
PHYSICAL REVIEW A 109, 023324 (2024)
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Computing dynamical properties of strongly interacting quantum many-body systems poses a major challenge
to theoretical approaches. Usually, one has to resort to numerical analytic continuation of results on imaginary
frequencies, which is a mathematically ill-defined procedure. Here we present an efficient method to compute
the spectral functions of the two-component Fermi gas near the strongly interacting unitary limit directly in real
frequencies. To this end, we combine the Keldysh path integral that is defined in real time with the self-consistent
T -matrix approximation. The latter is known to predict thermodynamic and transport properties in good
agreement with experimental observations in ultracold atoms. We validate our method by comparison with ther-
modynamic quantities obtained from imaginary-time calculations and by transforming our real-time propagators
to imaginary time. By comparison with state-of-the-art numerical analytic continuation of the imaginary-time
results, we show that our real-time results give qualitative improvements for dynamical quantities. Moreover,
we show that no significant pseudogap regime exists in the self-consistent T -matrix approximation above the
critical temperature Tc, an issue that has been under significant debate. We close by pointing out the versatile
nature of our method as it can be extended to other systems, like the spin- or mass-imbalanced Fermi gas, other
Bose-Fermi models, two-dimensional systems, and systems out of equilibrium.
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I. INTRODUCTION

The two-component Fermi gas, realized in experiments
with ultracold atoms in both two and three dimensions,
nowadays plays a central role in the study of strongly cor-
related systems [1–3]. This is a consequence of the simple
form of the interactions that only depend on the scattering
length. However, at the same time the system exhibits a
highly nonperturbative quantum many-body regime close to
the quantum-mechanical unitary scattering limit reached in
the vicinity of a Feshbach resonance. The presence of only
a single relevant interaction parameter gives rise to universal
physics (with corrections in two dimensions [4,5]). Despite
this simplicity, the low-temperature phase diagram contains a
variety of neutral superfluid phases depending on the spin po-
larization [6,7]. Equally important for the scientific interest in
the Fermi gas is the fact that it can be investigated experimen-
tally with a high degree of control. One of the first examples
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was the experimental determination of the phase diagram as a
function of the spin polarization [8]. Later, the thermodynamic
properties of the spin-balanced gas at the Feshbach resonance
were measured with high precision in both the superfluid
and normal phases [9]. More recently, further technological
advances have allowed the direct measurement of the Tan
contact [10–12] for the balanced Fermi gas at unitarity with
a homogeneous box trap [13]. The latter also paved the way
for the determination of local transport coefficients like sound
diffusion [14].

The remarkably high precision reached in experiments in
combination with the universal and nonperturbative nature
of the system makes it ideal for benchmarking theoreti-
cal approaches. The self-consistent T -matrix approximation
is a theoretical method that has proven surprisingly ac-
curate throughout the BCS-BEC crossover. In particular,
its predictions for thermodynamic quantities including the
critical temperature, Bertsch parameter, and Tan contact
agree extremely well with experimental observations [15–17].
Furthermore, combining the self-consistent T -matrix approx-
imation with suitable scattering time approximations even
describes the transport properties on a quantitative level [18].

Experiments not only focus on thermodynamic and trans-
port quantities but also aim for the investigation of dynamical
properties. The latter is achieved using radio-frequency (rf)
spectroscopy, which provides access to the spectral functions
of the system [19]. With this technique, experiments have
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been able to measure the superfluid gap of an imbalanced gas
[20]. The spectral measurements have also revealed the exis-
tence of an intermediary regime in a spin-imbalanced Fermi
gas where the quasiparticle picture breaks down, manifesting
through the increasing width of the spectral features [21]. In a
two-dimensional (2D) gas, another interesting spectral feature
has been measured, namely, the existence of a pseudogap
above the critical temperature [22]. While the existence of a
pseudogap was expected in two dimensions, its fate in three
dimensions is less obvious. Although a typical back bending
of the dispersion has been observed well above the critical
temperature [23,24], the expected suppression of the spin
susceptibility is absent [25].

Having direct experimental access to the spectral infor-
mation motivates theoretical computation of the spectrum
with equally high reliability as thermodynamic quantities. It
is expected that self-consistent approximations produce rea-
sonable spectra across all scales without obvious artifacts.
Combined with the good agreement between experimental
thermodynamic observables, we thus expect similar quanti-
tative agreement for the spectral properties obtained through
the self-consistent T -matrix approximation. However, reliably
extracting spectral properties with high accuracy has proven
difficult, as the procedure to date still involves the numerical
analytic continuation (NAC) of data in imaginary frequencies
to the real frequency axis, a mathematically ill-defined pro-
cess, which results in uncontrolled errors [26,27]. As a result,
the comparison of dynamical information gained from rf spec-
tra lacks the triumphs of determining the thermodynamic and
universal parameters [28–31].

In this work we develop a method based on the Keldysh
path integral that allows us to calculate the self-consistent
T -matrix approximation to very high precision directly in
real frequencies. We exploit the convolution structure of the
T -matrix approximation to express it through Fourier trans-
forms. The key to the success of our approach lies in a
piecewise interpolation scheme that allows one to analytically
treat the fast oscillations that inevitably appear in such a real-
time formulation. The method is validated against previous
results for thermodynamic quantities obtained from Matsub-
ara propagators in imaginary time and differs by less than
1%. This level of precision is remarkable because the pre-
vious results are known to be very accurate in imaginary
time, demonstrating that our method is capable of reliably
computing thermodynamic properties. For systems in ther-
mal equilibrium, the main advantage of our technique is
the direct access to dynamical quantities as opposed to the
imaginary-time approach, which yields uncontrolled errors
when analytically continued to real frequencies. As a result,
the formulation of the self-consistent T matrix within Keldysh
field theory allows us to quantitatively describe both spectral
features and thermodynamics.

The paper is structured as follows. In Sec. II we introduce
the two-component Fermi gas as realized in experiments with
ultracold atoms. Readers familiar with this subject can skip
ahead to Eq. (7). The Keldysh formalism is recapitulated and
applied to the Fermi gas in Sec. III. Our central technological
development is presented in Sec. IV and carefully validated in
Secs. V and VI. We then apply the method to spectral func-
tions near the superfluid transition in the BCS-BEC crossover,

addressing the issue of the pseudogap at unitarity (Sec. VII),
before we provide a short summary and outlook in Sec. VIII.

II. INTERACTING FERMI GAS

A gas with density n, by definition, describes a dilute
system, when the average distance between particles n−1/3 is
much larger than the size of the particles. Under these con-
ditions, neutral particles quite generally interact via induced
dipole-dipole interactions, resulting in an attractive two-body
potential generated by the van der Waals force [32]. To de-
scribe the two-body scattering potential, one can use a simple
model, which cuts off the attraction at some small atomic
distance R0 [3],

V (r) =
{−C6/r6, r > R0

∞, r � R0,
(1)

where C6 is a positive constant that is determined by the
specific atoms used in the experiments.

At low temperatures, the gas becomes degenerate, mean-
ing that the particles’ wave functions overlap. This behavior
manifests when nλ3

T � 1, with λT = h̄
√

2π/mT the thermal
de Broglie wavelength, implying that scattering needs to be
treated quantum mechanically [3].

To simplify the theoretical model, one can exploit a sepa-
ration of length scales in the ultracold dilute quantum gas

R0 � lvdW � n−1/3 � λT , (2)

where lvdW = (mC6/h̄2)1/4/2 is the length scale associated
with the van der Waals interaction in Eq. (1). Due to the small
kinetic energy of the gas, it is sufficient to consider the s-wave
scattering channel with the isotropic scattering amplitude [33]

f (k) = −1

a−1 − rek2/2 + · · · + ik
, (3)

with a the scattering length and re the effective range. For the
potential in Eq. (1), the scattering length and effective range
can be analytically computed as [3,34,35]

a = ã[1 − tan(� − 3π/8)], (4a)

re = 2.92ã

[
1 − 2

ã

a
+ 2

(
ã

a

)2
]
. (4b)

The results can be parametrized through the mean scatter-
ing length ã = 0.956lvdW and the WKB phase � = 2l2

vdW/R2
0.

Looking at Eq. (4a), it can be seen that the scattering length
diverges for specific values of �. Such a divergence appears
when the collision of the incoming particles is resonant with a
bound state. Even though these resonances are determined by
the atomic scales lvdW and R0, Feshbach resonances [36,37]
allow one to tune the scattering properties via an external
magnetic field.

Here we only briefly describe the main concept in the
experimentally relevant case of alkali-metal atoms with one
valence electron and refer the interested reader to the detailed
review in [32]. A Feshbach resonance emerges because the
external magnetic field polarizes the valence electrons of the
atoms. For low energies, the physics of a collision is there-
fore mainly described by the triplet state. However, the wave
function for the singlet state of two fermions is symmetric,
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which means that the singlet potential at small distances is
much more attractive than the triplet potential and therefore
supports many bound states. Because the singlet and triplet
states have different magnetic moments, it is possible to create
a resonance between the incoming triplet states (open chan-
nel) and a bound singlet state (closed channel), by tuning the
magnetic field. As the magnetic field is finite, there will be
interactions between the close-to-resonance open channel and
the closed channel. To describe two fermionic atoms of the
same type scattering into the open channel, one can use the
two-channel model [38,39]

H2c =
∫

d3r

{∑
σ

ψ†
σ (r)

(
− h̄2∇2

2m

)
ψσ (r)

+ �†(r)

(
− h̄2∇2

4m
+ ν(B)

)
�(r)

+ g̃
∫

d3r′χ (|r − r′|)

×
[
�†

(
r + r′

2

)
ψ↑(r)ψ↓(r′) + H.c.

