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Haldane model with chiral edge states using a synthetic dimension
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We explicitly show that the differences, with respect to the appearance of topological phases, between the
traditional Haldane model, which utilizes a honeycomb lattice structure, and the Haldane model imbued onto a
brick-wall lattice geometry are inconsequential. A proposal is then put forward to realize the Haldane model by
exploiting the internal degrees of freedom of atoms as a synthetic dimension. This leads to a convenient platform
for the investigation of chiral edge states due to the hard boundaries provided by the hyperfine manifold. We
make some cursory comments on the effects of interactions in the system.
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I. INTRODUCTION

Haldane’s work from 1988 using a “toy” model demon-
strated how a nonzero band Chern number, and therefore a
nonzero quantized Hall conductance, could be achieved in
“2D graphite” with a net-zero magnetic field [1]. In that ar-
ticle Haldane expressed doubts about whether the model is
physically realizable, yet some 20 years later it was exper-
imentally achieved in an ultracold Fermi gas [2]. Two of the
main signatures of topological phases of matter are edge states
and a quantized Hall conductance. Both of these hallmarks
were previously observed in synthetic-dimensional systems in
a quantum Hall regime [3,4].

In recent years there has been growing interest in synthetic
dimensions where, for example, the states of the hyperfine
manifold of an atom are coherently coupled together, allowing
for the construction of a (D + 1)-dimensional system from
one which has D spatial dimensions [5]. This new method
has come with its own plaudits, and schemes have been pro-
posed which would realize topological states of matter such
as the four-dimensional quantum Hall effect [6] and even
the six-dimensional quantum Hall effect [7,8], as well as
more exotic physics such as the Creutz-Hubbard model [9].
Using synthetic gauge fields, high effective magnetic field
strengths, otherwise experimentally unattainable, have been
realized in ultracold atoms to simulate the Harper-Hofstadter
model, having an important bearing in the realization of topo-
logical phases [10,11]. Here, Raman-assisted tunneling was
utilized, and proposals have also been put forward to realize
the anyonic Bose-Hubbard model using this technique [12]. In
this work, we propose an experimental scheme using synthetic
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dimensions to attain the Haldane model on a bipartite brick-
wall lattice with complex next-nearest-neighbor tunneling.

First, we analyze the differences between the Haldane
model on its traditional honeycomb lattice and on a brick-wall
lattice to ensure the system retains the desired properties.
Next, we propose using a synthetic dimension to create
the Haldane model, achieved by the use of Raman-assisted
tunneling, which can imprint complex phases on the wave
function of the atom. In implementing this, one would cap-
ture the spirit of Haldane’s proposal to generate a nonzero
Hall conductance without the appearance of Landau levels.
One advantage of using such a synthetic dimension is the
hard boundaries. The hyperfine manifold provides an ideal
platform for the investigation of chiral edge states [13], as
opposed to the case with degenerate atomic gases, in which
the edge of the sample is usually imposed gradually by har-
monic confinement and which thus do not reflect an abrupt
termination such as that found on a sample of graphene. The
edge-state physics is therefore nontrivial and needs to be con-
sidered in its own right [14,15]. Floquet techniques allow for
the creation of real-space edge states in optical lattices with
ultracold atoms. This was achieved by illuminating a region of
the condensate in the lattice with a repulsive optical potential,
thus creating a hard boundary [16]. Synthetic dimensions built
from the hyperfine manifold have the advantage that they
are manipulated optically, leading to high controllability and
flexibility.

According to the bulk-boundary correspondence [17,18],
for a nonzero Chern number one expects to observe edge
states, and previous studies predicted their existence for the
specific case of the Haldane model [19]. Previously, to iden-
tify the topological nature of the Haldane model [2], a constant
force was applied, and this resulted in an observed, orthogonal
drift. This drift is analogous to a Hall current. The topology of
the band can be explored by inducing Bloch oscillations and
mapping out in quasimomentum space the locations of the
Dirac points [2]. Chiral edge states in experimental analogs
of graphene have been observed in photonic lattice systems
[20]. Edge states in synthetic-dimensional systems were pre-
viously reported, and the way in which they were detected,

2469-9926/2024/109(2)/023322(12) 023322-1 Published by the American Physical Society

https://orcid.org/0009-0006-7185-3387
https://orcid.org/0000-0002-4463-0990
https://orcid.org/0000-0002-8780-4233
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.023322&domain=pdf&date_stamp=2024-02-20
https://doi.org/10.1103/PhysRevA.109.023322
https://creativecommons.org/licenses/by/4.0/


PRIESTLEY, VALENTÍ-ROJAS, AND ÖHBERG PHYSICAL REVIEW A 109, 023322 (2024)

TABLE I. Summary of differences between the honeycomb and brick-wall lattice Haldane models.

