate of bosonic superfluid, we map out the phase diagram spanned by the boson-fermion mass
ratio and the boson-fermion coupling strength, which consists of a phase separation region and two phase-mixing
regions with and without Landau damping. The three different phases can coexist at a tricritical point, which
moves toward a low boson-fermion mass ratio and a high boson-fermion scattering length as the fermion-fermion
interaction strength is tuned up on the BCS side.
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I. INTRODUCTION

Mediated interactions play a crucial role in our un-
derstanding of nature. In particle physics, all fundamental
interactions are mediated by gauge bosons [1]. In condensed-
matter physics, phonon-mediated electron-electron attractions
are responsible for the formation of Cooper pairs, whose
condensation leads to the phenomena of conventional super-
conductivity [2]. Ultracold atoms have emerged as an ideal
platform for engineering the interatomic interactions [3–5],
testing the fundamental physics [6], and exploring the novel
many-body quantum phenomena [7]. Of particular interest
are the experimental observations of the fermion-mediated
long-range interactions between bosons in Bose-Fermi mix-
tures in weakly interacting [8–10] and strongly interacting
regimes [11,12]. This has sparked new interests in theoretical
investigating of physics associated with the fermion-mediated
interactions in various physical systems. These include study-
ing the stability conditions for weakly interacting Bose-Fermi
mixtures at zero temperature [13,14] and at finite temperatures
[15], investigating mediated interactions with strong coupling
theories [16,17] and effective field theories [18], and tailoring
long-range interactions for quantum simulators [19].

Superfluid mixtures of bosonic and fermionic atoms have
been the focus of both theoretical [20–28] and experimental
[29–33] research over the past years. These double-superfluid
systems provide fascinating opportunities to explore the in-
terplay between excitations of distinct statistics and mediated
interactions. A Bose-Fermi superfluid mixture possesses two
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gapless bosonic modes resulting from the spontaneous break-
ing of internal gauge symmetries of Bose superfluid and Fermi
superfluid, respectively, and gapped fermionic excitations that
describe the Cooper pair breaking [23,34,35]. One of the key
questions to ask is how fermion-mediated interactions reshape
our understanding of this exciting system. While existing
experiments [29,33] on double-superfluid mixtures indicate
damping of dipole modes, searching for well-defined quasi-
particle excitations in interacting quantum matter represents
one of the cornerstones of modern physics [36]. Superfluid
mixtures of Bose-Fermi gases offer promising prospects to
elucidate the physics of such quasiparticles.

In this work, we are trying to address this question by
conducting the following studies: First, we start from the
functional integral representation of the partition function of
the system. By tracing out the fermions, we obtain an effective
action entirely in terms of degrees of freedom associated
with bosons, so that we can isolate the effects of fermion-
mediated interactions on the bosons. Second, we examine how
the induced interactions modify the Bogoliugov spectrum of
bosons and lead to the damping of quasiparticles. Third, we
map out the phase diagrams emphasizing the roles of the
boson-fermion mass ratio and the boson-fermion interaction
strength. Finally, by determining the behaviors of the tricrit-
ical point as a function of interfermion scattering length, we
can completely characterize the topology of the phase diagram
without recourse to extensive numerical treatment.

II. MODEL AND FORMALISM

We consider a homogeneous mixture of bosons and popu-
lation balanced spin-1/2 fermions, described by the following
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grand canonical Hamiltonian:

H =
∫

d3r
[ ∑

σ=↑,↓
ψ†

σ (hF + gBF φ†φ)ψσ + gF ψ
†
↑ψ

†
↓ψ↓ψ↑

+ φ†hBφ + gB

2
φ†φ†φφ

]
, (1)

where hi = − h̄2

2mi
∇2 − μi, i = B or F denotes bosons or

fermions with mass mi, and μi represents the chemical po-
tential. φ and ψσ are the field operators for bosons and
fermions with spin σ =↑ and ↓, respectively. In Bose
gases, gB = 4π h̄2aB/mB, where positive s-wave scattering
length aB characterizes the repulsive interaction strength
between bosons. In Fermi gases, gF is the interaction
strength between fermions and is assumed to be attractive,
leading to Bardeen-Cooper-Schrieffer (BCS) pairing. gBF =
2π h̄2aBF (m−1

F + m−1
B ) accounts for the interaction strength

between fermions and bosons, with aBF being the correspond-
ing s-wave scattering length. For convenience, we define the
Fermi momentum kF = (3π2nF )1/3, with nF being the num-
ber density of Fermi gases, the Fermi velocity vF = h̄kF /mF ,
and the corresponding Fermi energy EF = h̄2k2

F /2mF . We
adopt the natural units by setting h̄ = kB = 1 for the sake of
simplicity from now on.