]}
, (5)

where ψσ and ψ†
σ are the fermionic annihilation and cre-

ation operators, respectively, with spin σ and mass m. The
closed channel is described by the annihilation operator of the
bosonic pairing field �, as well as the corresponding creation
operator �†. The magnetic field B leads to a detuning of the
closed channel by ν(B) = δμ(B − Bc), with the difference in
the magnetic moment between the triplet and singlet states
being δμ and Bc denoting the field strength at which they
become resonant. The scattering of two fermions in the open
channel into the pairing field happens through an isotropic
form factor that is normalized as

∫
d3r χ (|r|) = 1. This means

that the strength of the interaction is given by g̃. By elimi-
nating the pairing field, one can compute the corresponding
scattering length and effective range in Eq. (3) originating
from the Feshbach resonance [40]

a−1 = −mr�

h̄2 ν(B) + 1

2ã
, (6a)

re = −2r� + 3ã

(
1 − 4ã

3a

)
, (6b)

where r� = 2π h̄4/(mg̃)2 is the length scale associated with
the Feshbach coupling. Importantly, there exists a critical field
strength B0 = h̄2(2ãδμmr�)−1 + Bc at which the scattering
length a diverges.

The behavior of the system qualitatively differs depend-
ing on the relation between the van der Waals length scale
and the strength of the Feshbach resonance. This motivates
introducing the resonance strength sres = ã/r� [32], which
compares the two scales. In the following, we will consider a
so-called open-channel-dominated Feshbach resonance where
sres � 1 such that g̃ is large. Furthermore, such a resonance
directly leads to re being on the order of lvdW. Since the Fermi
momentum kF ≈ n1/3, the separation of length scales in an
ultracold gas in Eq. (2) means that rekF � 1. The system is
therefore well described by considering a contact interaction
where re → 0. By rescaling the field operator � → �/g̃, the

Hamiltonian (5) can be rewritten as

H =
∫

d3r

[∑
σ

ψ†
σ (r)

(
− ∇2

2mσ

−μσ

)
ψσ (r) − �†(r)

1

g0
�(r)

+ �†(r)ψ↑(r)ψ↓(r) + H.c.

]
, (7)

where we have now switched to units of h̄ = 1 and kB = 1,
which will be used throughout the rest of the paper. Fur-
thermore, the system has also been generalized by including
different chemical potentials of the two different fermion
species μσ and mass imbalance. We have also defined g0 =
−g̃2/ν(B) similarly to [41] and neglected the kinetic energy
of the bare � field due to g̃ being large. This Hamiltonian
quantitatively describes experiments with an open-channel
dominated Feshbach resonance, which, for example, is the
case for several of the experiments that have investigated the
BCS-BEC crossover [9,42]. The zero-range interactions lead
to a divergence and the interactions therefore have to be cut
off at the length scale lvdW. This renormalization connects g0

to the experimental scattering length, which is discussed in
Appendix A 1.

III. FIELD-THEORETIC METHOD

With the effective Hamiltonian for the system defined by
Eq. (7), we now seek to compute observables. The system
is theoretically challenging because it is strongly interacting,
three dimensional, and at finite density. For computing ther-
modynamic properties, imaginary-time quantum field theory
has been very successful. From this theory dynamical quan-
tities can be computed using NAC. To avoid this inherently
uncontrolled method while still taking advantage of the suc-
cesses of quantum field theory, we use the real-time Keldysh
path-integral approach.

In Sec. III A we will give a brief introduction to the generic
structure of the Keldysh path integral. For the reader already
familiar with the theory, it will be sufficient to consider the
conventions fixed in Eqs. (15), (17), and (22), as these will be
used in the remaining parts of the paper. For a more in-depth
discussion of the construction of real-time quantum field the-
ories and its different formulations, the interested reader is
referred to existing textbooks and reviews in [43–48].

Having described the generic structure of the real-time
path integral we then, in Sec. III B, apply it to the strongly
interacting Fermi gas and derive the real-time formulation of
the self-consistent T -matrix approximation.

A. Keldysh path integral

To construct a quantum field theory in real time, one de-
fines the partition function as a trace over the density matrix

Z = Trρ(t ) = TrU (t, t0)ρ(t0)U (t, t0)†, (8)

where U (t, t0) is the time-evolution operator. With the
partition function defined through the density matrix, this
formalism allows us to consider systems in and out of equilib-
rium as well as time evolution. For the present paper we focus
on an equilibrium system and use the real-time formulation
to avoid the NAC. Because U (t, t0) and U (t, t0)† contain
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FIG. 1. Time contour C used to construct a real-time action.

opposite time ordering, it is necessary to differentiate between
forward and backward propagation. This can conveniently be
done using the time contour C shown in Fig. 1.

Using this contour, the system is evolved from some initial
time t0 to some time t on the + branch and then back to t0
along the − branch [43]. To evaluate the partition function
using the contour C, one uses coherent Grassmann fields to
describe fermionic degrees of freedom and coherent complex
fields to describe bosonic degrees of freedom, similarly to the
imaginary-time procedure [47]. The differentiation between
forward and backward propagation is achieved through the
use of two different fields φ±, which have support exclusively
on the + or the − branch, respectively, in Fig. 1. The partition
function can then be written as a functional path integral over
the fields φ±,

Z =
∫

D{φ, φ̄}eiS . (9)

For complex numbers, the overbar denotes complex conjuga-
tion, while for Grassmann numbers it indicates a different,
independent Grassmann number. The measure in Eq. (9)
should be understood as a functional measure over the in-
dependent fields φα (r, t ) and φ̄α (r, t ) for Grassmann fields
and Reφα (r, t ) and Imφα (r, t ) for complex fields. In both
cases α ∈ {+,−} specifies the branch of the Keldysh contour.
Following this procedure, the continuous action in time S
appearing in Eq. (9) takes the form

S =
∫

d4x
∑

α=+,−
α(φ̄αi∂tφα − H[φ̄α, φα]), (10)

where H[φ̄α, φα] is the normal-ordered Hamiltonian density
with all field creation (annihilation) operators replaced by φ̄α

(φα). As the system is time independent and only has local in-
teractions, all fields are evaluated at the same space-time point
x = (r, t ). Generalizing the construction to time-dependent
Hamiltonians and nonlocal interactions is straightforward. For
this action the contour is extended to the entire real axis and
interactions are switched on adiabatically in the infinite past
[47]. For interacting systems it is also convenient to write the
action in the form

S = S0 + SI , (11)

where S0 is quadratic in the fields and SI contains the interac-
tions.

The continuous representation (10) does not explicitly con-
tain the two boundaries at ±∞ of the contour in Fig. 1. These
can be conveniently included after a unitary linear transfor-
mation on the contour degrees of freedom [43]. The linear
transformation then maps to the symmetric and antisymmet-
ric superpositions φc(q) = (φ+ + (−)φ−)/

√
2. When φ is a

complex number, therefore representing a bosonic degree of
freedom, one can derive mean-field equations where φc will

represent the possibly finite mean field. Conversely, in a mean-
field description of a bosonic system, φq can be connected
to quantum fluctuations. To this extent φc often denotes the
classical field and φq denotes the quantum field. For fermionic
degrees of freedom, where φ is a Grassmann number, we
only use these conventions to make the equivalence of the
microscopic formulation for fermions and bosons apparent.

Considering a spatially homogeneous equilibrium theory
means that the noninteracting action is diagonalized by a
transformation to reciprocal space, represented by the four-
vector p = (k, ω). It is related to real space by the Fourier
transformation

f (x) =
∫

d4 p

(2π )4
eip·x f (p), (12)

where the four-vector dot product is defined as p · x = k · r −
ωt and d4 p = dω dk3. In reciprocal space, the bare part of the
action is given by

S0 =
∫

d4 p

(2π )4

(
φ̄c(p)
φ̄q(p)

)T

G−1
0 (p)

(
φc(p)
φq(p)

)
, (13)

where the inverse contour propagator takes the form

G−1
0 (p) =

(
0

(
GA

0

)−1
(p)(

GR
0

)−1
(p) PK (p)

)
. (14)

The lower off-diagonal element (GR
0 )−1(p) is the inverse

bare retarded propagator which is causal in the sense that
GR

0 (x) ∼ θ (t ). Consequently, it is connected to the inverse,
bare advanced propagator (GA

0 )−1(p) by complex conjugation.
The lower diagonal component PK is a purely imaginary and
infinitesimally small term that ensures the normalization of
the partition function.

The effect of interactions on correlation functions is in-
cluded through the self-energy matrix �, which has a similar
causality structure as the inverse propagator G−1

0 such that the
interacting inverse contour propagator is

G−1 =
(

0
(
GA

0

)−1 − �A(
GR

0

)−1 − �R −�K

)
. (15)

Note that the bare infinitesimal PK has been dropped since
interactions generally make �K finite. Inverting Eq. (15), one
arrives at the contour propagator

G =
(

GK GR

GA 0

)
. (16)

This inversion leads to the Dyson equation for the retarded
propagator

GR(p) = −i〈φc(p)φ̄q(p)〉 = 1(
GR

0

)−1
(p) − �R(p)

(17)

and a similar equation for GA. Transforming back to real space
and the ± basis, one recovers the operator definition of the
retarded propagator

GR(x, x′) = −iθ (t − t ′)〈[φ̂(x), φ̂†(x′)]∓〉, (18)

where φ̂ denotes the field operator and the commutator (minus
sign) is used for bosonic fields while the anticommutator (plus
sign) is used for fermionic fields. In this basis the relation
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between the advanced and retarded propagators is GA(x, x′) =
ḠR(x′, x). The retarded propagator contains information about
the spectrum of the system, as its imaginary part is directly
linked to the spectral function.

