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Excitations and phase ordering of the spin-stripe phase of a binary dipolar condensate
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We consider the ground states, excitations, and dynamics of a quasi-two-dimensional binary dipolar Bose-
Einstein condensate. Our focus is on the transition to a spin-stripe ground state in which the translational
invariance is spontaneously broken by a striped immiscible pattern of the alternating components. We develop a
ground-state phase diagram showing the parameter regime where the spin-stripe state occurs. Using Bogoliubov
theory, we calculate the excitation spectrum and structure factors. We identify a balanced regime where the
system has a Z2 symmetry, and in the spin-stripe state this yields a nonsymmorphic symmetry. We consider the
evolution of the system following a quench from the uniform to spin-stripe state, revealing ordering dynamics
involving defects of the stripe order. Using an order parameter to characterize the orientational order of the
stripes, we show that the phase ordering exhibits dynamic scaling.
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I. INTRODUCTION

Recent experimental activity has revealed the tendency of
suitably confined dipolar Bose-Einstein condensates (BECs)
to form spatially structured states such as droplet crystals [1]
and supersolids [2–4]. These states occur in regimes where the
system is unstable at the mean-field level, with beyond-mean-
field effects preventing mechanical collapse [5–7] (also see
[8]). Before these developments, theoretical proposals con-
sidered the possibility of structured ground states emerging
in binary (i.e., two-component) dipolar BECs [9,10] (also see
[11]). Here the structure formation is driven by an instability
to immiscibility, rather than collapse, and beyond-mean-field
effects are not required (cf. [12,13]). Interest in this system
has increased with the first experimental production of binary
dipolar condensates of erbium and dysprosium atoms [14] and
the demonstration of interspecies Feshbach resonances [15].
The possibility of supersolidity in these systems was recently
theoretically explored in regimes where the components are
miscible [16,17] and immiscible [17–19], and a configura-
tion supporting self-bound (cohesive) crystals [20] has been
proposed.

Here, we examine properties of immiscible crystal states
occurring in a planar quasi-two-dimensional (quasi-2D) bi-
nary dipolar BECs. Our focus is on stripe states with a
one-dimensional crystal pattern in which a spatial modulation
of the wave functions occurs along one direction in the plane
of the trap. We refer to this as a spin-stripe state because the
broken translational invariance is most strongly revealed in
the (pseudo)spin density of the condensate, i.e., the difference
in density between the components. This work generalizes the
recent immiscible supersolid states considered in cigar-shaped
potentials [18,19] to a quasi-2D planar case. In previous work
[21] we quantified the instabilities of this system in the uni-
form phase, identifying the conditions where density or spin
modes cause dynamical instabilities and whether those modes
are long wavelength (phonon) or short wavelength (roton)

in character. In this paper we explore the regimes where a
uniform miscible state is unstable to a spin excitation, result-
ing in immiscible ground states. For the spin-stripe ground
states we calculate their properties and excitation spectrum.
For excitations propagating along the planar direction normal
to the stripes, the system has three gapless excitation branches
and exhibits acoustic and optical phononlike modes, as re-
cently discussed by Kirkby et al. [22]. Here, our focus is on
the density- and spin-dynamical structure factors. We identify
an interesting nonsymmorphic symmetry that is revealed by
the excitations of the spin-stripe state when both components
are suitably balanced. We also mention the stripe phase that
occurs in spin-orbit-coupled binary BECs [23–26]. This stripe
state exhibits a modulation in the total density and has two
gapless excitation branches [27].

We also consider how the system orders into the spin-stripe
phase following a sudden quench from the uniform miscible
state. Immediately following the quench, we observe that
small domains of spin-stripe order develop with different ori-
entations φ of the stripe pattern. The growth rate of the stripe
patterns is found to be in good agreement with the imaginary
part of the frequency of the unstable spin-excitation mode
of the initial state. As time progresses, we observe phase-
ordering dynamics, in which the spin-stripe domains merge
and grow. When the domains are relatively large compared
to the microscopic length scales, we find that the domains
grow with a power law, i.e., Lφ (t ) ∼ t1/z, where Lφ is the
domain size and 1/z is the dynamic critical exponent. In this
regime we find that the order-parameter correlation function
displays dynamical scaling [i.e., when lengths are scaled by
Lφ (t ), it is time independent]. While there have been some
studies of the miscible to immiscible dynamics in finite binary
dipolar BECs [10,13,28,29], they have not considered a quan-
titative description of how the order develops following such
a quench. Furthermore, the presence of both superfluid and
spin-stripe order makes this an interesting many-body system
to study phase transition and ordering dynamics.
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The outline of this paper is as follows. In Sec. II we de-
velop the formalism for the ground states and excitations of
the planar 2D binary dipolar BEC. We also define the bal-
anced regime, where the system has a Z2 symmetry between
the components, which then manifests as a nonsymmorphic
symmetry in the spin-stripe state. While our primary results
are based on numerical solution of the associated Gross-
Pitaevskii and Bogoliubov–de Gennes (BdG) equations, we
also develop a variational result for the spin-stripe state in the
balanced regime. In Sec. III we present our results for the
ground-state phase diagram over a wide parameter regime.
We find that spin-stripe phases are favored by a significant
difference in the dipole strength of the components, so that a
dipolar-nondipolar mixture or an antiparallel mixture (where
the second component has dipolar polarization opposite to
the first one) favors the spin-stripe state. As the dipole-dipole
interactions (DDIs) become more similar both within and
between components, the spin-stripe lattice constant diverges,
and the ground state approaches the usual case of an immis-
cible fluid (i.e., one large domain of each component). Our
results for the density and spin dynamical structure factors
illustrate the excitations of the spin-stripe state and reveal the
nonsymmorphic symmetry in the balanced case. In Sec. IV
we study the quench dynamics following a sudden change in
parameters taking the system from a uniform miscible state to
the regime where the ground state is a spin-stripe state. We
examine the growth of local order following the quench and,
on longer timescales, the spatial growth of order as signified
by an order parameter characterizing the spin-stripe orienta-
tions. We show that at late times the order tends to grow with
a power law and the dynamical scaling holds. We also observe
defects of the order such as disclinations and grain boundaries.
We conclude in Sec. V.