Within the framework of the imaginary-time field inte-
gral [37], we can cast the partition function of the system
as Z = ∫

D[ψ̄σ , ψσ ]D[φ∗, φ]e−S , with the action given by

S = ∫ β

0 dτ [H + ∫
d3r(

∑
σ ψ̄σ ∂τψσ + φ∗∂τφ)], where β =

1/T is the inverse temperature. By performing a Hubbard-
Stratonovich transformation, we introduce a bosonic field
	(r, τ ), which serves as an order parameter [38] en-
capsulating the relevant low-energy degrees of freedom
for fermions. After carrying out the functional integra-
tion over the Grassmann fields, we can obtain an effective
action Seff = ∫

dτd3r[φ∗(∂τ + hB + gB

2 φ∗φ)φ − |	|2/gF ] −
Tr lnM + Trĥ, with ĥ = −∇2/2mF − μF + gBF φ∗φ, where
the matrix M reads

M =
(

∂τ + ĥ −	

−	∗ ∂τ − ĥ

)
. (2)

So far, the above formal manipulation of the partition function
is exact.

To facilitate the evaluation of the traces by benefiting
the translational invariance, we transform the above to the
momentum-frequency representation [q ≡ (q, ωn)]. By mak-
ing the Fourier expansions 	 = 	0 + ∑

q �=0 	qeiqx (we set
	0 to be real) and φ∗φ = ρ0 + ∑

q �=0 ρqeiqx with space-time
coordinate x = (r, τ ), and defining the inverse Green’s func-
tion G−1 = −∂τ + (∇2/2mF + μF − gBF ρ0)σz + 	0σx, with
σx and σz being the Pauli matrices, we can write M =
−G−1 + M1, where the matrix M1 is

M1 =
∑
q �=0

eiqx

(
gBF ρq −	q

−	∗
q gBF ρq

)
. (3)

This allows one to write Tr lnM = Tr ln(−G−1) +
Tr ln (I − GM1), with the unit matrix I , and to perform
the series expansion −Tr ln[I − GM1)] = ∑

l Tr[(GM1)l ]/l ,

with the positive integer l . For l = 1 and l = 2, we
have

Tr(GM1) = M1(0)
∑

k

G(k) = 0, (4a)

Tr(GM1)2 =
∑

kq

G(k)M1(−q)G(k + q)M1(q). (4b)

For l � 3, the related terms are usually related to the in-
duced three-body or more than three-body interactions for
bosons, which can be neglected for the dilute gases considered
in this work. Therefore, up to the level of random-phase ap-
proximation, the effective action contains up to the quadratic
order of the fluctuating fields 	∗

q and 	q, which can be inte-
grated out to yield an approximate effective action solely in
terms of fields of Bose gases:

Seff =
∫

dτd3rφ∗
(

∂τ + hB + gB

2
φ∗φ

)
φ

+ g2
BF

2

∑
q �=0

�(q)ρ−qρq + βV

(∑
k

ξk − |	0|2
gF

)

− Tr ln(−G−1) +
∑

q

ln �−1(q), (5)

where V represents the volume occupied by the system, and
SNSR ≡ ∑

q ln �−1(q) is the so-called Nozieŕes–Schmitt-Rink
(NSR) correction [39,40]. The extension of the original NSR
theory to the superfluid phase below the transition temperature
Tc has already been done by other researchers [41–48]. We
have defined �(q, z) = �pb(q, z) + �cl (q, z), where �cl =
−|	0|2(I11A2 + z2I22B2 − 2z2I12AB)/(I11I22 − z2I2

12) and z =
iωn is the polarization function, describing the response of
the superfluid Fermi gases under external density perturbation
(ωn is the bosonic Matsubara frequency). And �−1(q) and the
parameters in the polarization function are given as follows:

A(q, z) =
∑

p

E+ + E−
E+E−

ξ+ + ξ−
z2 − (E+ + E−)2

, (6a)

B(q, z) =
∑

p

E+ + E−
E+E−

1

z2 − (E+ + E−)2
, (6b)

�pb(q, z) =
∑

p

E+ + E−
E+E−

E+E− − ξ+ξ− + |	0|2
z2 − (E+ + E−)2

, (6c)

I11(q, z) =
∑

p

E+ + E−
E+E−

E+E− + ξ+ξ− + |	0|2
z2 − (E+ + E−)2

+ 1

Ep
,

(6d)

I22(q, z) =
∑

p

E+ + E−
E+E−

E+E− + ξ+ξ− − |	0|2
z2 − (E+ + E−)2

+ 1

Ep
,

(6e)

I12(q, z) =
∑

p

1

E+E−

E+ξ− + E−ξ+
z2 − (E+ + E−)2

, (6f)

�−1(q, z) = I11I22 − z2I2
12, (6g)

where ± is a shorthand notation for momentum p ± q/2,
ξp = p2/2mF − μF + gBF |φ0|2, and Ep =

√
ξ 2

p + |	0|2. It is
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interesting to notice that our approach recovers the same
form of density-density correlation function �(q, ω + i0†)
obtained in studying collective modes with the dynamical
BCS model formulated with a diagrammatic approach [49]
and in studying dissipation of a moving impurity with time-
dependent Bogoliugov-deGennes equations [50] in superfluid
Fermi gases. It involves two contributions, one is from the
pair-breaking excitations and the other is from the collective
excitations.

We perform the standard Bogoliugov decomposition by
writing φ = φ0 + ϕ, where φ0 and ϕ are the mean-field
and fluctuating parts of the bosonic field, respectively. By
retaining the fluctuating fields up to quadratic order, we
approximate the effective action as Seff = S0 + Sg + SNSR,
where S0 is the mean-field action and Sg is the Gaussian
action containing the quadratic orders of ϕ and ϕ∗. Employing
� = − lnZ/βV , we obtain the grand potential density of the
system at mean-field level as

�(0) = −μB|φ0|2 + gB

2
|φ0|4 − |	0|2

gF

+ 1

V

∑
k

(ξk − Ek ) − 2

βV

∑
k

ln (1 + e−βEk ). (7)

In principle, one should use the full grand potential � to
determine the order parameters and the chemical potentials
self-consistently, which will give quantitatively satisfac-
tory results but it is numerically cumbersome. Here we
undertake a compromise approach where quantum fluc-
tuations are completely neglected but it is numerically
tractable. We use the mean-field grand potential to deter-
mine equilibrium values of the order parameters and the
chemical potentials, as it is self-consistent at mean-field
level [51,52]. Effects of quantum fluctuations can be taken
into account on top of the mean-field solutions [48,53,54].
Minimization of �(0) with respect to 	∗

0 gives the gap
equation −1/gF = (1/V )

∑
k tanh(βEk/2)/(2Ek ). The ther-

modynamic relation nF = −∂�(0)/∂μF gives the number
equation nF = (1/V )

∑
k[1 − tanh(βEk/2)ξk/Ek]. These two

equations determine the order parameter 	0 = 	c
0 and the

chemical potential μF = μc
F + gBF nB self-consistently, where

	c
0 and μc

F are the solutions in the absence of cou-
pling with bosons, and nB is the number density of Bose
gases. The saddle-point condition ∂�(0)/∂φ∗

0 = 0 leads to
the Hugenholz-Pines theorem [55], yielding the relation
μB = gBnB + gBF nF . At zero temperature, the corresponding
ground-state energy density is found from the relation E (0)

G =
�(0) + μF nF + μBnB, yielding

E (0)
G = αnF EF + gB

2
n2

B + gBF nF nB, (8a)

α(η) = μc
F

EF
− 3π

8kF a

|	0|2
E2

F

+ 1

nF EFV

∑
k

(
ξk + |	0|2

2εk
− Ek

)
. (8b)

In the above, we have expressed the bare coupling pa-
rameter gF in favor of the physical scattering length a
via the prescription 1/gF = mF /(4πa) − (1/V )