A(p) = −2 ImGR(p). (19)

Probability conservation Z ≡ 1 guarantees that the lower
diagonal entry of Eq. (16) vanishes. Explicitly, one has
〈φq(p)φ̄q(p)〉 = 0. The upper diagonal element in G is re-
ferred to as the Keldysh propagator and given by

GK (p) = −i〈φc(p)φ̄c(p)〉 = |GR(p)|2�K (p), (20)

which is anti-Hermitian and related to how the spectrum is
occupied [43]. In analogy to Eq. (18) for the retarded propa-
gator, the Keldysh propagator can be connected to the operator
definition by transforming to real space and ± basis

GK (x, x′) = −i〈[φ̂(x), φ̂†(x′)]±〉, (21)

where the upper (lower) sign represents bosonic (fermionic)
fields. It is often convenient to separate out the vacuum term
of GK and define the occupied part of the spectrum as

δGK (p) = GK (p) + iA(p) = |GR(p)|2δ�K (p), (22)

where δ�K (p) = �K (p) − 2i Im�R(p). With this decom-
position one can compute the momentum distribution by
integrating δGK over frequency

n(k) = ±i
∫

dω

4π
δGK

σ (p), (23)

where the sign is determined by the statistics of the degree of
freedom as in Eq. (21). For degrees of freedom with well-
defined particle number, the density n follows directly by
integrating over momentum.

Out of equilibrium, δGK is independent of GR, but in ther-
mal equilibrium, they are linked by the fluctuation-dissipation
relation (FDR)

iδGK (p) = ±2nB,F (ω)A(p), (24)

with the same sign conventions as in Eq. (23) and the ther-
mal distribution functions nB,F (ω) = (eβω ∓ 1)−1. Note that
in equilibrium δ�K and Im�R also satisfy the FDR (24). This
means that in thermal equilibrium, similar to the formulation
in imaginary time, all interaction effects are encoded in a sin-
gle function: the retarded self-energy. However, as discussed
in Appendix A, computing the Keldysh self-energy directly
can be advantageous numerically as it is generally less sensi-
tive to numerical cutoffs in frequency and momentum space
than GR. The FDR can therefore be used to remove numerical
noise from the spectral function.

B. Self-consistent T matrix

Having outlined the generic construction of the Keldysh
field theory, we now apply it to the strongly interacting
Fermi gas. The Hamiltonian in Eq. (7) contains two different
fermionic degrees of freedom, which we represent with the
Grassmann fields ψc(q);σ with σ ∈ {↑,↓}. The bosonic pairing
field, on the other hand, is represented with the complex fields
�c(q). Following the procedure in the preceding section, the

action can be split into three parts

S = Sψ + S� + SI . (25)

The action of free fermions Sψ is described by the inverse
retarded (advanced) propagators(

GR (A)
0,σ

)−1
(p) = ω − k2/2mσ + μσ ± i0+, (26)

while the inverse free propagators for the pairing field are(
�

R (A)
0

)−1 = 1/g0 ± i0+. (27)

In both cases the infinitesimal imaginary part ensures the
correct causal form. When deriving the free action for the
pairing field S�, the dynamic part has been neglected. This is
consistent with the contact interaction approximation, which
requires a renormalization of the coupling g0. In that pro-
cedure g0 → 0 simultaneously with a UV cutoff that goes
to ∞ in such a way that the experimental binding energy is
recovered. This procedure means ω � 1/g0 for all physically
relevant values of ω, and the ω dependence can therefore be
neglected.

The final term of the action in Eq. (25) describes interac-
tions between the fermions and the pairing field

SI = − 1√
2

∫ 3∏
i=1

d4 pi

(2π )4

[
Mγ

α,βψ̄α,↑(p1)ψ̄β,↓(p2)�γ (p3)

× δ(p3 − p1 − p2) + c.c.
]
, (28)

where the sum over Keldysh indices {α, β, γ } ∈ {c, q} is im-
plicit but the four-momentum structure has been kept explicit.
The components of the tensor M are given by the first Pauli
matrix, Mc

α,β = σ 1
α,β and Mq

α,β = δα,β .
The inclusion of interactions necessitates finding a suit-

able approximation scheme for the self-energies. To compute
thermodynamic quantities that satisfy all thermodynamic re-
lations, it is necessary to employ a self-consistent treatment of
the pairing channel [16,31,49]. To derive such an approxima-
tion, one can start from the two-particle-irreducible effective
action [50,51] or a similar formulation using the Luttinger-
Ward functional � [52], which is the interaction part of the
grand canonical potential. The formulation in terms of the
former is more common in the context of Keldysh field theory,
as it is more general, applying also when the system is out
of equilibrium. There the self-consistent approximation pre-
serves all conservation laws of the exact action, wherefore it is
called a conserving approximation in this context. Explicitly
for the Hamiltonian in Eq. (7), this entails the conservation
of particle number, energy, and momentum. We point out
that in the present equilibrium setting both formalisms are
identical. To relate to the existing literature, we express our
approximation in terms of the � functional augmented by the
Keldysh structure of the propagators.

The � functional is elegantly represented diagrammat-
ically as a sum of closed diagrams constructed from the
vertices of the action such that in each diagram more than two
lines have to be cut for it to become disconnected. For the
interaction in Eq. (28) the lowest-order � functional that can
be constructed is the two-loop diagram shown in Fig. 2. This
forms the basis of the self-consistent T -matrix approximation.
Due to the contact nature of the interaction, the Bethe-Salpeter
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FIG. 2. The � functional, the resulting self-energies, and the
Dyson equations for both the pairing field and spin-↑ fermion. The
full fermion propagators are black bold lines, with an arrow indicat-
ing the species and the pair propagator is the gray box labeled with �.
The arrows indicate the direction of propagation and the dashed line
is the bare contact interaction for the electrons, while the thin fermion
lines represent the bare fermion propagators. The self-energy and
Dyson equation for ↓ is obtained by flipping the spins of the spin-↑
counterparts.

equation in Fig. 2 has the same form as the Dyson equation,
which is the reason why the pairing field description is con-
venient. The self-energies can be derived by taking functional
derivatives of � with respect to the propagators

�σ = δ�

δGσ

, �� = δ�

δ�
. (29)

The resulting self-energies are also drawn in Fig. 2, where
all propagators are understood as dressed by self-energies.
Hence, Eq. (29) leads to three coupled self-consistent inte-
gral equations for the retarded self-energies, which together
with the three corresponding Dyson equations of the form of
Eq. (17) give rise to a closed set of equations. At this point,
the general structure of the theory has been fully defined,
recovering the self-consistent T -matrix approximation [15]
but formulated directly in real frequencies.

By comparison with high-precision experiments [9,13] and
bold diagrammatic Monte Carlo results [53,54], this approxi-
mation has proven surprisingly accurate for thermodynamic
quantities in the experimentally relevant regime of strong
interactions |kF a| � 1. Outside this regime larger deviations
from exactly known results occur: For weak interactions, BCS
theory is recovered, lacking the quantitatively important cor-
rections found by Gor’kov and Melik-Barkhudarov [55]. For
very deeply bound pairs, the gas is well described in terms
of weakly interacting bosons. However, the scattering length
between these pairs [56] app = 0.6a is not correctly recovered
by the T -matrix approximation [15]. Focusing on param-
eters near unitarity, several other approximation schemes
have been developed. These include the historic non-self-
consistent approach by Nozières and Schmidt-Rink [57], an
expansion in the inverse number of fermionic components
[58], the Chevy ansatz [59], Gaussian fluctuations [60,61],
and partially self-consistent T -matrix approximations [31].
Comparison across these methods systematically shows that
thermodynamic quantities are most accurately approximated
by the self-consistent T matrix.

In contrast to an imaginary-time formulation, self-energies
are distinguished not only by particle species but also by their
Keldysh index R, A, or K . Hence, one has to account for the

contour degree of freedom (q, c), which we have suppressed
in our discussion of Eq. (29). Its inclusion is straightforward:
One constructs all diagrams that involve an odd number of
quantum fields at each vertex, thereby accounting for the fact
that Sint is antisymmetric under exchange of the + and −
branches of the Keldysh contour C. The contraction of two
legs is then identified as one of the four possible propaga-
tors 〈φα (p)φ̄β (p)〉, with α, β ∈ {c, q} and φ ∈ {ψσ ,�} thus
removing all diagrams that contain a q-q propagator.

After extracting the vacuum contribution as discussed
previously, one finds a retarded self-energy for the pair prop-
agator given by

�R
� (p) = i

2

∫
d4 p′

(2π )4
[2GR

↑(p − p′)GR
↓(p′)

+ δGK
↑ (p − p′)GR

↓(p′) + GR
↑(p − p′)δGK

↓ (p′)].
(30)

The first term determines the vacuum limit as it is indepen-
dent of δGK . The two remaining terms describe corrections
due to occupation in either of the two fermion species. In
Appendix A 1 we discuss how the vacuum term can be used
to renormalize the bare divergent propagator and connect the
theory to the experimental scattering length. As expected, the
Keldysh self-energy describes the occupation of the fluctua-
tions in the pair propagator and thus requires finite occupation
of both fermion species

δ�K
� (p) = i

2

∫
d4 p′

(2π )4
δGK

↑ (p − p′)δGK
↓ (p′). (31)

The full pair propagator � is then used in the retarded self-
energy for the fermions given by

�R
σ (p) = − i

2

∫
d4 p′

(2π )4

[
�R(p + p′)δGK

σ̄ (p′)

+ δ�K (p + p′)GA
σ̄ (p′)

]
, (32)

where σ̄ is the opposite species of σ . Since pairs are absent
in the vacuum limit, �R

σ is nonzero only in the presence of
a finite density of fermions with opposite spin. This is also
the case for the occupation of the fermion spectrum, which is
determined through Eq. (22) with

δ�K
σ (p) = − i

2

∫
d4 p′

(2π )4
δ�K (p + p′)

[
δGK

σ̄ (p′) − 2iAσ̄ (p′)
]
.