II. FORMALISM

Our system is a two-component (binary) Bose gas of dipo-
lar atoms with their magnetic moments polarized along the
z axis. These components could correspond to two different
atoms or different spin states of a particular atom. In what
follows we treat the masses of the atoms in each component
with the same value M. The low-energy interactions between
these atoms are described by

Ui j (r) = gs
i jδ(r) + 3gdd

i j

4π

1 − 3 cos2 θ

r3
, (1)

where i, j = 1, 2 label the components. Here, gs
i j =

4πas
i j h̄

2/M is the s-wave coupling constant between
components i and j, with as

i j being the s-wave scattering
length. The DDI coupling constant is gdd

i j = μ0μ
m
i μm

j /3,
with μm

i being the magnetic dipole moment along z of
component i. The DDIs are anisotropic, with θ being the
angle between the relative separation of the dipoles r and the
dipole polarization axis. Note that for the case of antiparallel
dipoles, e.g., μm

1 > 0 and μm
2 < 0, we can have gdd

12 < 0,
while gdd

ii � 0 always.
We consider a system with strong axial harmonic confine-

ment along the z axis with frequency ωz and unconfined in the
xy plane, i.e., V (z) = 1

2 Mω2
z z2.

A. Mean-field ground states

The mean-field description for the ground-state wave func-
tions �i(x) of a zero-temperature BEC is provided by the
two-component dipolar Gross-Pitaevskii theory [30] with the
energy functional

E =
∫

dx
2∑

i=1

�∗
i (x)

[
− h̄2∇2

2M
+ V (z)

]
�i(x)

+ 1

2

2∑
i, j=1

∫
dx dx′ |�i(x)|2Ui j (x − x′)|� j (x′)|2. (2)

We assume the system is in the quasi-2D regime, where inter-
action energy scales are small compared to h̄ωz so that axial
degrees of freedom are frozen out and the axial wave func-
tion is well approximated by the harmonic-oscillator ground
state χ (z) = e−z2/2l2

z /(π1/4√lz ), where lz = √
h̄/Mωz is the

harmonic-oscillator length. We search for stripe phases, with
variation along only one direction in the plane, which we take
to be the x direction, giving a ground-state wave function of
the form

�i(x) = √
nψi(x)χ (z), (3)

where we have taken the areal density n of each component to
be the same and ψi(x) is dimensionless. This ansatz allows us
to consider uniform miscible states with ψi(x) = 1 and striped
states for which we take the spatial variation to be periodic
with unit cell (uc) length L, i.e., ψi(x) = ψi(x + L), with
the normalization constraint

∫
uc dx|ψi(x)|2 = L. In practice

a slight tilt of the dipole polarization to have a transverse
component could be used to give preference to a particular di-
rection (e.g., see [10]). We focus our attention here on striped
states since 2D patterns are generally of higher energy for the
parameter regimes we consider.

Our interest is to determine the wave function that mini-
mizes the energy per particle for fixed average areal density n.
We can do this by finding the energy Eq. (2) in a single unit
cell and dividing by the number of particles in the cell N to
get

EL =
2∑

i=1

∫
uc

dx

2L
ψ∗

i

[
− h̄2

2M

d2

dx2
+ 1

2

2∑
j=1


i j (x)

]
ψi, (4)

which is the energy per particle. Here, we have neglected
the constant zero-point energy of χ , and the interactions are
described by [10,21,31,32]


i j (x) = nF−1{Ũi j (kx )F{|ψ j |2}}, (5)

where F denotes the one-dimensional Fourier transform of
the x coordinate in a unit cell and F−1 is the inverse transform
(against the kx coordinate). Here, the quasi-2D interaction
kernel is

Ũi j (kx ) = gs
i j + gdd

i j [2 − 3G0(kxlz/
√

2)]√
2π lz

, (6)

with G0(q) = √
πqeq2

erfc(q), where erfc is the complemen-
tary error function.

To determine the ground states we minimize EL with re-
spect to the wave functions {ψ1, ψ2} for any given L. Then
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we find which uc length L gives the minimum EL. For the
uniform miscible case the wave functions are constant, and EL

is independent of L. In general, the stationary-state solutions
will satisfy the coupled Gross-Pitaevskii equation (GPE)

LGP,iψi(x) = μiψi(x), (7)

where LGP,i = − h̄2

2M
d2

dx2 + ∑
j 
i j (x) and μi is the chemical

potential for component i. In practice we locate these solu-
tions using gradient-flow (imaginary-time) evolution (e.g., see
[28,33,34]) to optimize the wave functions.