∑
k 1/(2εk ),

with εk = k2/(2mF ). As seen above, the dimensionless

FIG. 1. The spatial distribution of r3 scaling of the induced inter-
action potential r3Vind(r) [in units of g2

BF d (EF )] between two bosons
with the relative coordinate r for three typical interaction parameters
kF a = −1, 0, and 1, corresponding respectively to the regions of
BCS, unitarity, and BEC. d (EF ) = mF kF /π 2 is the density of states
of free Fermi gases at the Fermi energy.

coefficient α(η) is fully determined by the coupling parameter
η ≡ 1/(kF a). Typically, in the deep BCS limit, we have α

approaching 3/5, recovering the well-known result for free
fermions [13,56].

To ensure the stability of the system, we require that the
Hessian matrix ∂2E (0)

G /∂ni∂n j with i, j = F, B constructed for
the ground state to be positive definite, which leads to an upper
bound for fermion density of

n1/3
F <

5(3π2)2/3gB

9mF g2
BF

[
α − 3

5
η
∂α

∂η
+ 1

10
η2 ∂2α

∂η2

]
, (9)

which is a generalization of the mechanical stability con-
dition for Bose-Fermi mixtures [56]. Noticing that the
sound velocity of the BCS system can be determined via
v2

s = (nF /mF )∂2E (0)
G /∂n2

F , we obtain an equivalent stabil-
ity condition for the system against phase separation as
nF < v2

s mF gB/g2
BF , which has been checked consistently in

numerics.

III. RESULTS AND DISCUSSION

Inspecting the effective action in Eq. (5) and the
polarization function, one can obtain the Hamiltonian
describing the induced two-body interactions between
bosons through coupling with fermions, that is, Hind =
(g2

BF /2)
∑

q �=0

∑
k,p �qφ

†
k+qφ

†
p−qφpφk, where �q ≡ �(q, 0)

is the polarization function evaluated at the static limit at
zero temperature. Correspondingly, an induced pairwise in-
teraction potential between two Bose atoms with the relative
coordinate r is given by Vind(r) = ∑

q �=0 g2
BF �qeiq·r. The r3

scaling behavior of the induced potential r3Vind is presented
in Fig. 1. The essential features of the fermion-mediated
interaction potential are remarkable: On the BCS side with
1/kF a = −1, the potential shows an oscillating power-law
behavior (1/r3), a signature of the oscillatory Ruderman-
Kittel-Kasuya-Yosida (RKKY) type interaction [57]. The
RKKY interaction originally describes the effective inter-
action between two localized magnetic impurities due to
the polarization of the conduction electrons near the Fermi
surface. For Bose-Fermi mixtures, the effective interaction
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potential between bosons mediated by a single species
fermions is predicted [58–60] to be of RKKY type in real
space, where it decays at 1/r3 at large spatial separation and
shows the Friedel oscillations at a period of 1/2kF , imprinted
by the density of the Fermi gases. At unitary with 1/kF a = 0,
the potential still shows power-law behavior, but with small
range. On the Bose-Einstein condensation (BEC) side with
1/kF a = 1, the potential decreases to zero rather quickly as
expected, as at the BEC limit it has been shown to induce an
attractive Yukawa potential (e−√

2r/ξ /r) that falls off exponen-
tially beyond the healing length ξ [61–63].

The Gaussian action for the bosonic fluctuating fields
can be compactly written as Sg = 1

2

∑
q �†

qG−1
B �q by defin-

ing a column vector �q = (ϕq, ϕ
∗
−q )T and an inverse matrix

G−1
B = εq + Aq − iωnσz + Aqσx, with εq = q2/2mB and Aq =

(gBB + g2
BF �q)nB. The quasiparticle spectrum ω(q) and the

damping rate γ (q) can be obtained by seeking solutions
of the secular equation detG−1

B (q, ω − iγ ) = 0 with sub-
stitution of �q|iωn → ω + i0†. By analytic continuation to
real frequency (iωn → ω + i0†), one obtains the polarization
function �(q, ω), whose imaginary part provides essential
information for the damping of the excitations of Bose gases.
The imaginary part of the polarization is closely related to the
pole of �, which corresponds to the excitation spectrum of
the superfluid Fermi gases.