(33)

The full theory is then defined by the self-energies (30)–(33)
dressing the bare propagators of fermions and pairing field
and the corresponding Dyson equations (17) and (22).

IV. NUMERICAL IMPLEMENTATION

Having formulated the theoretical framework, we now fo-
cus on the numerical solution of the coupled self-consistent
integral equations for the propagators.

As the retarded and Keldysh propagators are simulta-
neously diagonal in p space, the inversion of the Dyson
equations and the computation of the Keldysh propagator
are straightforward. The main challenge lies in computing
the self-energies self-consistently. It is possible to do this
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efficiently and accurately due to the convolution nature of
Eqs. (30)–(33). This means that the self-energies can be ob-
tained by transforming the propagators into the position and
time domain, then computing their products, and transforming
these back to momentum and frequency space.

However, performing these transformations accurately is
difficult even in imaginary time, because the correlation func-
tions decay slowly at high momenta and frequencies. For
instance, the momentum distribution, according to the Tan
energy theorem [11], acquires the form n(k) = C/k4. This
implies that the momentum-integrated rf spectrum I (ω) =
i
∫

k δGK (k, k2/2m − μ − ω)/2 scales like ω−3/2 for high fre-
quencies in the case of negligible final-state interactions [62],
in agreement with the experimental observations [19]. Fur-
thermore, the fermionic spectral functions themselves show
power-law asymptotics, which are given below in Eqs. (46)
and (47). Even in imaginary time, it turns out that using a
fast Fourier transform and hence an equidistant grid to dis-
cretize propagators is unfeasible. Instead it has been shown
that by using adaptive nonequidistant grids one can solve the
imaginary-time problem with high accuracy [16,49].

In a real-time formulation the need for long grids is much
more challenging than in imaginary time. This is because
the high-momentum behavior of the propagators is quickly
oscillating with a frequency that grows linearly with the
momentum. This so-called chirped oscillation creates the
predicament that a direct implementation requires an increas-
ingly dense grid for higher momentum. In real time one
therefore has to use long grids which are simultaneously
dense, making the direct implementation intractable.

Here we solve this problem by constructing a method
which, through a series of different interpolations, analytically
separates out the chirped oscillations such that numerical sam-
pling of the latter is completely avoided. As a result, similar
to the calculation on Matsubara frequencies, one can use grids
that sparsely sample high momenta such that the power-law
tails of the correlations are accurately described. The method
therefore allows one to compute convolutions both efficiently
and accurately such that the self-consistent T matrix can be
computed directly in real time without NAC.

To understand the procedure it is insightful to consider the
simplest case where a chirped oscillation appears, namely, the
transformation of the bare retarded propagator from p to x,

GR
0 (x) =

∫
d4 p

(2π )4

exp(ip · x)

ω + μ − k2

2m + i0+ . (34)

The frequency integral can be computed by contour integra-
tion and leads to the propagator in (k, t ) space

GR
0 (k, t ) = −iθ (t ) exp

[(
−i

k2

2m
+ iμ − 0+

)
t

]
, (35)

which, due to isotropy, only depends on |k|. The first term in
the argument of the exponential in Eq. (35) leads to oscilla-
tions with a linear chirp in momentum, which is exceedingly
hard to sample on a finite numerical grid for larger values of
|k|. However, for the bare propagator, the momentum integral

FIG. 3. Typical spectral function of an isotropic strongly inter-
acting system with both broadening and a nontrivial structure at small
momenta. (a) The bare quadratic dispersion leads to a large change
of the energy at high momentum in the original coordinate system.
(b) Performing the coordinate transformation makes the energy con-
stant for high momentum.

can be performed analytically as

GR
0 (r, t ) = θ (t ) exp

(
i
r2m

2t
+ (iμ − 0+)t

)(
im

2πt

)3/2

, (36)

where the oscillations due to k2t translate into oscillations
with an argument r2/t . This is equally hard to sample and both
the oscillations and the entire propagator diverge at t = 0. The
challenge to be solved thus lies in the efficient and accurate
computation of Fourier transforms without relying on sam-
pling these fast oscillations. To explain our method we will
consider the transformation p → x and discuss its relation to
the inverse transformation at the end of the section.

Our method to perform the transformations relies on the
observation that, in the ultraviolet, propagators are only
weakly modified by the effects of a finite density. Hence,
one can expect well-defined quasiparticles with a dispersion
mostly determined by the bare mass, which in the case of the
pair propagator is m� = m↑ + m↓. More formally, we require
that, by changing frequency coordinates to the bare disper-
sion, the ultraviolet parts of functions are almost constant. To
this extent, the frequency coordinate is transformed according
to ωα = ω + k2vα + μα , where for the transformation to real
space we have vα = 1/2mα , with α ∈ {�,↑,↓}. On the trans-
formed coordinates our functions fα (k, ωα ) are now slowly
varying as a function of momentum as illustrated in Fig. 3.

Additionally, for long-lived quasiparticles or near the crit-
ical point, the functions can become very strongly peaked in
ωα which, due to the frequency transformation, can be solved
by locally and adaptively increasing the density of the ωα grid.
Having denser grids only locally is possible, because fα varies
slowly with k such that the same adaptations to the frequency
grid are useful across a large range of momenta. Performing
a numerical Fourier transform on an irregular grid, with N
points, scales as N2 compared to N log(N ) for an equidistant
or logarithmic grid [63–65]. To mitigate having to use smaller
grids, the temporal Fourier transform is done by using a spline
interpolation [16,49]. For a system with rotational invariance,
the angular directions of the momentum integral can be solved
exactly, which leaves a one-dimensional integral for each time
(space) grid point t j (ri), which for a three-dimensional system
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takes the form

fα (ri, t j ) = eiμαt j

∫ ∞

0

dk

(2π )2

2k sin(kri )

ri

× fα (k, t j ) exp(−ivαk2t j ), (37)

where from now on a notation convenient for an isotropic
system k = |k| and r = |r| will be used. As the fast oscillation
vαk2 has been extracted by the transformation to ωα , fα can
be interpolated with a spline of order M. The sin(kri ) factor
is not included in the interpolation for two reasons. The first
is that it oscillates quickly for large positions and therefore
requires a dense k grid for it to be efficiently interpolated
with a spline. Second, it would lead to the spline coefficient
being a higher-rank tensor and would greatly increase the
memory requirements. To circumvent these issues we only do
a low-order spline (cubic or quintic) on k fα given by

k fα (k, t j ) ≈
M∑

l=0

al
α;n, j (k − kn)l , (38)

where kn � k < kn+1, leading to the real-space representation

fα (ri, t j ) ≈
Nk−1∑
n=0

M∑
l=0

al
α;n, jW

l
α;i, j,n, (39)

where Nk is the number of grid points in the momentum grid
and the tensor W is given by

W l
α;i, j,n =

∫ kn+1

kn

dk

(2π )2

2 sin(kri )

ri
e−ivαt j k2

(k − kn)l . (40)

To make the calculations tractable, this tensor has to be fac-
torized. To keep the evaluation of the k2 oscillation exact, we
factorize sin(kri )/ri by using a two-point Hermite interpola-
tion to order P. Such an interpolation guarantees that both the
function values and the first P − 1 derivatives are correct at
every point. It leads to the approximation [66]

2 sin(kri )/ri ≈
2P−1∑
p=0

bp
i,n(k − kn)p−c(p)(k − kn+1)c(p) (41)

for kn � k < kn+1. Here c(p) = �p/2P�p%(2P − 1), where
�·� and % are the floor and modulo operators, respectively.
To ensure that the oscillations for large values of r are cor-
rectly captured while still keeping the density of the k grid
manageable, one can choose P based on an upper bound
of the error discussed in Appendix B. The coefficients bp

i,n
can be efficiently computed through the generalized divided
differences [67] and are independent of the frequency grid.
With this factorization, the tensor W takes the form

W l
α;i, j,n =

2P−1∑
p=0

bp
i,nI l+p

α,n, j, (42)

where the elements in I l+p
α,n, j only depend on the index α de-

scribing the quickly oscillating factor of the function to be
transformed. Through these interpolations we are no longer
relying on sampling linear chirped oscillations because the

elements

I l+p
α,n, j =

c(p)∑
q=0

zn,p,qe−ivαt j k2
n

∫ �kn

0

dk

(2π )2
e−ivαt j (k2−2kkn )

× kl+p−c(p)+q (43)

can be computed exactly. The integrals depend on the time or
momentum grids and the bare mass, while the coefficients

zn,p,q = (−1)c(p)−q

(
c(p)

q

)
�kc(p)−q

n (44)

only depend on the grid-spacing in momentum �kn = kn+1 −
kn. With these elements the real-space representation is

fα (ri, t j ) ≈
2P−1∑
p=0

M∑
l=0

{
Bp · [

Ip+l
α ◦ (Al · fα )

]}
i, j, (45)

where · is a matrix contraction and ◦ is the elementwise
(Hadamard) product. The elements of the matrix Bp are bp

i,n,

while the matrix Ip+l
α is build up of I p+l

α,n, j . The matrix Al is
independent of α and leads to the spline coefficients al

α;n, j
in Eq. (39) once contracted with the matrix built by fα;m, j =
fα (km, t j ). The first contraction scales as MN2

k Nt , whereas the
Hadamard step scales as (2P + M )NkNt . The last contrac-
tion scales with 2PNrNkNt . As Ni � M, P this transformation
scales the same way as a naive DFT apart from an overhead of
2P, or M depending on the relations between the grid lengths.
We point out that, since f (k, ωα ) is slowly varying, M = 3
is sufficient for the present application. Furthermore, typical
values for P, as determined by the condition in Appendix B,
fall between 9 and 18 for momentum grids with a maximum
length of k

√
β = 50.