Lattice property Honeycomb Brick wall (six next-nearest neighbors)

Nearest neighbor a1 =
( 1

2√
3

2

)
a, a2 =

(− 1
2√
3

2

)
a, a3 =

(
0

−1

)
a a1 =

(
1
0

)
a, a2 =

(−1
0

)
a, a3 =

(
0

−1

)
a

Next-nearest neighbor b1 = (a2 − a3), b2 = (a3 − a1), b3 = (a1 − a2) b1 = (a2 − a3), b2 = (a3 − a1), b3 = (a1 − a2)

Flux φ = 2π (2�a+�b )
�0

φ = 2π (�a+�b )
�0

Brillouin zone Hexagon π

4 rotated square
Dirac points M = ±3

√
3 t2 sin φ M = ±3

√
3 t2 sin φ

using spin-selective imaging, is a valuable experimental
asset [3,4].

A proposal for an experiment to simulate generalized
Wilson-Dirac fermions, where Haldane-like phases surpris-
ingly appear, has already been proposed [21]. However, there
are fundamental differences between our proposals and [21].
Primarily, [21] uses only two internal states and therefore has
no synthetic-dimensional “bulk,” whereas our proposal may
be extended to an arbitrary number of states of the hyperfine
manifold. This allows for a larger bulk within the synthetic
lattice, which is especially useful for the comparison of bulk
states to chiral edge states. We envision probing these states
by way of spin-selective imaging, whereas no experimental
process for the isolation and measurement of either type of
state is included in [21]. We also discuss the role of anisotropy
and the number of nearest-neighbor couplings required to
see the classical Haldane phase diagram, as this is especially
pertinent information if one wishes to simulate the Haldane
model by forming a synthetic lattice as we propose. The other
main distinction between our work and [21] is that through
derivation we arrive specifically at the Haldane Hamiltonian
from a laboratory Hamiltonian, with complex tunneling terms
associated with next-nearest-neighbor couplings as opposed
to nearest-neighbor tunnelings as in [21]. As a result, the
topological phases have no dependency on the modulus of
the complex hopping rates, a characteristic which is not seen
in the original Haldane model or our proposal. Finally, our
work in conjunction with [21] demonstrates ways in which
to investigate physics involving Majorana fermions [22] and

parafermions [23] due to the close relationships that these
models have.

This article is structured as follows: In Sec. II we analyze
the effects of deforming the lattice from a honeycomb to a
brick-wall lattice. In Secs. III and IV, we put forward our ex-
perimental proposal for the Haldane model. Section V focuses
on the much-sought-after edge states. Section VI discusses
the effects of interactions. We conclude with a summary of
our proposal and outlook for Chern insulators in synthetic-
dimensional systems in Sec. VII.

II. THE BRICK-WALL HALDANE MODEL

The Haldane model [1] fundamentally relies on the break-
ing of two symmetries. The first is inversion symmetry,
accomplished by breaking the sublattice symmetry. Mathe-
matically, this is represented by an energy offset ±M between
neighboring sites, labeled A and B, respectively. The second
symmetry is time-reversal symmetry. This is broken by the in-
troduction of complex next-nearest-neighbor tunneling, which
involves the accumulation of a phase. This can be viewed as a
Peierls phase or flux through a plaquette. The competition be-
tween these two broken symmetries determines which phase
the system is in. The eigenvector of a bipartite Hamiltonian,
written in Bloch form, is a two-vector whose elements are the
wave functions on the A and B sites. The Haldane model Bloch
Hamiltonian is given by

Ĥ =
∑

k

�̂†(k)Ĥ(k)�̂(k), (1)

with

Ĥ(k) = 2t2 cos φ

[∑
i

cos(k · bi )

]
I + t1

(∑
i

[cos(k · ai )σx + sin(k · ai )σy]