In Fig. 2(a), we show two types of excitation at the unitary
limit, where both pair-breaking excitation and collective ex-
citation are important. The pair-breaking excitation spectrum
ωpb corresponds to the poles of �pb(q, z), namely, ωpb =
E+ + E−. It is a single-particle continuum, and its minimum
ωth(q) denotes the threshold energy to break a Cooper pair
with center-of-mass momentum q. The shaded region denotes
that the imaginary part of the polarization differs from zero
and is referred to as the pair-breaking continuum. The collec-
tive spectrum ωcol(q) can be found by seeking the poles of
�cl(q, z), yielding I11(q, ω)I22(q, ω) − ω2I2

12(q, ω) = 0. The
collective excitation spectrum exhibits characteristic linear
energy-momentum behavior at small momentum q as it is
a sound mode, and it lies below the pair-breaking thresh-
old. The behaviors of the imaginary part of the polarization
function for three typical momenta q/kF = 1.0, 1.5, and 2.0
are shown in Fig. 2(b). For q/kF = 1.0 and 1.5, they have
the same threshold energy 2	0, below which Im�(q, ω)
vanishes, while for q/kF = 2.0 > 4μc

F , the threshold energy
is given by ωth =

√
(q2/4 − μc)2 + 	2

0. The magnitude of
Im�(q, ω) reaches maximum right after the threshold energy
and decreases quickly with increasing energy.

The behaviors of the Bogoliubov spectrum ω(q) and
the damping rate γ (q) for three typical mass ratios rm =
mB/mF are shown in Figs. 2(c) and 2(d). At small momen-
tum, the spectrum is phononlike with the sound velocity
given by c =

√
(gB + g2

BF �0)nB/mB. For rm = 1, as shown
in Fig. 2(c), there is a cusp in the spectrum resulting from
the avoid-crossing of collective modes of the Fermi superfluid
and the Bose superfluid. For sufficiently large momentum
q, both spectrums for rm = 1 and rm = 1.5 are entering
the pair-breaking continuum, signifying that the Bogoliubov
quasiparticle achieves finite lifetime due to damping effects.
The damping occurs when the quasiparticle energy reaches

0 1 2 3
0

1

2

3

4

0 1 2 3 4
0

1

2

3

0 1 2 3
0

2

4

0 1 2 3
0

0.5

1

1.5

2
10-3

pair-breaking continuum

(a) (b)

(c) (d)

FIG. 2. Physics of excitations and damping at the unitarity where
1/kF a = 0. Shown in the upper panels are properties of the po-
larization function. (a) The shaded region is the range where the
imaginary part of the polarization differs from zero and is referred
as the pair-breaking continuum. ωth denotes the threshold for the
pair-breaking excitation, and ωcol is the collective excitation. (b) The
imaginary part of the polarization function Im�(q, ω) [in units of
d (EF )] as a function of frequency ω for given typical momen-
tum amplitudes q. Shown in the lower panels are properties of the
Bogoliubov quasiparticles. (c) The excitation energy ω/EF and
(d) the Landau damping rate γ /EF for three typical mass ratios:
rm = 1.0, 1.5, and 2.7. d (EF ) = mF kF /π 2 is the density of states of
free Fermi gases at the Fermi energy. The relevant parameters chosen
here are kF aB = 0.1, kF aBF = 0.05, and nB/nF = 1.

the threshold energy ωth, swiftly reaches its maximum, and
decreases gradually for increasing momentum. Remarkably,
there exists a critical mass ratio rm = 2.7, above which
Bogoliugov excitations can achieve infinite lifetime with no
damping. This special line of spectrum for rm = 2.7 intercepts
the curve of the threshold energy at a critical momentum, qc,
and the damping vanishes for arbitrary momentum, as shown
in Fig. 2(d).