An important aspect of the transformation procedure is
that Bn, In

α , and An only depend on the r, k, and t grids
and vα , which means that all tensors can be precomputed at
initialization and are unaffected by the adaptive frequency
grid. To reliably transform all functions to r we need three
different coordinate transformations with the choices vα ∈
{1/m�, 1/m↑, 1/m↓}/2. To transform from r to k, the trans-
formation is identical apart from the substitutions r ↔ k and
vαt → −1/vαt and the factor of (2π )2 in In

α .

Comparison to a conventional FFT

The alternative implementation using a naive fast Fourier
transform (FFT) would require one to be able to sample the
fast oscillations from the bare dispersions. For the transfor-
mation to space, one has to sample the oscillating factor e−ik2t ,
where for simplicity we have chosen units with m = 1/2. By
expanding the argument around the largest k and t values, it
becomes clear that one needs to be able to sample an oscil-
lation with a frequency of 2kmaxtmax. To satisfy the Nyquist
criterion, the momentum grid has to have a spacing smaller
than �k = π/2kmaxtmax. Using a conventional FFT, such a
grid spacing requires that rmax = 2π/�k . However, the same
applies to the inverse transformation from position to momen-
tum space. There one has to be able to sample oscillations
of the form eir2/t . Again, equidistant sampling requires Nfft =
�2r2

max/tminπ� grid points, where �·� is the ceiling operator.
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Imposing the constraint from the momentum grid, one finds
that the necessary grid length is NFFT = �32k2

maxt2
max/tminπ�.

For each discrete-time value, this implies O(NFFT log(NFFT))
operations compared to O(2PN2

k ) operations for the method
presented in the previous section. Because we do not have
to sample the fast oscillations and because the k and r grids
are only connected by the range they cover, since rmin,max ∼
(kmax,min)−1, we can work with around 500 grid points. For
a typical calculation we use values kmax

√
β = 50, rmax/

√
β =

40, tmin/β = 2 × 10−5, and tmax/β = 50, which are accurately
sampled with P = 18 as discussed in Appendix B. By compar-
ison, a conventional FFT-based method would require around
109 times more grid points and consequently 105 times the
number of operations. The overhead due to the interpolations
and the N2 scaling of the transforms is thus vastly overcom-
pensated by the decrease in the grid lengths. The result is
that our method allows us to compute self-energies efficiently
by relying on their convolution structure, without using grids
with a prohibitively large number of points.

To further increase the efficiency of the implementation,
it is useful to subtract the analytically known UV behavior
while also preventing the appearance of singularities in the
IR. A detailed account of the analytical subtractions and how
to apply the transformations is presented in Appendix A.

V. VALIDATION

To test the accuracy of our method, we are now going
to compare it with known analytical results, imaginary-time
calculations, and state-of-the-art numerical analytic continu-
ation. For this comparison, we focus on the balanced case
where nσ = n and mσ = m and will therefore drop the spin
dependence of all fermion propagators.

A. Asymptotics

One of the main challenges of the real-frequency formal-
ism lies in the accurate description of the asymptotic behavior
of propagators at high momenta, as well as |ω| → ∞. We
focus on quantities that are fully determined by the effect
of interactions, i.e., that vanish for the noninteracting gas,
as these will provide key insights into the precision of our
method.

At high energies, the fermionic spectral function exhibits
a scattering continuum with the analytically known frequency
dependence [28]

A(k, ω → ∞) = 4πnm−3/2ω−5/2, (46)

where n is the density of either species of fermions. Similarly,
at low frequencies, it can be shown to decay as

A(k, ω → −∞) ∼ (−ω)−9/2, (47)

with a prefactor that has no closed analytical form. In the limit
of weak coupling the latter is determined by including the be-
havior at high frequencies stated in Eq. (46) in the evaluation
of the fermionic self-energy. There one finds 4πnm−7/2C for
the prefactor. At stronger coupling this result is modified self-
consistently by a resummation to infinite order in perturbation
theory. As we show in the inset of Fig. 4, both behaviors are
very well captured by our method.

FIG. 4. The fermionic spectral function A(0, ω) is known to
decay as ω−5/2 and (−ω)−9/2 at very high and low frequencies,
respectively. Both limits are well reproduced by our method, as
is shown in the inset. Furthermore, the momentum distribution at
high momenta behaves as n(k � kF ) ≈ C/k4, with C the Tan contact
density obtained from the pair propagator

The Tan contact density C can be calculated from the
pair propagator C = im2δ�K (r = 0, t = 0)/2 or the asymp-
totic decay of the momentum distribution [11] limk→∞ n(k) =
C/k4. For a �-derivable theory, both calculations must coin-
cide and therefore provide a critical test for the convergence
and accuracy of our method. In Fig. 4, the momentum dis-
tribution of the balanced, unitary Fermi gas at T/TF = 0.2
is compared with the asymptotic behavior C/k−4 with the
contact obtained from the pair propagator. The excellent
agreement indicates two important observations. On one hand,
we see that the self-consistent evaluation is indeed well con-
verged. On the other hand, the clean asymptotics of n(k), i.e.,
the absence of any numerical noise in Fig. 4, demonstrates the
high fidelity, with which self-energies are evaluated, even at
high momenta k � kF and frequencies |ω| � εF .

B. Comparison with Matsubara formalism

Additional insights can be gained from the comparison
with results obtained in Matsubara formalism. Indeed, there
the quickly oscillating factor eik2t of the real-time propagators
is replaced by a Gaussian envelope approximately equal to
e−k2τ in the imaginary-time interval τ ∈ [0, β ) and therefore
much easier to handle. Consequently, the self-consistent T
matrix in Matsubara formalism is a well-established method
[15,16] with well-controlled errors [68]. We will leverage
this to compare our approach against this method. For the
dimensionless Fermi energy εF /T and the contact, we find
typical differences no larger than 3%. However, these inte-
grated quantities provide little new insight over the previous
tests. Instead, a more telling comparison can be performed
between propagators directly in imaginary time.

Although the analytic continuation from Matsubara fre-
quencies to real frequencies or the equivalent transformation
from imaginary to real time is numerically an ill-posed prob-
lem, the reverse operations are unproblematic. Imaginary-time
propagators are obtained from spectral functions by the
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FIG. 5. Absolute value of the fermionic imaginary-time propaga-
tor of the balanced unitary Fermi gas at T/TF = 0.2 and at vanishing
momentum k = 0 (black), compared with the absolute value of the
difference between its evaluation directly in imaginary times and via
the generalized Laplace transform of the spectral function (blue). For
comparison, also the result obtained with the alternative real-time
approach developed in Ref. [69] is shown in red

generalized Laplace transform

G(k, τ ) =
∫

dω

2π

e−ωτ

1 ∓ e−βω
A(k, ω), (48)

where the upper (lower) sign refers to bosons (fermions). It
is well known that the spectrum of the latter transformation
possesses only a few singular values larger than any realistic
numerical resolution, which immediately explains the prob-
lems one encounters when inverting the transformation as is
the case for numerical analytic continuations. However, it also
highlights that at any finite numerical precision propagators
in real frequencies contain genuinely more information than
their Matsubara counterparts.

Nevertheless, the thermodynamic information contained in
the imaginary-time propagators needs to be fully recovered by
the presented formalism. To this extent, both the propagators
of the fermions and the pair propagator are transformed to
imaginary times and compared in Figs. 5 and 6 with results
previously obtained in the Matsubara formalism [49] at zero
momentum. Both agree for all values of τ/β to within 1%. For
comparison, we have included the same analysis for the data
obtained independently for the fermionic propagator by Enss
[69]. The results from the method described there are found to
compare well with the Matsubara results. The higher accuracy
of the convolution-based method is probably mostly related to
the longer frequency and momentum intervals accessible due
to the nonequidistant sampling we use. Furthermore, we show
the integrated relative difference

εrel(k) =
√∫

dτ [Gimag(k, τ ) − GKeldysh(k, τ )]2∫
dτG2

imag(k, τ )
(49)

as a function of momentum in Fig. 7 to highlight that this
level of agreement is global and no larger differences occur
at higher momenta.

FIG. 6. As for the fermionic propagator in Fig. 5, the difference
between the pairing propagator in imaginary times obtained from real
frequencies and in Matsubara formalism (blue) is small compared to
the absolute value of the paring propagator (black).

We emphasize that, although at finite numerical precision
the Matsubara formalism contains less information than the
method developed here, the comparison is even more criti-
cal than the previous inspection of the asymptotics. This is
because the comparison is sensitive to local quantities, such
as the linewidth or energy of the interacting fermions. At the
precision of the numerical Matsubara calculation used in the
benchmark, around 5% of the right singular vectors of the
generalized Laplace transform can be tested. Broadly speak-
ing, the comparison in imaginary times therefore tests a finite
fraction of the entire information encoded in the spectrum as
opposed to the single pieces of information validated by the
asymptotics.

VI. COMPARISON WITH NUMERICAL ANALYTIC
CONTINUATION

With the numerical implementation of the self-consistent
T matrix approximation validated, it is now time to review

FIG. 7. The integrated relative difference between single-particle
imaginary-time propagators obtained in the Matsubara and Keldysh
formalism as defined in Eq. (49) shows very good agreement be-
tween the two independent numerical methods. The parameters are
equivalent to those in Figs. 5 and 6.
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FIG. 8. Comparison between single-particle spectral functions at
k = 0. Here AKeldysh denotes the spectrum obtained by the method
developed here and ANAC the result from numerical analytic con-
tinuation explained in Sec. VI. The spectrum Amixed, which agrees
almost perfectly with AKeldysh, is obtained by analytic continuation
with AKeldysh as the default model, indicating that the latter is fully
consistent with the imaginary-time propagator used for ANAC.

the accuracy of the numerical analytic continuation as the
current state-of-the-art for the evaluation of spectral functions
in strongly interacting systems.