)
+

{
M − 2t2 sin φ

[∑
i

sin(k · bi )

]}
σz, (2)

where �̂(k) = (ψ̂A, ψ̂B)� is the Bloch state spinor. This form
of the Hamiltonian is general; no choice of geometry has
yet been made, which is enforced by the input of specific
vectors ai and bi as the arguments of the trigonometric func-
tions. Notationwise, t1 is the real nearest-neighbor tunneling
probability, t2 is the modulus of the next-nearest-neighbor
tunneling probability, and φ is the phase gain associated
with next-nearest-neighbor hopping, mathematically originat-
ing from the argument of the next-nearest-neighbor tunneling.
Moreover, ai and bi are the spatial vectors of nearest
and next-nearest neighbors, respectively, and σx,y,z are the

Pauli matrices. The spatial vectors from a B site to a
nearest-neighbor A site for the honeycomb lattice are a1 =
( a

2 ,
√

3a
2 )�, a2 = (− a

2 ,
√

3a
2 )�, and a3 = (0, −a)�, and the

next-nearest-neighbor vectors are consequently given by b1 =
a2 − a3, b2 = a3 − a1, and b3 = a1 − a2 (see Fig. 1). The
brick-wall lattice vectors are given by a1 = (a, 0)�, a2 =
(−a, 0)�, and a3 = (0, −a)�, and the next-nearest-neighbor
displacements are as above. In both cases a is the lat-
tice spacing, that is, the shortest distance between any two
sites. To break time-reversal symmetry, phase gain is only
positive from next-nearest-neighbor hopping in a clockwise
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FIG. 1. Nearest neighbors are connected to one another by the
vectors ±a1, ±a2, and ±a3, and hopping between these sites oc-
curs at a rate t1. Next-nearest neighbors are reached by the vectors
±b1, ±b2, and ±b3, and this occurs at a rate t2 and comes with
a phase gain φ. The direction of an arrow indicates positive phase
gain. Fluxes through regions divided by the hoppings have been
labeled. The phase gained by traversing around an entire plaquette
is equivalent to the enclosed flux and hence is 2�a + �b in the
honeycomb case and �a + �b in the brick-wall case. (a) A hon-
eycomb lattice with all couplings indicated in black, with dashed
lines for next-nearest-neighbor vectors; again, arrows show the di-
rection of positive phase gain. The A and B sites are represented by
white and black dots, respectively. Superimposed solid red arrows
represent the nearest-neighbor vectors, while blue dot-dashed arrows
represent next-nearest-neighbor lattice vectors. (b) Brick-wall lattice;
conventions are the same as in (a). We now see explicitly that nearest-
neighbor lattice vectors a1 and a2 are no longer linearly independent.
See Table I for mathematical definitions of these vectors.

circulation, as shown in Fig. 1. The Hamiltonian (2) can be
put in the form

Ĥ(k) = ε(k)I + d(k) · σ, (3)

with σ being the Pauli vector, and the spectrum is given by

E±(k) = ε(k) ±
√

d(k) · d(k), (4)

where d(k) are the coefficients of the Pauli matrices. By first
defining the unit vector of these coefficients

n(k) = d(k)

|d(k)| , (5)

one can calculate the topological invariant of an insulator with
broken time-reversal symmetry, the first Chern number. The
Chern number is related to the solid angle, which is subtended
by the unit vector n(k) in k space as k runs over the Brillouin
zone. Therefore, for the lower band this can be found with
[24]

ν1 = − 1

4π

∫∫
BZ

d2k n · [(∂kx n) × (∂ky n)], (6)

FIG. 2. Deformation of the honeycomb lattice to brick-wall
lattice geometry; for demonstrative purposes only next-nearest-
neighbor links are shown. Red links (the parallel top and bottom
dot-dashed lines) are the next-nearest-neighbor couplings that we
consider dropping since they align with nearest-neighbor couplings
which enclose no flux.

where the integrand is known as the Berry curvature and
the integral is over the first Brillouin zone. Then, the Hall
conductance of the system is given by

σxy = ν1
e2

h
, (7)

despite the net magnetic field B = 0. The Haldane model is
therefore a topological insulator.