B. Excitations and structure factors

The collective excitations can be obtained by linearizing
the time-dependent GPE, ih̄�̇ j = δE/δ�∗

j , around a station-
ary solution as

� j (x, t ) = e−iμ j t/h̄[
√

nψ j (x) + ϑ j (ρ, t )]χ (z), (8)

where ρ = (x, y). From the ground-state symmetries the exci-
tations take the form

ϑ j (ρ, t ) ≡
∑

ν

[cνuν je
i(qxx+kyy−ωνt ) − c∗

νv
∗
ν je

−i(qxx+kyy−ω∗
ν t )],

(9)

where cν are the (assumed to be small) expansion coefficients
and {uν j (x), vν j (x)} and ων are the quasiparticle amplitudes
and angular frequencies, respectively. The quantum numbers
to describe the excitation are ν = (ν, qx, ky), with |qx| � K/2
being the quasimomentum in the first Brillouin zone, where
K = 2π/L is the reciprocal-lattice vector; ky describes the
plane-wave behavior along y; and ν represents the remain-
ing band information. We have used a Bloch form for the x
dependence of the wave function, with {uν j (x), vν j (x)} being
periodic functions on the unit cell.

The excitations satisfy the BdG equations Hqx,ky wν =
h̄ωνwν, where wν = (uν1, uν2, vν1, vν2)T and

Hqx,ky =
(

L + X −X
X −L − X

)
. (10)

Here, we have introduced the matrices L, with components
Li j = (−1)i−1Liδi j , where

L j = h̄2

2M

[(
qx − i

d

dx

)2

+ k2
y

]
+

2∑
k=1


 jk (x) − μ j, (11)

and X, with components

Xi j f = nψiF−1
{
Ũi j

[√
(qx + kx )2 + k2

y

]
F{ψ j f }}. (12)

We can quantify the character of the excitations by introduc-
ing dynamic structure factors, which can be measured through
Bragg spectroscopy [35–38]. In a two-component system we
can define a density (+) and the spin-density (−) dynamic
structure factor as [39]

S±(kρ, ω) =
∑

ν

|δñ±
kρν |2δ(ω − ων ), (13)

where kρ = (kx, ky). The wave vector kx determines the quasi-
momentum qx, reduced to the first Brillouin zone by the

reciprocal-lattice vector K for integer m, i.e., kx = qx + mK .
The density fluctuations are δnν j (x)ei(qxx+kyy), where

δnν j (x) = √
nψ j (x)[uν j (x) − vν j (x)], (14)

δñ±
kρν =

∫
uc

dρ e−imKx[δnν1(x) ± δnν2(x)]. (15)

Consistent with our quasi-2D approximation, we neglect axial
excitations, which will appear for ω � ωz.1

C. Balanced regime

We now specialize the formalism outlined in the previous
sections to the balanced case, where, in addition to the areal
density of the components being identical, we take the mag-
nitudes of the dipole moments and the intraspecies contact
interactions of each component to be the same, i.e.,

gs
11 = gs

22,

gdd
11 = gdd

22 = ∣∣gdd
12

∣∣. (16)

The latter condition requires the magnitudes of the mag-
netic moments of both species to be identical but allows for
the moments to be aligned parallel (μm

1 = μm
2 , gdd

12 > 0) or
antiparallel (μm

1 = −μm
2 , gdd

12 = −gdd
ii < 0). Under these con-

ditions the Hamiltonian has a Z2 symmetry, i.e., invariance to
exchange of the components.

1. Ground symmetry and variational approach

Following our numerical results in this regime e.g., see
Fig. 2(c1) below, the ground-state wave functions of both
components can be chosen to be real, with the wave function
of one component equal to the other translated by half a unit
cell, i.e.

ψ1(x) = T̂L/2ψ2(x), (17)

where T̂a is the operator implementing a spatial translation
of a along x. This symmetry manifests in the results for the
excitations we present later.

Due to the similarity of the components we describe the
spin-stripe state with a variational wave function of the form

ψi(x) = cos η + (−1)i−1
√

2 sin η cos(2πx/L). (18)

Here, η is the order parameter for the spin stripe, with the state
being uniform for η = 0. This wave function satisfies Eq. (17)
and the normalization condition

∫
uc dx|ψi|2 = L. We restrict

η ∈ [0, η0], where η0 = cot−1
√

2 is the value at which the
wave function has a zero crossing. Evaluating the energy per
particle (4), we obtain

Evar (L, η) = h2 sin2 η

4ML2
+ n

4

[
Ũ+(0) + sin2 2ηŨ−

(
2π

L

)

+1

2
sin4 ηŨ+

(
4π

L

)]
, (19)

where Ũ±(k) = Ũii(k) ± Ũ12(k). Variational solutions can be
identified by finding the minima of Evar (L, η).