Considering the exemplary case of the unitary Fermi gas
at T/TF = 0.2, we calculate the Matsubara propagator in
imaginary time as reported in Ref. [49]. We then use Bryan’s
algorithm [70] for the maximum-entropy method [26,71] to
perform the analytic continuation (see Appendix C). The
maximum-entropy method uses Bayesian inference to com-
plement the limited information that can be gained from
imaginary times by an entropy term S[A0] relative to a default
model A0. The latter is chosen as a slowly varying function
with the analytically known behavior for large values of |ω|
stated in Eqs. (46) and (47). The relative weight between
the constraint in imaginary times and the entropy is a free
parameter, the choice of which can be optimized in different
ways, leading to somewhat different spectral functions. The
details of this choice and the method behind the numerically
continued spectral function ANAC in the comparison in Fig. 8
are given in Appendix C. As is shown in said figure for
k = 0, spectral functions obtained from numerical analytic
continuation are in general too broad and typically shifted to
higher frequencies, with the scattering continuum undersized
when compared to AKeldysh(k, ω). These properties are ex-
pected since the default model has a single broad maximum. A
pronounced gap between the two peaks of the spectrum frus-
trates the entropy term and is therefore underestimated with
the two maxima broadened and drawn too close together by
the maximum-entropy method. We emphasize that although
the qualitative features of the spectrum can be gleaned from
ANAC, it is quantitatively a bad approximation to AKeldysh.

Given the large discrepancy between the two spectral
functions, we also use AKeldysh as the default model (i.e.,
S[AKeldysh]) to confirm that no additional error sources exist
in our implementation of the maximum-entropy method. If
the default model is consistent with the Matsubara propagator

in imaginary time, the Lagrange parameter α has no effect
and the maximum-entropy spectrum is identical to the default
model. Indeed, the spectrum obtained by the same method as
ANAC but with AKeldysh used for the default model is shown in
Fig. 8 labeled Amixed and agrees exceptionally well with the
spectrum obtained by the present method.

We conclude that although the imaginary-time results
obtained in Matsubara formalism are consistent with the
present method, the common maximum-entropy method for
numerical analytic continuation is inaccurate for the strongly
interacting Fermi gas at low temperatures.

VII. SPECTRAL FUNCTION NEAR CRITICALITY

The large deviation between the validated method pre-
sented here and the current standard in the form of the
numerical analytic continuation necessitates a review of previ-
ous numerical results for the spectral function of the strongly
interacting Fermi gas.

We show the results for the spectral functions at the su-
perfluid transition at different scattering lengths in Fig. 9. We
mention that the corresponding pair susceptibility �R(k, ω) is
calculated with similar accuracy as shown in Appendix D. For
kF a = −1 the effect of interactions is limited to a slight re-
duction of the spectral weight in the immediate vicinity of the
Fermi surface and a broadening of the dispersion deep inside
the Fermi sea. The latter describes the short lifetime of holes
deep in the Fermi sea as no effects of artificial broadening,
discussed in Appendix A 2, are visible in Fig. 9. Even at
the superfluid transition of the unitary gas, the dispersion in
Fig. 9(b) shows only very weak signs of the nearby instabil-
ity. There is however a weak scattering continuum visible at
low momenta with its peak in reasonable agreement with the
energy expected for Bogoliubov quasiparticles

E±(k) = μ ±
√(

k2

2m∗ − μ + U

)2

+ �2, (50)

where the pseudogap �, chemical potential μ, and Hartree
shift U are fit parameters [72].

As 1/kF a is increased further, the gap in the single-particle
spectrum finally opens as the low-energy effective theory tran-
sitions from interacting fermions to weakly coupled bosons
formed by deeply bound pairs of fermions. In agreement with
this picture, the hole spectrum, i.e., the occupied part of the
spectrum below the chemical potential, now has its maximum
at k = 0. Interestingly, the part of the spectrum above the
chemical potential, known as the particle spectrum, at low
momenta consists of a clear quasiparticle peak merged with
the broad background formed by the scattering continuum.
We emphasize that the narrow peak in the particle spectrum in
Fig. 9(c) is necessitated by the large gap between the particle
and hole spectrum. With the latter several times larger than
the temperature, there are very few thermal excitations. The
minimum of the upper branch in Fig. 9(c) is therefore a good
approximation to the lowest state available to a single particle
added to the system. Because there are no empty states with
lower energy to decay to and few thermal excitations to scatter
with, the state must be long lived. This property is not well
recovered in the analytic continuation [28], which otherwise
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FIG. 9. Spectral functions at criticality for different values of the scattering length (kF a)−1 = {−1, 0, 1} where the effect of the interactions
increases from left to right. The critical temperatures as determined by our methods from left to right are Tc/TF = {0.068, 0.156, 0.205} and
the chemical potential μ/εF = {0.743, 0.407, −0.803} is indicated by the white dashed line. Both agree with the values obtained in imaginary
time.

captures the qualitative properties of the spectra shown in
Fig. 9.

Although not visible for the low momenta shown in Fig. 9,
in all cases the linewidth at high momenta decreases as
Im�R(k, ω = k2/2m) ∼ k−1, in agreement with the analytic
result [17]. This reflects the vanishing role interactions play
for particles with high kinetic energy exploited in our numer-
ical implementation in Sec. IV.

The argument above regarding the lifetime of the particle
spectrum illustrates the importance of an ordering principle
in the energy scales. Especially in the highly correlated but
disordered state at temperatures above but close to Tc, such
simplifications are highly desirable due to the strongly inter-
acting nature of the system. One therefore argues that already
above the critical temperature, fermions near the Fermi sur-
face pair up such that these pairs eventually condense at
T = Tc. As breaking these pairs costs energy, one may expect
a suppression of the single-particle density of states

ρ(ω) =
∫

d3k

(2π )4
A(k, ω) (51)

already above the critical temperature [73]. The existence of
this so-called pseudogap has been observed, for example, in

FIG. 10. The single-particle density of states of the unitary Fermi
gas exhibits a very weak pseudogap only for temperature T �
0.19TF , which is close to the critical temperature Tc = 0.156TF . Here
ρ0(εF ) = mkF /2π 2 denotes the density of states of the noninteract-
ing Fermi gas.

underdoped high-Tc superconductors, where its origin is how-
ever hard to interpret [74] and in 2D systems [22]. This has
sparked both theoretical [75] and experimental [23] interest
in a potential pseudogap phase in the considerably simpler
3D unitary Fermi gas. One of the key findings obtained
from the numerical analytic continuation of spectra in the
self-consistent T -matrix approximation near the critical point
was a much weaker pseudogap [28] than previously reported
using auxiliary field quantum Monte Carlo [29] and non-self-
consistent approximations [76–79]. However, these methods
either rely on numerical analytic continuation or significantly
overestimate the tendency to form pairs and thus the critical
temperature, which raises doubts about their validity.

We reinvestigate the issue of the pseudogap in the nor-
mal phase of the unitary Fermi gas and report the results
in Fig. 10. It is found that the unitary gas develops a weak
pseudogap at temperatures below T ≈ 0.19TF . However, even
at the critical temperature Tc = 0.156TF the signature is not
very pronounced as the abundance of thermal fluctuations
broadens the spectrum, thereby precluding the possibility of
a marked pseudogap. Our results therefore qualitatively con-
firm those previously reported using the maximum-entropy
method [3,28] and Padé approximation [31]. Moreover, the
present controlled analysis settles the quantitative discrepancy
between these previous results.

Although the underlying self-consistent T -matrix approx-
imation is uncontrolled, its good agreement with experi-
mentally observed thermodynamic properties near unitarity
[9,16,49] lends credibility also to the spectral properties re-
ported here.

VIII. CONCLUSION

We have demonstrated an efficient method to calculate the
spectral function of the 3D Fermi gas in the self-consistent
T -matrix approximation directly in real frequencies. The
extension to the spin- or mass-imbalanced setups is straight-
forward by including a spin-dependent chemical potential μσ

or mass mσ as already shown in Eq. (7). The self-consistent
T matrix in imaginary time has already been applied
to both mass-imbalanced [80,81] and density-imbalanced
systems [49,82] and combinations thereof [83]. By avoiding
the NAC one can, for example, reliably explore the predicted
non-Fermi-liquid behavior in the imbalanced systems, which

023324-12



SPECTRAL FUNCTIONS OF THE STRONGLY … PHYSICAL REVIEW A 109, 023324 (2024)

requires accurate calculations of the linewidths. The Keldysh
formalism can also be extended to the symmetry-broken state,
which has already been accessed with the self-consistent T
matrix [16]. Furthermore, the theory can be directly applied
to two dimensions.

We emphasize that the underlying method relies only on
the convolution theorem and is therefore rather versatile.
Natural applications are Bose-Fermi models, which appear
frequently in other fields of condensed matter. For instance,
metallic quantum criticality is typically described by a Fermi
surface coupled to a bosonic order parameter, which describes
instabilities of the former [84,85]. In two dimensions, these
systems commonly show non-Fermi-liquid behavior accom-
panied by Landau-damped critical modes, which are both
primarily observed in the fermionic and bosonic spectral
functions. Moreover, for the well-established Ising-nematic
and spin-fermion models, as well as in the context of a
Kondo heterostructure, it was shown that self-consistent two-
particle-irreducible (2PI) quantum field theory reproduces
imaginary-time quantum Monte Carlo data with good accu-
racy [86,87]. Since the corresponding field theory is based
again on convolutions, our method, which by construction
has access to both the fermionic and the bosonic spectra (for
examples see Appendix D), seems a promising route to obtain
a more quantitative understanding of the spectral functions
and the identification of different scaling regimes indicated
by analytic calculations [88].