The brick-wall lattice is topologically equivalent to the
honeycomb lattice. One could imagine smoothly deforming
the honeycomb lattice by flattening out the top and bottom
points of the hexagon. The Dirac points, if the system is in
a regime in which these points exist, move away from the
boundary of the Brillouin zone at K = 2π

3a (1, 1√
3

)� and K′ =
2π
3a (1, − 1√

3
)� to two points deeper within the now square

Brillouin zone at (± 2π
3a , 0)�. The honeycomb lattice with

three nearest neighbors has six next-nearest neighbors. It is
not unreasonable to consider that the next-nearest-neighbor
hoppings which go along the long side of the real-space lattice
in the brick-wall case can be dropped (see Fig. 2) as the
sites which these tunnelings connect move away from one
another. By “straightening out” the lattice in this way, one
adiabatically deforms the model into a relatively simpler one.
Along this deformation path the system remains gapped since
the Hamiltonian depends linearly on t1 and the other hopping
terms are robust against this deformation. There are therefore
two options in the brick-wall case, six or four next-nearest
neighbors.

To ensure that no relevant physics is lost by changing the
lattice from a honeycomb to a brick-wall lattice, the Chern
number as a function of phase and M/t2 is calculated numeri-
cally (see Fig. 3). The six-next-nearest-neighbor brick-wall-
and honeycomb-lattice situations are identical. In the four-
next-nearest-neighbor brick-wall system, the boundaries of
the phases, i.e., the lines in parameter space where the phase
transition occurs, are moved relative to the six-next-nearest-
neighbor case. A phase transition occurs when a band gap
closes, and at this Dirac point, nontrivial topology in the form
of Berry curvature is introduced to the band structure. Since
these Dirac points are a point of degeneracy in the spectrum,
they can easily be calculated using Eq. (4) by finding the
points in reciprocal space for which d(k) = 0. This leads to
boundaries defined by M

t2
= ±3

√
3 sin φ for the honeycomb

and six-next-nearest-neighbor brick-wall lattice models and
M
t2

= ±2
√

3 sin φ for the four-next-nearest-neighbor brick-
wall case. It is instructive to verify that the physics remains
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FIG. 3. The different phases have been labeled within the dia-
gram with their Chern numbers ν1. (a) The phase diagram for the
honeycomb lattice. The six-next-nearest-neighbor brick wall gives
the same plot. (b) The four-next-nearest-neighbor brick-wall lattice
retains the same features but with a reduced area in parameter space
for a topologically nontrivial band structure.

invariant, even though the lattice is deformed topologically,
since there are additional symmetries that are broken. The
honeycomb lattice enjoys a sixfold rotational symmetry which
is reduced to a threefold one with the introduction of an energy
offset, distinguishing every other site. The brick-wall lattice,
however, has a twofold rotational symmetry which is reduced
to the trivial group; that is, it only contains the identity when
M �= 0. As can be seen from the phase diagrams in Fig. 3, even
for M = 0 the system is in a topological regime, φ �= 0, π ,
with ν1 = ±1 depending on the flux. A summary of the differ-
ences between the honeycomb- and brick-wall-lattice Haldane
models is given in Table I.

Anisotropy

Next, we investigate the effect of anisotropy in the coupling
constants of the model. We focus on the brick-wall four-next-
nearest-neighbor case. This is a suitable candidate for our
proposal since it requires fewer lasers since they correspond
to next-nearest-neighbor hoppings. One can introduce direc-
tional anisotropy by setting the coupling along the y axis to
Jy = ξ t1 and the coupling along the x axis to Jx = t1 and then

FIG. 4. Phase diagram for anisotropy in next-nearest-neighbor
tunneling versus phase gain, with fixed on-site energy difference
M = 0.

by varying ξ between 0 and 2 to investigate the effect of the
topological phases due to the unequal coupling constants.

For three different M values, M = 0, 1, and 2, we plot
anisotropy against flux in Figs. 4–6, respectively. We see that
as the ratio of couplings increases, for M �= 0, the range of
phase with nontrivial topology gradually disappears and then
is destroyed altogether, and the point at which this happens
is different in all three cases. The regimes in these diagrams
where the Chern number vanish correspond to a gapped trivial
phase.