1This is a reasonable approximation because only even bands can
contribute to S±, and their contribution will generally be weak.
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FIG. 1. (a) Dynamical stability diagram of a miscible uniform
state. Inset (a1) shows the stability diagram over a broader parameter
regime (details of instability identification can be found in [21]).
Colored lines and attached markers in (a) correspond to the results
shown in Fig. 2 with the same color. (b) Ground-state phase diagram.
Contrast C1 is used as the spin-stripe order parameter, except in
the green-shaded region, where the ground state has a triangular
crystalline pattern. In the two domains region we have set C1 = 1.
Here C1 → 1, but it is difficult to calculate accurately due to the large
domain size and sharp boundaries [also see Figs. 2(b2) and 2(c3)].
Calculation parameters: ngs

ii/h̄ωzlz = 5 and gdd
11/gs

11 = 0.9.

2. Excitations

We can formalize the symmetry observed in Eq. (17) with
the operator

� = TL/2σx, (20)

where σx is the Pauli x matrix acting in the pseudospin- 1
2 space

of the components. The GPE and BdG operators respect the
� symmetry, i.e.,

Hqx,ky =
(

� 0
0 �

)
Hqx,ky

(
� 0
0 �

)†

, (21)

and the excitations can be taken to be eigenstates of � as(
� 0
0 �

)
wν = λwν. (22)

0

1

2
(a1)

-1 -0.5 0 0.5 1

2

4

(a2)

spin-phonon spin-roton boundary

stable spin-roton boundary

0

1

2

(b1)

0.6 0.8 1 1.2
0

0.5

1
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-1 0 1
0

1

2

3
(c1)

-2 0 2

(c2)

-20 0 20

(c3)

-1 0 1

(c4)

FIG. 2. System properties along specified lines in the dynamic
stability diagram [Fig. 1(a)]: (a1) Roton wave vectors. (a2) Energy
per atom. (b1) Reciprocal-lattice vectors. (b2) Contrast of component
1. (c1)–(c4) Spin-stripe state densities of components 1 (blue) and
2 (orange). Colored lines and markers in (a) and (b) are for the
parameters indicated by the same lines and markers in Fig. 1(a). The
diamonds labeling the subplots in (c) identify the solution parameters
in Fig. 1(a). Gray dashed lines in (b1), (b2), (c1), and (c4) are vari-
ational results for the balanced case. Black crosses in (b1) indicate
the average domain size from dynamical results from the simulations
presented in Fig. 5(b).

Here, we also introduce the quantum number λ = ±1. In
the uniform state the symmetry is trivially reduced to σx

and reflects that excitations can be chosen to be in-phase
(λ = 1, density) modes or out-of-phase (λ = −1, spin) modes
(see Ref. [21]). For the modulated case � reflects a non-
symmorphic symmetry, which arises from a combination of
point-group operations with nonprimitive lattice translations
(see Ref. [40]).

III. RESULTS FOR GROUND STATES AND EXCITATIONS

A. Ground-state phase diagram

1. Uniform-miscible-state instabilities

First, we consider the system in a uniform miscible state
(i.e., ψi = 1) and study its collective excitations to quantify
when it becomes unstable. Our results for this are shown in
Fig. 1(a) as the relative dipole moment and the interspecies
contact interaction vary. Here, we describe the interspecies
interaction in terms of the parameter

δ12 = gs
12√

gs
11gs

22

. (23)

For reference, a nondipolar binary condensate is stable and
miscible for |δ12| � 1 and is immiscible for δ12 > 1.

The dynamical stability diagram presented in Fig. 1(a) is
similar to that explored in Ref. [21] but here is specialized to
the quasi-2D assumption and is restricted to the region where
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FIG. 3. Excitations and dynamic structure factors for balanced
antiparallel uniform states close to the spin-stripe transition. Ex-
citations with (a) λ = 1 and (b) λ = −1 for three values of δ12.
(a1) Density and (b1) spin dynamic structure factors for the uni-
form ground state with δ12 = 0.45. The relevant λ = 1 (solid) and
λ = −1 (dashed) excitation branches are shown in (a1) and (b1)
as white lines for reference. Excitations for δ12 = δc = 0.55 shown
in (a) and (b) correspond to the purple circles in Figs. 1(a), 2(a),
and 2(b). The dynamical structure factors were broadened by setting
δ(ω) → e−(ω/ωB )2

/
√

πωB in Eq. (13) with ωB = 0.04ωz.

immiscibility transitions occur.2 The two unstable regions
in Fig. 1(a) correspond to the area where long-wavelength
spin phonon modes or short-wavelength spin roton modes
soften and become dynamically unstable. The spin character
of the unstable modes can be assessed from their dominant
contribution occurring in the S− structure factor (see Fig. 3
below and [21]), and for the balanced case these modes have
λ = −1. Such unstable modes suggest that the components
will spatially separate, leading to an immiscible transition.
This indicates an immiscible state will emerge as the ground
state.

2. Ground-state phase diagram

Using the formalism outlined in Sec. II A we can find
the ground states in the regions where the uniform miscible
state is dynamically unstable. The ground-state phase diagram
is shown in Fig. 1(b), with some example states shown in
Figs. 2(c1)–2(c4). When the uniform miscible state is unsta-
ble, the ground state has a modulated density in plane that
arises because the two components are immiscible and par-
tially separated. The modulation of the density of component

2We exclude the region of mechanical instability, which requires
accounting for quantum fluctuations (e.g., see [12,13]).