Another possible application is the quantitative analy-
sis of quench dynamics in cold-atom experiments [89–92],
which is well described by 2PI field theory [44]. Notably,
the method presented here is directly applicable since both
the convolution structure and the conserving nature of the
approximation are preserved under Wigner expansion [93].
Finally, the quickly growing field of pump-probe experiments
in solid-state materials [94] can be treated analogously [95].
There the order-parameter dynamics is again described by a
2PI effective field theory with dissipation. Our approach will
be useful to develop a deeper understanding of long-lived
states and scaling dynamics far from equilibrium [96–98].

We have presented a detailed validation of our method on
the example of the Fermi gas near unitarity and outlined its
applicability to a broad range of structurally similar, strongly
interacting systems. This makes our approach a prime tool for
the investigation of dynamical quantities without the need to
resort to uncontrolled numerical methods.

An important future step will be the extension of the
method to less restrictive approximations to the Luttinger-
Ward functional, including, for example, higher-body corre-
lations [99–101] that lack an efficient representation in terms
of convolutions.

Note added. Recently, two other studies appeared in which
the spectral functions of the strongly interacting Fermi gas are
calculated in real frequencies, one using an interpolation of
the self-energy [69] and the other using a spectral functional
approach [102].
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APPENDIX A: DETAILS OF THE SELF-ENERGY
COMPUTATION

To optimize the accuracy of the loop integrals involved in
the evaluation of the diagrammatic expressions that have been
derived in Sec. III, it is important to ensure that the different
features of terms in the self-energies are catered to. As we
detail below, we employ several different techniques in this
regard, which either allow us to reduce the domains that need
to be covered numerically or improve the overall accuracy.
Given their importance to the performance claims we make in
the main text, we provide a detailed account of the essential
procedures used.

1. Pair propagator

As stated in the main text, the contact nature of the
interaction allows one to write the retarded Bethe-Salpeter
equation as a Dyson equation

�R(p) = 1
1
g0

− �R
� (p)

. (A1)

Including the Keldysh structure and taking advantage of
the causality structure, the retarded self-energy is shown in
Eq. (30). To remove the UV divergence of � arising from the
contact interaction, the self-energy is split into four parts

�R
� (p) = �R

�,v (p) + �R
�,vδ (p) + �R

�,↑(p) + �R
�,↓(p). (A2)

The labeling here should be understood as the v referring to
a bare vacuum and δv to a dressed vacuum and ↑ (↓) is a
contribution due to a finite density in the ↑ (↓) species. The
bare vacuum contribution is

�R
�,v (p) = i

∫
d4 p′

(2π )4
GR

↑,0(p − p′)GR
↓,0(p′). (A3)

Together with the contact interaction, this is exactly equal
to the two-body problem and using the Lippmann-Schwinger
equation [104] one can relate this to the two-body T matrix

1

g0
− �R

�,v (p) = T −1
0

(
ω − k2

2m�

+ μ�

)
, (A4)

where m� = m↑ + m↓ and μ� = μ↑ + μ↓. In three dimen-
sions T0 can also be computed from scattering theory as the
two-body scattering with a δ potential [105]

T −1
0 (ω) = mr√

2πas

− m3/2
r

√−ω√
2π

, (A5)
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where mr = m↓m↑/m� is the reduced mass and as is the
scattering length. In this way, the bare coupling g0 is explicitly
renormalized and connected to the experimental scattering
length. Using this procedure, the full renormalized retarded
pair propagator is given by

�R(p) = 1

T −1
0

(
ω − k2

2m�
+ μ�

) − �R
�,vδ − �R

�,↓ − �R
�,↑

,

(A6)
where the self-energy dependence on p has been suppressed.
The remaining three self-energies can be read off from
Eq. (30). One term results from modifications of the fermion
propagators due to interactions and is still a vacuum term

�R
�,vδ (p) = i

∫
d4 p′

(2π )4
[GR

↑(p − p′)GR
↓(p′)

− GR
↑,0(p − p′)GR

↓,0(p′)]. (A7)

As opposed to Eq. (A3), the integral is finite and requires no
further renormalization. To transform this term of the self-
energy one has to remove a fast oscillation with a mass given
by m� such that the transformation procedure in Sec. IV is
used with α = �.

The two remaining contributions to the self-energy are
caused by finite densities in either of the two species of
fermions

�R
�,↓(p) = i

2

∫
d4 p′

(2π )4
GR

↑(p − p′)δGK
↓ (p′),

�R
�,↑(p) = i

2

∫
d4 p′

(2π )4
δGK

↑ (p − p′)GR
↓(p′). (A8)

As δGK
α is cut off at high momentum by the distribution

function, the self-energy �R
�,↑ (↓) is transformed using the

appropriate fermion mass m↑ (↓). Next we can use the FDR
to minimize the noise of the imaginary part of �R

�,↑ (↓). This
is possible because δ�K

� for bosons satisfies the relation

δ�K
� (k, ω) = −4inB(ω)Im�R

� (k, ω). (A9)

Instead of using the FDR one can also compute δ�K
� directly

using the loop integral in Eq. (31). This integral is well
behaved due to the fast decay of the distribution functions.
Hence we compute δ�K

� (k, ω) with high accuracy and use it
to remove errors in the retarded self-energy through Eq. (A9).

2. Fermions

As we have seen explicitly in the preceding section, the
pair propagator depends on the self-energies of the fermions,
which in turn depend on the pair propagator. These self-
consistent equations are solved iteratively, starting from the
noninteracting theory. The fermion self-energy has several
different terms with different features. Just as for the pair
propagator, it is necessary to isolate these terms and optimize
the transformation of each independently. This is the focus of
the first half of this section.

In the latter half, we focus on artificial broadening. This
is only necessary to consider for the fermions as the pair
propagator inherits its broadening from the fermions, whose
spectra in turn will be broadened by interactions with the
pairing field. To obtain accurate results, it is thus important to

minimize the artificial broadening required for the numerical
Fourier transformation of the propagators.

Considering first the optimal transformation of the differ-
ent terms in the self-energy, we start each iteration with all
the propagators from the previous iteration in the (r, t ) basis.
In this space, the self-energies are simple products and the
retarded fermion self-energy consists of two distinct parts.
One arises from occupation of the paring field

�R
σ,1(r, t ) = i

2
GR

σ̄ (r,−t )δ�K (r, t ), (A10)

which can be transformed to momentum by removing the bare
oscillations in the retarded propagator by choosing mα = mσ̄ .
The other contribution to the self-energy is due to occupation
in the σ̄ fermions

�R
σ,2(r, t ) = i

2
δGK

σ̄ (r,−t )�R(r, t ). (A11)

To transform this self-energy we first subtract the bare T
matrix, which requires us to transform the term

�R
σ,2,0(r, t ) = i

2
δGK

σ̄ (r,−t )T0(r, t ). (A12)

This term has oscillations at high momentum set by the bare
pair propagator such that we remove oscillations with a mass
mα = m� . The remaining contribution

�R
σ,2,δ (r, t ) = i

2
δGK

σ̄ (r,−t )[�R(r, t ) − T0(r, t )] (A13)

is generally varying significantly at short times and with a
behavior not related to the bare oscillations mα = m� , which
dominate at larger times. For this reason, only the parts at
times larger than a cutoff of order (10β )−1 are transformed
using α → �, while the short-time behavior is transformed
without removing fast oscillations. This cutoff is found to be
fairly robust and does not require fine-tuning throughout the
iterations. By adding the three contributions in Eqs. (A10),
(A12), and (A13) together, one arrives at �R

σ (k, t ).
Transforming from (k, t ) to (k, ω) is difficult due to a

divergence at t = 0 in T0 which scales as t−1/2. To remove the
errors generated by this divergence, we fit T0(k, t = 0+) to
�R

σ,2,0(k, t = 0+). By numerically transforming βkT0(k, t ) =
T̃0(k, ω), with βk the fitting factor, the numerical errors due
to the divergence can be identified as T̃0(k, ω) − βkT0(k, ω).
The procedure relies on computing T0(k, t ) with very high
accuracy. This is possible and computationally cheap because
of the argument structure of T0(ω − k2/2m� + μ� ), as seen
in Eq. (A4), where momenta only enter via a shift of the
frequency argument. Furthermore, this calculation only has to
be done once at initialization.

To decrease numerical errors in the spectral functions of
the fermions one can, as done in the pair propagator, use the
FDR in Eq. (24). This is done by directly computing

δ�K
σ (r, t ) = i

2
δ�K (r, t )

[
δGK

σ̄ (r,−t ) − i2 Im�σ,1(r, t )
]
.

(A14)

As discussed for the pair propagator, this self-energy can be
computed with high precision due to the fast decay of the
distribution functions. After subtracting the errors, one arrives
at the retarded self-energy for the fermions.
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Having discussed how to optimally transform the different
terms in fermion self-energy, we now turn our attention to
minimizing the effect of artificial broadening. The artificial
broadening is necessary because the bare fermion propagators
exhibit a δ peak in the spectral function. To sample this numer-
ically it must be made finite through artificial broadening. This
broadening is equally important in the time domain where it
ensures that the retarded propagators keep their causal struc-
ture and decay sufficiently within the length of our numerical
time grid. Such a broadening is always introduced in the
theory but should be taken to zero after the calculation is
performed [106]. As this is impossible with a numerical result,
it is essential to minimize the artificial broadening. First, we
discuss how the artificial broadening is included followed by
how it is minimized throughout the iterations.