We are now in position to construct a phase diagram for
the system. The stability constraint marks the transition line
between stable phase mixing and phase separation (PS) into
fermions and bosons [25,56,64,65], which remains the same
for different number density ratios nB/nF , as shown in Figs. 3
and 4, corresponding to 1/kF a = −1 (BCS side) and 1/kF a =
0 (unitarity limit), respectively. In the stable-phase-mixing
region, we can further classify it into regions accommodating
quasiparticle excitations with and without damping, termed as
damped and QP, respectively. To map out the phase boundary
separating the damped region and the QP region, one needs to
require that at the phase boundary the quasiparticle spectrum
ω(q) is the tangent line to the threshold energy ωth(q), which
simultaneously determines both the critical momentum qc and
the critical mass ratio rm, illustrated previously in Fig. 2(c).
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FIG. 3. (a) Phase diagram spanned by the boson-fermion mass
ratio and the coupling strength kF aBF at 1/kF aFF = −1 (BCS side).
It has three regions: phase separation (PS), quasiparticle with infinite
lifetime (QP), and a damped region where the quasiparticle has finite
lifetime due to damping. For the given boson-fermion density ratio,
the three regions meet at a tricritical point (TP). (a), (b) The evolution
of the tricritical point (rTP

m , kF aTP
BF ) as a function of the boson-fermion

density ratio nB/nF .

At the BCS side with 1/kF a = −1, as shown in Fig. 3(a),
the largest boson-fermion coupling strength kF aFB one can
achieve to sustain a homogenous phase increases sharply,
reaches a peak with kF aFB = 0.27 at mB/mF = 1, and de-
creases slowly with increasing boson-fermion mass ratio rm.
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0 1 2 3 4
0

0.1

0.2

0.3

PS TP(a)

(b) (c)

Damped QP

FIG. 4. (a) Phase diagram spanned by the mass ratio and the
boson-fermion coupling strength kF aBF at 1/kF aFF = 0 (unitarity).
It has three regions: phase separation (PS), quasiparticle with infinite
lifetime (QP), and a damped region where the quasiparticle has finite
lifetime due to damping. For the given boson-fermion density ratio,
the three regions meet at a tricritical point (TP). (a, b) The evolution
of the tricritical point (rTP

m , kF aTP
BF ) as a function of boson-fermion

density ratio nB/nF .
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FIG. 5. (a), (b) Evolution of the TP (rTP
m , kF aTP

BF ) as a function of
1/kF a. (c) Evolution of the critical momentum qTP

c at the TP as a
function of 1/kF a.

As the boson-fermion density ratio nB/nF increases, the
regime of QP diminishes, giving way to the damped region.
The tricritical point (TP) (rTP

m , kF aTP
FB) where the three phases

meet can be tuned to move with the density ratio nB/nF ,
as shown in Figs. 3(a) and 3(b). The tricritical point moves
toward a high boson-fermion mass ratio and a low boson-
fermion coupling strength when nB/nF increases.

At the unitarity limit where 1/kF a = 0, as shown in
Fig. 4(a), the phase boundary line between the phase mix-
ing and the phase separation varies smoothly with increasing
boson-fermion mass ratio mB/mF . The phase diagram accom-
modates large portions of the QP region, as the boundary
for the boson-fermion mass ratio could reach mB/mF = 2.65
when nB/nF → 0. As nB/nF increases, the TP moves toward a
low mass ratio rm and a high boson-fermion coupling strength
kF aBF , in stark contrast to the case of 1/kF a = −1.

How the interaction parameter 1/kF a controls the motion
of the tricritical point becomes an interesting thing to investi-
gate. This is shown in Fig. 5. For all three typical density ratios
nB/nF = 0.1, 8, and 16, the critical mass ratio rTP

m decreases
as one tunes up the BCS coupling strength 1/kF a, as seen
in Fig. 5(a). Conversely, the critical boson-fermion coupling
strength kF aBF increases as one ramps up the BCS coupling
strength 1/kF a, as seen in Fig. 5(b). What is striking is that
the behavior of the TP as a function of the density ratio
nB/nF shows a reverse trend when it touches a critical BCS
coupling strength roughly at 1/kF a = −0.16. However, the
critical momentum qTP

c follows the same trends for both the
BCS coupling strength and the density ratio, as evident in
Fig. 5(c).