1 is characterized by the density contrast

C1 = max |ψ1|2 − min |ψ1|2
max |ψ1|2 + min |ψ1|2 . (24)

Here, a contrast of 0 indicates that the state is uniform, and a
(maximal) contrast of 1 indicates that the density of that com-
ponent goes to zero at some point in the unit cell. We shade
the phase diagram in Fig. 1(b) according to the component-1
density contrast of the lowest-energy spin-stripe state. Note
that when component 1 begins to modulate (i.e., C1 > 0),
component 2 also modulates such that the dense regions of
each component avoid each other [e.g., see Figs. 2(c1)-(c4)].

For parameters considered in our results, the transition
from the uniform to spin-stripe state is continuous; i.e., the
contrast emerges continuously as δ12 varies [see Fig. 2(b2)].
The reciprocal-lattice vector of the spin-stripe state decreases
with δ12 [see Fig. 2(b1)], but most importantly, it is strongly
dependent on the relative dipole strength between the compo-
nents, as characterized by the ratio μm

2 /μm
1 [see Fig. 2(a1)].

In the region where the uniform state exhibits a spin-roton
instability [light-green-shaded region in Fig. 1(a)], the stripe
state emerges with microscopic length scale L ∼ lz. For exam-
ple, L ≈ π lz for the antiparallel case, increasing to L ≈ 1.6π lz
for the dipolar-nondipolar case. In the region where the uni-
form state exhibits a long-wavelength spin-phonon instability
[lavender-shaded region in Fig. 1(a) and as μm

1 /μm
2 → 1 in

Fig. 2(a1)] the length L diverges, consistent with the system
preferring to become immiscible by forming a single large
domain of each component. We refer to this as the region
with two domains, which can be understood using a model
with two uniform condensates of equal average areal density
n and no intercomponent interaction. In the ground state of
this model, the two components have equal pressure, and the
energy per particle (4) is

ELD = n

4

(
2∑

i=1

√
gs

ii + 2gdd
ii

)2

, (25)

shown as a pink line in Fig. 2(a2). Equating this to the energy
of a miscible uniform case in the quasi-2D approximation
[Eq. (19) with η = 0] yields a result coinciding with the BdG
approach used in [21] and shown by the pink lines in Fig. 1.

We also indicate in Fig. 1(b) the small region where a
triangular immiscible state emerges as the ground state via a
first-order transition from the uniform state. The roton soften-
ing boundary (light-blue solid line in Fig. 1) is enclosed within
it; i.e., the transition to the triangular state generally occurs at
a slightly lower δ12 value. Stronger nonlinearities (i.e., larger
ngs

i j and ngdd
i j ), more strongly imbalanced regimes, or in-plane

confinement could be used to favor the triangular spin state
over a broader parameter regime, but we do not consider that
further here.

For the balanced antiparallel case μm
1 /μm

2 = −1 we com-
pare the numerical and variational results for the spin-stripe
state properties in Figs. 2(b1), 2(b2), 2(c1), and 2(c4). These
comparisons show excellent agreement and verify the utility
of the variational approach to the ground states in the balanced
regime.
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B. Excitations and structure factors

1. Uniform miscible state

In Figs. 3(a) and 3(b), we consider the excitations in
uniform balanced ground states with antiparallel dipoles
μm

1 /μm
2 = −1 for several values of δ12. In the uniform

state there are two gapless excitation branches. For the bal-
anced case, these branches have density (λ = 1) and spin
(λ =−1) character. As δ12 increases, the slope of the density
branch near kρ = 0 (where k2

ρ = k2
x + k2

y ) also increases. In
contrast the spin-excitation branch develops a rotonlike (local-
minimum) feature that softens to zero energy as δ12 → δc ≈
0.55. At this critical value we identify the roton wave vector
krot as the wave vector at which the roton first softens to
zero energy [see Fig. 3(b)]. For δ12 > δc the uniform state
is unstable, and the spin-stripe state is the ground state [see
Figs. 2(b1), 2(b2), and 2(c1)]. The spin stripe forms with
K = krot at the critical point.

In Figs. 3(a1) and 3(b1) we show the dynamic structure
factors for the δ12 = 0.45 case. Excitations with λ = +1 and
λ = −1 contribute to the S+ and S− dynamic structure factors,
respectively, and the dip in S− clearly reveals the spin roton. In
Fig. 1(a) the spin-roton softening is used to identify the roton
stability boundary (light blue line).

2. Balanced spin-stripe state

In Figs. 4(a1) and 4(a2) we consider the excitation spec-
trum (white lines) for δ12 > δc, where the ground state is
a spin-stripe state [the case shown in Fig. 2(c1)]. Here, we
show the excitations propagating with quasimomentum nor-
mal to the stripe (i.e., along x). The excitations are repeated
in the extended zone scheme to allow comparison with the
dynamic structure factors. We observe three gapless excita-
tion branches in this phase, with two being λ = 1 excitation
branches and one being a λ = −1 branch. This is consis-
tent with the prediction of 2 + D Nambu-Goldstone modes
for a two-component supersolid state [41], where D is the
dimensionality of crystalline order (here D = 1 for the spin-
stripe state). We denote the lowest-energy λ = 1 branch as
the density superfluid mode (adopting the terminology used in
Ref. [22]) and the two upper branches as the (gapless) acoustic
and (gapped) spin-Higgs modes, respectively. Similarly, we
denote the lowest-energy λ = −1 gapless branch as the spin
superfluid mode and the upper gapped branch as the optical
mode. For comparison there are two gapless modes and a
Higgs mode in scalar dipolar supersolids [42].