Conventionally, this broadening is included as a constant
and positive imaginary contribution to the bare retarded prop-
agator as

G̃R
0,η(ω) = 1

ω + iη
, (A15)

where the propagator has been written on the transformed
frequency grid discussed in Sec. IV. The corresponding
Lorentzian spectral function decays as ω−2. If such tails are
included in the calculation, then they will have a large im-
pact on the high-frequency tails of the spectral functions.
Through the convolutions, this then leads to significant errors,
for example, on the Tan contact density extracted from the
pair propagator as well as total fermion density. It is there-
fore essential to avoid these tails as much as possible. To
this extent, we add the finite broadening through an artificial
frequency-dependent retarded self-energy of the form

�R
ρ (ω) = 1

ρω − 1
ω+i

, (A16)

where ρ is a positive computational parameter. The broadened
bare propagator is then given by

GR
0,η(ω) = 1

ω − η�R
ρ (ω)

. (A17)

Because the artificial self-energy is retarded, it preserves the
causality of the propagator [43]. Differently from the standard
case in Eq. (A15), our artificial broadening also contains a
real part, which is necessary to satisfy the Kramers-Kronig
relations [46]. However, if one chooses the two artificial pa-
rameters such that ρ � 1 � η and ηρ � 1, then the resulting
spectrum is very well described as

A0,η(ω) = 2η

η2 + ω2 + ρ2(ω4 + ω6)
. (A18)

In practice, we satisfy the limit by choosing ρ = 10 and η �
10−2. With this choice the spectral function close to the bare
dispersion (meaning ω = 0) is almost Lorentzian, but as one
deviates from the bare dispersion, the bare spectral function
now decays as ω−6. One can find analytic expressions for the
poles of Eq. (A17), which allows us to compute the Fourier
transforms to (r, t ) analytically, ensuring no additional errors
are added in our subtraction schemes. Including the additional
broadening in this way makes it possible to keep the artificial

width η, close to the dispersion, large enough to allow for
sampling of the peak without introducing significant errors in
the frequency tails of the spectral function.

Throughout the self-consistent iterations, the fermions ac-
quire a natural broadening due to the interactions. The result
is that less artificial broadening is needed to reliably perform
the transformations and it is thus preferable to remove all the
superfluous artificial broadening at each iteration. For this pro-
cedure, we first compute the broadening of the quasiparticle
pole for each momentum

η0(k) = −Im�R
σ (k, ε0(k)), (A19)

where ε0(k) satisfies

[
GR

0,σ (k, ε0(k))
]−1 − Re�R

σ (k, ε0(k)) = 0. (A20)

Whenever η0 is greater than η no artificial broadening has
to be added. In the case where η0 < η one can identify the
minimal artificial broadening needed to ensure we can resolve
the sharp features in the spectrum. This minimal broadening
ηm is defined as

ηm(k) = θ (η − η0(k))[η − η0(k)]. (A21)

We then compute the smallest imaginary value ηs, over all
k and ω, of the self-energy when the minimum quasiparticle
linewidth has been renormalized

ηs = 2 min
∣∣Im[

�R
σ (k, ω) + ηm(k)�R

ρ (k2vα + μα + ω)
]∣∣,

(A22)

where �R
ρ is defined in Eq. (A16). By removing this constant

and adding ηm(k), the maximum amount of artificial broad-
ening has been removed while retaining the causal structure
of self-energy at all points in p space. This procedure gives a
quantitative improvement but is not essential for the stability
of the method. Typical values of ηs are on the order of 10−3/β.
The final retarded self-energy is then

�R
σ (k, ω) → �R

σ (k, ω) + iηs + ηm�R
ρ (k, ω), (A23)

and the retarded fermion propagator can be computed through
the Dyson equation (17). With this procedure, we have en-
sured that at each iteration the smallest possible artificial
broadening is added.

For imbalanced systems, one repeats all the same steps for
the second fermion species σ̄ .

APPENDIX B: INTERPOLATION ORDER

The upper error bound between a function f (x) and its q-
point Hermite interpolation of order P at the point x, h(x), is
given by [107]

| f (x) − h(x)| �
∣∣∣∣∣ f (qP)(a)

qP!

q∏
i=1

(x − xi )
P

∣∣∣∣∣, (B1)

where a ∈ {x1, xq} is the value that maximizes f (qP)(a).
Specifying this for the two-point case, where q = 2 and
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f (x) = sin(xb)/b,

max

∣∣∣∣ sin(xb)

b
− h(x)

∣∣∣∣ = max

∣∣∣∣
(

d2P

dy2P

sin(yb)

b

)
y=a

1

(2P)!

× (x − xn)P(x − xn+1)P

∣∣∣∣
< max

[
b2P−1

(2P)!

(
�xN

2

)2P
]
, (B2)

where �xN = xN+1 − xN and it has been assumed that the
largest grid spacing is at the end of the grid. As the backward
and forward transformations require two different interpola-
tions, one can put an upper limit on the interpolation error
given by

ε = max

[
r2P−1

N

(2P)!

(
�kN

2

)2P

,
k2P−1

N

(2P)!

(
�rN

2

)2P
]
. (B3)

From this relation, one can choose the appropriate interpo-
lation order. This error gives an upper bound and therefore
generally gives a larger than necessary P.

APPENDIX C: MAXIMUM-ENTROPY METHOD

In this Appendix we provide the details of the maximum-
entropy method used for the numerical analytic continuation
in Sec. VI.

As explained in the main text, numerical propagators with
a finite accuracy in real frequencies contain significantly
more information than their counterparts in imaginary time
or Matsubara frequency. Specifically, NAC aims to minimize
the dimensionless distance from the Matsubara propagator in
imaginary times

|χ (k)|2 =
∑

i

(
G(k, τi ) −

∫
dω

e−τiω

1 + e−βω
A(k, ω)

)2

, (C1)

where in our case the imaginary times τi are logarithmically
spaced near 0 and β. The local relative numerical accuracy
of the Matsubara propagator is approximately 10−8. Conse-
quently, upon discretization, only a few of the right singular
vectors of the integral transformation are indeed fixed by
the minimization of |χ (k)|2 � 10−8. Using an optimized grid
with 400 points that take into account the known asymptotic
decay of A at low and high frequencies and using cubic
splines for the integration, only around 80 of the right sin-
gular vectors of the integral transformation in (C1) provide
meaningful information. Consequently, at the given accuracy
an infinite set of spectral functions A produce the same
imaginary-time propagator.

To resolve this ambivalence one needs to introduce some
prior information. Using Bayesian statistics [26,71], one ar-
gues that instead of minimizing |χ (k)|2 the spectral function
should maximize

Q(k) = αS(k) − 1
2 |χ (k)|2, (C2)

where

S[A0](k) =
∫

dω{A(k, ω) − A0(k, ω)

− A(k, ω) ln[A(k, ω)/A0(k, ω)]} (C3)

is the entropy relative to a smooth default model A0 con-
taining analytically known properties. Since |χ (k)|2 provides
little information in the high- and low-frequency tails, we use
the default model

A0(k, ω − k2/2m) =
γ
(√

δ
γ

+ ω2 + ω
)

(ρ + ω2)7/4
, (C4)

with γ = 2πnm−3/2 and δ = 8πnm−7/2C, which satisfies the
known asymptotic behavior from Eq. (46) for ω → ∞ and
from Eq. (47) for ω → −∞. Furthermore, ρ is determined
by the normalization condition

∫
ω
A0(k, ω) = 1 and on the

typical energy scales set by T and εF the default model is a
smooth, slowly varying function. Due to the large information
gap left by |χ (k)|2, the choice of the Lagrange parameter α

is very important. We follow Bryan’s method [70] and obtain
the optimal spectral function Aα (k) for each value of α. These
are then averaged over α to obtain the best estimate for the
spectral function

ANAC(k) = N
∫

dαAα (k) f (α)eQ[Aα (k)]
∏

i

(
α

α + λi

)1/2

.

(C5)

Here N denotes the normalization and λi are the eigen-
values of the curvature matrix of |χ (k)|2 in the space of
spectral functions. Finally, f (α) is an undetermined, dimen-
sionless scaling function, for which we choose f (α) = αδ .
This choice determines the relative importance of entropy
and constraints from imaginary times. For too large values
of δ the entropy is weighted too heavily such that eventu-
ally ANAC(ω, k) −→

δ→∞
A0(ω, k). For too small values of δ, on

the other hand, ANAC(ω, k) develops oscillatory instabilities.
Hence, the choice of the scaling function f (α) has a signifi-
cant impact on the spectral function ANAC. We fix δ = −1.74,
which is the smallest value that induces no oscillations in the
asymptotic behavior at large positive or negative frequencies.
Since this condition is somewhat arbitrary, we emphasize that
the qualitative difference with the spectral function obtained
directly in real frequencies AKeld(ω, k), which we report in
Fig. 8, remains for all stable values of δ.

FIG. 11. Spectral function of the pair susceptibility for the uni-
tary balanced system at the critical temperature T/TF = 0.156. The
logarithmic color scale highlights structures beyond the singularity
at (k = 0, ω = 0).
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APPENDIX D: PAIR SUSCEPTIBILITY

A recent theoretical proposal has suggested that it might
be possible to probe the pair propagator using Raman spec-
troscopy techniques [108]. Here the pair propagator for the
imbalanced system was argued to contain information about
the Fulde-Ferrell-Larkin-Ovchinnikov phase transition, giv-
ing it experimental relevance. Another example where the
spectrum of the pair propagator can be of use is in ques-
tions regarding transport [18]. Here computation of dynamical
transport coefficients, like the dynamical shear viscosity, is

simplified if one has access to frequency-resolved �R(k, ω).
For bosonic propagators, the NAC is even more challenging
[109], making reliable results difficult to acquire. With our
method the full frequency dependence of �R is computed at
no additional cost and bosonic spectra are in general computed
with the same high accuracy as their fermionic counterparts.
To highlight this, we plot in Fig. 11 the spectral function of
the pair propagator for the balanced case at unitarity and at
the critical temperature. Here the singularity at ω = 0 for low
momentum and the slowly decaying frequency tails observed
in imaginary time in Fig. 6 also appear in real frequencies.
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