We see from Figs. 4–6 that even in the presence of
anisotropy, nontrivial topology may still arise. This is more
likely experimentally attainable. As can be seen from Fig. 6,
if Jy/Jx = ξ < 2, then the nonzero Chern numbers remain.
Anisotropy was previously shown to affect the appearance of
edge states in graphene. At the same critical point as we find in
Fig. 6, Jy = 2Jx, edge states on the zigzag edge were destroyed

FIG. 5. Phase diagram for anisotropy in next-nearest-neighbor
tunneling versus phase gain, with fixed on-site energy difference
M = 1.
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FIG. 6. Phase diagram for anisotropy in next-nearest-neighbor
tunneling versus phase gain, with fixed on-site energy difference
M = 2.

due to the merging of Dirac points, annihilating each other and
removing the Berry curvature from the bands [18,25].

III. SYNTHETIC BRICK-WALL LATTICE

A. From laboratory to target Hamiltonian

Our proposal has two coupled dimensions, one of which
is real and one of which is a synthetic dimension constructed
from the internal states of the atoms, collectively known as the
hyperfine manifold (Fig. 7). We begin by first constructing a
brick-wall lattice, which as previously discussed will be the
analog honeycomb lattice. This is done using an optical su-
perlattice and Raman-assisted tunneling, with the result being
Fig. 8. In the real dimension, which we take to be orientated
along the x axis, there is an optical lattice within which
resides a species of atom. The optical lattice is constructed
using counterpropagating laser beams, and we assume strong

FIG. 7. Schematic diagram of the system. Red dots represent
atoms, and the internal states (inset) used as an example are the four
lowest spin-projection hyperfine states from a F = 9/2 manifold.

FIG. 8. Synthetic-dimensional brick-wall lattice structure,
formed by the internal states of the atoms and a one-dimensional
spatial lattice by way of Raman-assisted tunneling. The dotted
lines are included to help illustrate the brick-wall structure. Here,
m is an index that indicates the internal state, x represents the
real-spatial-dimension direction, which is taken to be the x axis.
Blue arrows (with solid tails) are hoppings purely along the
real dimension, while green arrows (with long-dashed tails) are
simultaneous transitions along real and synthetic dimensions.

confinement along other axes, thus limiting real-space dy-
namics to along the direction of beam propagation. A linear
potential with amplitude F > 0 is applied to the lattice, which
induces a tilt in energy along the x axis. This creates a labo-
ratory Hamiltonian known as the Wannier-Stark Hamiltonian,

ĤWS = p̂2

2m
+ V cos2(kLx̂) + Fx̂, (8)

where V is the lattice depth and kL is the wave vector of the
lattice lasers. Next, we add to (8) a second potential with half
the wavelength, which makes the lattice bipartite, and there-
fore, the beams form an optical superlattice. The sublattice
sites will be denoted here by A and B. Hence, we obtain the
Wannier-Stark superlattice Hamiltonian,

ĤWS-SL = p̂2

2m
+ V cos2(kLx̂) + U cos2(2kLx̂) + Fx̂. (9)

In the second-quantized formalism, taking the reasonable ap-
proximation of considering only nearest-neighbor terms, this
becomes

ĤTB =
∑

j

(ε j + aF j)â†
j â j

+
∑

j

t1(â†
j+1â j + â†

j â j+1), (10)

where ε j is of the form

ε j = E + V + 1
2 [1 + (−1) j]U, (11)

with the optical lattice inherently introducing an energy dif-
ference of U between adjacent sites. The energies in (11)
stem from on-site integrals of the corresponding mode func-
tions and will, to leading order, depend quadratically on their
width relative to the lattice spacing. The above Hamiltonian is
applicable for any internal state provided that the atom can
be coupled to an adjacent site via some assisted-tunneling
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scheme. For now we are only considering sites in the physical
lattice, labeled by j. We have used, in reaching the final line
of Eq. (11), kL = π

a and

E = − h̄2

2m

∫ ∞

−∞
dx ψ

†
j (x)∂2

x ψ j (x), (12)

where ψ j (x) is the Wannier function on site j. The Wannier
functions are constructed from the Bloch functions and form
a basis of states which are exponentially localized to the
physical sites [26]

ψ j (x) =
∫ π/2

−π/2
dk e−ik jaφk (x), (13)

where φk (x) is the Bloch function with quasimomentum k.
The linear potential Fx̂ inhibits the tunneling of atoms

between neighboring sites. Nearest-neighbor hopping is rein-
troduced by the use of Raman-assisted tunneling. This is
where two states are coupled together via an intermediary
state, the ancillary state, by laser transitions. The net change
in energy caused by such a process can be made equal to the
energy difference between sites, and thus particle hopping is
induced. This process will be discussed further in Sec. IV.
This prevention and then reintroduction are required because
additional control is necessary with regard to the hopping rates
for our proposal. Using Raman-assisted tunneling, a complex
phase can be imbued on the atom by having the laser beam
incident on the optical lattice at an angle, which imparts a
Raman recoil momentum along the x direction, for which we
use the notation qx, so the hopping integral below is multiplied
by a factor e−i jqx .