In Figs. 4(a1) and 4(a2) the density and spin-density dy-
namic structure factors are shown. Here, we observe that the
excitation contributions alternate between causing density and
spin fluctuations as kx increases and we cross Brillouin zones.
For example, only the λ = 1 modes (solid lines) contribute
to S+ for 0 � kx � K/2, whereas only the λ = −1 modes
(dashed lines) contribute for K/2 � kx � 3K/2. This arises
from the nonsymmorphic symmetry identified in Sec. II C 2
and can also be seen as a consequence of Fourier transforming
L/2-periodic and L/2-antiperiodic functions from Eqs. (15)
and (22). This symmetry also causes a degeneracy in the
excitations, notably that pairs of λ = 1 and λ = −1 bands
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FIG. 4. Excitations and dynamic structure factors for (a) bal-
anced spin-stripe states with μm

2 /μm
1 = −1 and δ12 = 0.6 and

(b) unbalanced spin-stripe states with μm
2 /μm

1 = 0 and δ12 = 1.15.
White lines indicate the periodically extended excitation spectrum.
Solid (λ = 1) and dashed (λ = −1) lines in (a) indicate the asso-
ciated symmetries for the balanced case. The dynamical structure
factors were broadened as for Fig. 3.

are degenerate at the band edge qx = K/2.3 This degeneracy
is most readily seen in the dynamic structure factor results
where the λ = ±1 excitation bands are plotted together for
reference, as there is no sign of avoided crossings at the Bril-
louin zone boundaries. Another feature of this symmetry is
that the spin-density response diverges at kx → K and ω → 0
[see Fig. 4(a2)] and the density response diverges at kx → 2K
and ω → 0 [see Fig. 4(a1)].

In Figs. 4(a3) and 4(a4) we examine the excitations prop-
agating parallel to the stripe (i.e., along y). In this direction
momentum is a good quantum number. We see that the
three gapless bands have different behavior compared to the

3We have the additional symmetry operator Pkx describing the
invariance of the system under the inverse of the x component of
momentum. This pins the band crossing to the edge of the Brillouin
zone [40].
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results for propagation normal to the stripe [see Figs. 4(a1)
and 4(a2)]. Most notably, the lowest-energy density band has
quadratic (i.e., free particle) character and corresponds to a
transverse excitation of the stripe and, as a result, makes
no contribution to the density structure factor. Similarly, the
higher density and spin bands that contribute to the respective
structure factors all correspond to longitudinal excitations of
the stripes.

3. Unbalanced case: Dipolar-nondipolar mixture

In Figs. 4(b1) and 4(b2) we consider the excitations and
structure factor for an unbalanced case of a dipolar-nondipolar
mixture (μm

2 = 0) for the stripe state shown in Fig. 2(c2).
Here, we can no longer separate excitations into pure spin
or density character (i.e., λ is no longer a good quantum
number). The nonsymmorphic symmetry is broken for this
case, and the exact degeneracies at the band edge are now
replaced by avoided crossings.

IV. QUENCH DYNAMICS

We now examine the dynamics of a quench from the
uniform-miscible to spin-stripe state to explore the dynamics
of stripe formation. Specifically, at time t = 0 we set δ12 to
a value where a spin-stripe state is expected and simulate the
dynamics according to the time-dependent GPE. This imple-
ments an instant quench in the interspecies interaction.

We perform these simulations on a square grid of side
length l with periodic boundary conditions. We add a complex
normally distributed noise to the initial miscible state ψi = 1,
which mimics quantum and thermal fluctuations in the quan-
tum field theory [43–45]. The noise is added to momentum
space to modes with wave vectors kρ lz � 3.5. This choice
restricts the noise to the low-kinetic-energy modes but ensures
that the dynamically unstable Bogoliubov modes have some
finite initial occupations. The noise is weak and changes the
relative normalization of the initial field by ∼10−6.

Immediately following the quench, unstable modes initiate
the immiscibility dynamics. The immiscibility is conveniently
described using the (pseudo)spin density

Fz(ρ) = |ψ1(ρ)|2 − |ψ2(ρ)|2, (26)

which characterizes the differences in densities of both
components. To quantify the early-time dynamics of the spin-
stripe formation we use the expectation

〈
F 2

z

〉 ≡ 1

A

∫
dρ F 2

z (ρ), (27)

where A = l2 is the total area of the system. The evolution of
〈F 2

z 〉 following the quench is shown in Fig. 5(a), where 〈F 2
z 〉

has a small nonzero value at t = 0 arising from the initial
noise and grows exponentially with time, which reflects the
unstable excitations of the initial state. We then identify the
growth rate of 〈F 2

z 〉 associated with the most unstable mode
as

� = max
ν

Im{ων}. (28)

The results in Fig. 5(a) show that this provides a good quanti-
tative description of the exponential growth at early times. In
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FIG. 5. Early- and moderate-time growth of spin-stripe order
following a sudden quench to δ12 = 0.8. (a) Evolution of 〈F 2

z 〉 (black
line), with an exponential-growth fit (gray-dash-dotted line), and the
Bogoliubov prediction ∼e4�t (purple dashed line). Inset (a1) shows
real (solid line) and imaginary (dashed line) λ = −1 excitation spec-
tra. (b) Comparison of Bogoliubov prediction (purple dashed line)
to the fitted exponential growth rate (gray crosses) for quenches
to various δ12 values. The three colored markers in (b) have the
parameters indicated by the same markers in Fig. 1(a). Examples
of the (c) early- (t = 10/ωz) and (d) moderate- (t = 100/ωz) time
spin-density patterns for δ12 = 0.8. Other parameters are the same
as the values used in Fig. 2(c1). The green line in (a) indicates 〈F 2

z 〉
for the spin-stripe ground state. Simulations were performed on a
square grid with side length l = 40lz, 200 points in each direction,
and periodic boundary conditions.