IV. CONCLUSIONS

In summary, we have investigated the superfluid mixtures
of bosonic and fermionic atoms. By using the functional inte-
gral method to trace out the fermionic degrees of freedom, the
effective action of the system shows that the induced inter-
actions mediated by fermions between bosons are attractive
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interactions, and it shows long-range behavior in the BCS
regime that gradually becomes short-ranged when it is driven
toward the BEC limit. By analyzing the Bogoliubov spectrum
and the damping rate of bosonic superfluid, we have mapped
out the phase diagram in the parameter space spanned by
the boson-fermion mass ratio and the boson-fermion coupling
strength, which shows that the stable-phase-mixing region
can be further classified by damping of excitations, leading
to a tricritical point in the phase diagram. A series of new
features arising from fermion-mediated interactions have also
been identified. The predicted damping rate can be probed
experimentally via two-phonon Bragg spectroscopy [66]. Ex-
perimental verification of the predicted phase diagram will

constitute an important step along the lines of searching for
well-defined quasiparticle excitations in these systems. We
hope that our work can add new excitement to the surging
field of cold-atom physics involving fermion-mediated inter-
actions.
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[39] P. Nozieŕes and S. Schmitt-Rink, Bose condensation in an
attractive fermion gas: From weak to strong coupling supercon-
ductivity, J. Low Temp. Phys. 59, 195 (1985).

[40] C. A. R. Sá de Melo, M. Randeria, and J. R. Engelbrecht,
Crossover from BCS to Bose superconductivity: Transi-
tion temperature and time-dependent Ginzburg-Landau theory,
Phys. Rev. Lett. 71, 3202 (1993).

[41] R. Haussmann, Properties of a Fermi liquid at the superfluid
transition in the crossover region between BCS superconduc-
tivity and Bose-Einstein condensation, Phys. Rev. B 49, 12975
(1994).

[42] J. R. Engelbrecht, M. Randeria, and C. A. R. Sáde Melo, BCS
to Bose crossover: Broken-symmetry state, Phys. Rev. B 55,
15153 (1997).

[43] Q. Chen, J. Stajic, S. Tan, and K. Levin, BCS-BEC crossover:
From high temperature superconductors to ultracold superflu-
ids, Phys. Rep. 412, 1 (2005).

[44] A. Perali, P. Pieri, and G. C. Strinati, Quantitative comparison
between theoretical predictions and experimental results for the
BCS-BEC crossover, Phys. Rev. Lett. 93, 100404 (2004).

[45] H. Hu, X.-J. Liu, and P. D. Drummond, Equation of state of
a superfluid Fermi gas in the BCS-BEC crossover, Europhys.
Lett. 74, 574 (2006).

[46] H. Hu, P. D. Drummond, and X.-J. Liu, Universal thermody-
namics of strongly interacting Fermi gases, Nat. Phys. 3, 469
(2007).

[47] R. Haussmann, W. Rantner, S. Cerrito, and W. Zwerger, Ther-
modynamics of the BCS-BEC crossover, Phys. Rev. A 75,
023610 (2007).

[48] R. B. Diener, R. Sensarma, and M. Randeria, Quantum fluctu-
ations in the superfluid state of the BCS-BEC crossover, Phys.
Rev. A 77, 023626 (2008).

[49] R. Combescot, M. Y. Kagan, and S. Stringari, Collective
mode of homogeneous superfluid Fermi gases in the BEC-BCS
crossover, Phys. Rev. A 74, 042717 (2006).

[50] D.-C. Zheng, Y.-Q. Yu, and R. Liao, Tuning dissipation and
excitations in superfluid Fermi gases with a moving impurity,
Phys. Rev. A 100, 033611 (2019).

[51] D. E. Sheehy and L. Radzihovsky, BEC-BCS crossover in
“magnetized” Feshbach-resonantly paired superfluids, Phys.
Rev. Lett. 96, 060401 (2006).

[52] R. Liao and K. F. Quader, Pairing in asymmetrical Fermi sys-
tems with intra- and interspecies correlations, Phys. Rev. B 76,
212502 (2007).

[53] M. Randeria and E. Taylor, Crossover from Bardeen-Cooper-
Schrieffer to Bose-Einstein condensation and the unitary Fermi
gas, Annu. Rev. Condens. Matter Phys. 5, 209 (2014).

[54] L. He, Dynamic density and spin responses of a superfluid
Fermi gas in the BCS-BEC crossover: Path integral formulation
and pair fluctuation theory, Ann. Phys. 373, 470 (2016).