Fig. 5(b) we consider how the early-time growth rate changes
with δ12 and verify the applicability of Eq. (28) for these cases.
This growth eventually saturates on a timescale of t ∼ 10/ωz

when 〈F 2
z 〉 saturates to a value close to the expected value for

the spin-stripe ground state.
In Fig. 5(c) we show an early-time spin-density pattern

following the quench. Later, at t = 100/ωz [see Fig. 5(d)], the
spin-stripe structure is already well established, although the
orientation of the stripes varies over space. From these stripes
we can extract the mean reciprocal-lattice vector, which we
display as the black crosses in Fig. 2(b1) and which is seen
to be in good agreement with the expected ground-state
reciprocal-lattice vectors.

The early-time growth in immiscible binary and spin-
1 condensates was considered in previous work (e.g., see
Refs. [46–48]), and the initial evolution of 〈F 2

z 〉 is similar
to our observations. However, in these nondipolar systems
irregular domains develop, rather than regular spin stripes. As
time progresses, the spin domains grow in size with time in a
coarsening process [49] that evolves the system towards one
large domain of each component (also see [50–54]).
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FIG. 6. (a) Illustrative example of the spin density at t =
1600/ωz following a quench to the spin-stripe phase. The black circle
identifies a disclination defect in the stripe pattern, and the two white
circles identify grain-boundary defects. (b) Schematic of a +1/2
disclination defect in a stripe pattern. The orientation of a vector
perpendicular to the stripes (black lines) [see (c)] rotates by 180◦ as
we travel over the closed circular path drawn around the core of the
defect. (c) Schematic example of the normal vectors n̂ perpendicular
to the stripes (also see text). We use these normal vectors to quantify
the orientation order. (d) The orientation order (angle) of the normal
vectors corresponds to the spin density in (a). Other parameters are
the same as the values used in Fig. 5(a). Simulation is performed on a
square grid with side length l = 160lz (one quarter of the simulation
area is shown), with 800 points in each direction.

We are also interested in how the orientation order grows in
the spin-stripe phase. Initially, the stripe domains (i.e., regions
with regular stripe spacing and orientation) extend over small
length scales [e.g., see Fig. 5(c)]. At later times the domains
are observed to be larger [e.g., compare Figs. 5(d) and 6(a)].
We can see two types of defects in the example presented in
Fig. 6. First, we can see a disclination point defect indicated
by the black circle drawn in Fig. 6(a) [also see Fig. 6(b)].
Second, we observe a grain-boundary line defect indicated by
the thick magenta lines inside the white circles in Fig. 6(a).
These defects are known from the theory of 2D solids (e.g.,
see Ref. [55]).

To characterize the spin-stripe orientation order, the rel-
evant order parameter is the orientation angle φ(ρ) of the
normal vectors of the spin density in the xy plane [56]. We
show a schematic example of the unit normal vectors n̂ in
Fig. 6(c) to demonstrate how we map the spin density in
Fig. 6(a) onto φ(ρ) in Fig. 6(d).4 Because the magnitude
of the normal vectors vanishes at the local maximum and
minimum of Fz and due to fluctuations, we remove some

4The stripe-orientation order can be characterized by a nematic
director. To reflect this we take the normal vectors to be in the upper
half plane n̂ = sgn( ∂Fz

∂y ) ∇Fz
|∇Fz | .
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FIG. 7. Phase-ordering kinetics of the spin-stripe state. (a) Spa-
tially and angular averaged correlation function for 32 trajectories
(thin lines) and the averaged result (thick line) at t = 2000/ωz af-
ter quench. (b) The orientation order-parameter correlation function
at three different times after the quench. (c) Collapse of correla-
tion functions in (b) by scaling with the correlation length Lφ (t ).
(d) Growth of the correlation length at late times following the
quench, indicating a power-law growth. The circles mark the results
corresponding to the cases shown in (b). We used 32 trajectories
for δ12 < 0.9 and 8 trajectories for δ12 = 0.9. Inset: comparison
of dynamic critical exponents (circles) and the superfluid fraction
fs (dashed line). Other parameters are the same as those used in
Fig. 5. Simulations were performed on a square grid with side length
l = 409.6lz, with 2048 points in each direction.

short-wavelength noise by a Gaussian filtering. Some residual
noise remains on the filtered order parameter, but generally, it
is seen to vary smoothly over space. The results of Fig. 6(d)
also clearly reveal the point and line defects.

To examine how order develops after the quench we evalu-
ate the order-parameter correlation function

G(ρ, t ) = 1

A

∫
dρ′ e2i[φ(ρ+ρ′ )−φ(ρ′ )]. (29)

In practice the result is calculated using angular averaging
to produce G(ρ, t ). An example of the late-time correlation
function for 32 independent quench trajectories is shown in
Fig. 7(a) as thin lines, and the average over these trajec-
tories is shown as a thick line. Using this technique, we
construct the averaged correlation functions at different times
[see Fig. 7(b)]. At each time we identify the correlation length
Lφ (t ) (i.e., typical domain size) as G[Lφ (t ), t] = G(0, t )/e.
The results in Fig. 7(c) show that the correlation functions
scaled by their correlation lengths, i.e., G[ρ/Lφ (t ), t], exhibit
a collapse to a time-independent function. This verifies dy-
namic scaling of the order parameter at late times in the phase
ordering. Here, the results shown are taken at times from
t ∼ 102/ωz to ∼3 × 103/ωz. The lower time limit is to ensure
that the correlation length is sufficiently large compared to
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the microscopic lengths (e.g., stripe wavelength). The upper
time limit is imposed to prevent the correlation length from
becoming comparable to the grid extent; i.e., we restrict the
data to cases where Lφ (t ) � l/4.

In Fig. 7(d) we show several averaged correlation length
Lφ (t ) growth curves for quenches to δ12 values in the range
0.65 � δ12 � 0.9. For 0.65 � δ12 � 0.8 they are seen to grow
with time consistent with a power law Lφ ∼ t1/z, with an
exponent 1/z that depends on the values of δ12 [see fits in
Fig. 7(d) and exponents shown in the inset]. The result for
δ12 = 0.9 grows more slowly, and the domain size appears
to saturate at late times. Our results for δ12 = 1 to 1.2 (not
shown) are similar to the δ12 = 0.9 case, but once the domain
size reaches Lφ ∼ 10lz, any further increase is very slow. In
general, we find that the δ12 � 0.9 cases grow slower than a
power law.

Several factors may play a role in the phase-ordering de-
pendence on δ12. First, as δ12 increases, the density contrast of
each component increases, and transport is inhibited. Indeed,
the density contrast from the broken translational invariance
of the spin-stripe state leads to a reduction in the superfluid
fraction of each component, which we quantify using the
Leggett result [57] applied to component 1,

fs = L

[ ∫
uc

dx

|ψ1(x)|2
]−1

, (30)

with the results shown in the inset in Fig. 7(d). We observe
that the dynamic critical exponent decreases as the superfluid
fraction decreases. A second factor is that for deeper quenches
(i.e., to large δ12) a higher density of disclinations is created.
Studies of stripe pattern ordering in 2D smectic systems found
that as the disclination density increased, the phase ordering
progressed at a significantly slower rate [56].

V. CONCLUSIONS

In this work we have characterized the phase diagram for a
quasi-2D binary BEC focusing on the spin-stripe state, which
occurs when there is a difference in the DDIs between the
components. We have also calculated the excitations of the
spin-stripe state and explored the role of Z2 and nonsymmor-
phic symmetries in the balanced regime. This work laid the
foundation for us to study the dynamics of how stripe order
forms following a sudden quench from a miscible state to the
parameter regime where the spin-stripe state is the expected
ground state. The system exhibits novel dynamics in this
transition as domains consisting of spin-stripes with different

orientations form across the system. At the interface between
these domains, various defects such as grain boundaries and
disclinations occur. Our results showed that as time evolves,
dynamic scaling can occur, although for larger δ12 values we
find that the domains are almost frozen and grow very slowly.
For values of δ12 where phase ordering occurs, we found
dynamic critical exponents in the range 1/z ∼ 0.4−0.6. For
comparison, work on binary fluids [58] established growth
laws of t1/3, t , and t2/3 in the diffusive, viscous hydrodynamic,
and inertial hydrodynamic regimes, respectively [49,58]. The
2D smectic liquid crystal also has a stripe pattern, although
it is a single-component system. Experimental studies of the
phase ordering in 2D smectics [56,59] found a t1/4 growth
law, reduced from the t1/2 law observed in 2D nematic liquid
crystals. In the smectic system the growth of the order was
observed to follow the average spacing between disclinations.
Furthermore, we find that the phase ordering changes charac-
ter as δ12 increases and the number of defects increases. For
sufficiently high δ12 values the phase ordering appears to stop,
and microscopic domains remain frozen in. This suggests that
a detailed investigation of the defect dynamics could shed
light on the ordering dynamics in the spin-stripe phase.

Following the experimental progress in producing binary
dipolar mixtures, our predictions, particularly for the ground-
state structure and excitations, could be explored with these
systems using quasi-2D box potentials [60]. Experimental
work on the spin-stripe phase transition dynamics would
complement efforts looking at the ordering dynamics of im-
miscible quantum phases explored in spinor BECs. Of note
is the experiment of Huh et al. [61] that observed the or-
dering dynamics in the easy-axis regime of a ferromagnetic
spin-1 BEC, where the system evolves as an immiscible two-
component mixture. Those experiments were able to find
universal scaling in the evolution of the spin correlations (cf.
Ref. [62]). However, even in smaller systems the early-stage
evolution of the transition to a spin stripe could be studied.
In addition to the growth rates of local order, it would be
interesting to quantify the emergence and evolution of defects.
Dipolar BECs are prone to developing sharp density features
in boxlike potentials [63,64], but recent work showed that hav-
ing appropriately chosen soft walls realizes the homogeneous
limit [65], relevant to our predictions here.
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