[55] N. Hugenholz and D. Pines, Ground-state energy and excitation
spectrum of a system of interacting bosons, Phys. Rev. 116, 489
(1959).

[56] L. Viverit, C. J. Pethick, and H. Smith, Zero-temperature phase
diagram of binary boson-fermion mixtures, Phys. Rev. A 61,
053605 (2000).

[57] M. A. Ruderman and C. Kittel, Indirect exchange coupling of
nuclear magnetic moments by conduction electrons, Phys. Rev.
96, 99 (1954).

[58] D. H. Santamore and E. Timmermans, Fermion-mediated inter-
actions in a dilute Bose-Einstein condensate, Phys. Rev. A 78,
013619 (2008).

[59] S. De and I. B. Spielman, Fermion-mediated long-range inter-
actions between bosons stored in an optical lattice, Appl. Phys.
B 114, 527 (2014).

[60] D. Suchet, Z. Wu, F. Chevy, and G. M. Bruun, Long-range
mediated interactions in a mixed-dimensional system, Phys.
Rev. A 95, 043643 (2017).

[61] E. Nakano and H. Yabu, BEC-polaron gas in a boson-fermion
mixture: A many-body extention of Lee-Low-Pines theory,
Phys. Rev. B 93, 205144 (2016).

[62] A. Camacho-Guardian, L. A. Peña Ardila, T. Pohl, and G. M.
Bruun, Bipolarons in a Bose-Einstein condensate, Phys. Rev.
Lett. 121, 013401 (2018).

[63] A. Camacho-Guardian and G. M. Bruun, Landau effective in-
teraction between quasiparticles in a Bose-Einstein condensate,
Phys. Rev. X 8, 031042 (2018).

[64] K. Mølmer, Bose condensates and Fermi gases at zero temper-
ature, Phys. Rev. Lett. 80, 1804 (1998).

[65] R. Roth, Structure and stability of trapped atomic boson-
fermion mixtures, Phys. Rev. A 66, 013614 (2002).

[66] R. Ozeri, N. Katz, J. Steinhauer, and N. Davidson, Colloquium:
Bulk Bogoliubov excitations in a Bose-Einstein condensate,
Rev. Mod. Phys. 77, 187 (2005).

023327-7

https://doi.org/10.1103/PhysRevLett.117.145301
https://doi.org/10.1103/PhysRevLett.118.055301
https://doi.org/10.1103/PhysRevB.97.020506
https://doi.org/10.1038/nphys4187
https://doi.org/10.1088/1367-2630/acdab5
https://doi.org/10.1126/science.aax5850
https://doi.org/10.1007/BF00683774
https://doi.org/10.1103/PhysRevLett.71.3202
https://doi.org/10.1103/PhysRevB.49.12975
https://doi.org/10.1103/PhysRevB.55.15153
https://doi.org/10.1016/j.physrep.2005.02.005
https://doi.org/10.1103/PhysRevLett.93.100404
https://doi.org/10.1209/epl/i2006-10023-y
https://doi.org/10.1038/nphys598
https://doi.org/10.1103/PhysRevA.75.023610
https://doi.org/10.1103/PhysRevA.77.023626
https://doi.org/10.1103/PhysRevA.74.042717
https://doi.org/10.1103/PhysRevA.100.033611
https://doi.org/10.1103/PhysRevLett.96.060401
https://doi.org/10.1103/PhysRevB.76.212502
https://doi.org/10.1146/annurev-conmatphys-031113-133829
https://doi.org/10.1016/j.aop.2016.07.030
https://doi.org/10.1103/PhysRev.116.489
https://doi.org/10.1103/PhysRevA.61.053605
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRevA.78.013619
https://doi.org/10.1007/s00340-013-5556-5
https://doi.org/10.1103/PhysRevA.95.043643
https://doi.org/10.1103/PhysRevB.93.205144
https://doi.org/10.1103/PhysRevLett.121.013401
https://doi.org/10.1103/PhysRevX.8.031042
https://doi.org/10.1103/PhysRevLett.80.1804
https://doi.org/10.1103/PhysRevA.66.013614
https://doi.org/10.1103/RevModPhys.77.187