The tunneling rate induced by the Raman-assisted tun-
neling for nearest neighbors along the x axis is given by
[11,26,27]

t j→ j+1 = �e−i jqx

∫
dx W0(x)W1(x)e−iqxx, (14)

where j is a physical site index and Wj (x) is the real-valued
Wannier-Stark function (see Ref. [26]), which is the exact
solution to (10), at site j. Hence, we identify t j→ j+1 with t1
in Eq. (10), but we require qx = 0 as these will be nearest-
neighbor hoppings when we go to form the Haldane model.
The effective Rabi frequency � is given by [26]

� = �12�23

4δ
, (15)

where �12 is the one-photon Rabi frequency of a Raman beam
which couples state 1 to an ancillary state 2, up to a detuning
denoted by δ. Similarly, �23 is the one-photon Rabi frequency
which couples state 3 to the ancillary state 2. Rabi frequencies
will be discussed in further detail in Sec. IV. For now, one
only needs to know that if atoms in site j are incident with
laser light with frequencies �12 and �23, then they will tunnel
to a state j + 1 at a rate t j→ j+1 due to Eq. (14).

In the tight-binding model described thus far, the atoms are
required to reside on the lowest rung of what is known as the
Wannier-Stark ladder. This is a requirement because an atom
in an excited Wannier-Stark state may tunnel to the ground
state of an adjacent site.

The internal states of the atom can also be coupled to-
gether by the use of Raman beams or by the use of a
radio-frequency magnetic field [4]. This forms a second
dimension if one interprets each internal state as a differ-
ent site. Using Raman-assisted tunneling, nearest-neighbor
and next-nearest-neighbor hoppings in real-space were ex-
perimentally achieved [2,11], and for internal states their
implementation was outlined in [5]. The double hopping in
real space is achieved by tuning the effective Raman fre-
quency to a frequency which is simply twice that required for
a single hop [11].

As can be seen from Eq. (14), the phase gain is site de-
pendent. The phase imprinted on the wave function allows
for the engineering of a synthetic magnetic flux through a
synthetic-dimensional “plaquette” which these complex hop-
pings bound [13]. Transitions along both real and synthetic
dimensions, ( j, m) → ( j + 1, m + 1), can be induced simul-
taneously [26], and as will be shown below, due to the
“geometry” of couplings that will be used, this will be a
requirement. This is also governed by Eq. (14); however, the
requisite polarizations of one of the Raman beams in this
instance will be different.

Hence, we have three processes: Hopping along the
superlattice, transitions between internal states, and the simul-
taneous occurrence of these two processes, which we shall
refer to as the “diagonal” process. Using the latter two of
these processes, a synthetic-dimensional lattice with diagonal
tunnelings, resembling a rhombus, may be formed. From here
one may create a brick-wall lattice with the inclusion of one
extra step; one must remove every other diagonal hopping
element. This is done by the introduction of an additional
pair of lasers which also generate diagonal tunnelings. These
lasers are then tuned such that they destructively interfere with
the original diagonal Raman lasers on alternate sites. Equiv-
alently, they will constructively interfere on alternating sites
too. A relative phase may need to be introduced between the
beams, and due to different operating frequencies, these lasers
may also need to be coherently coupled to each other, for
example, by a locking process by way of a frequency comb.
Additionally, it should be noted that this effect only occurs if
the Raman processes have the same amplitudes. See Fig. 8 for
the resulting semisynthetic lattice, a lattice in both real and
synthetic spaces, where blue arrows indicate tunneling purely
in real space, i.e., hopping along the optical lattice, and green
arrows represent the diagonal process, which is absent on
every other site. The scheme for a brick-wall lattice described
thus far is from Ref. [26].

We go one step further and propose that by starting from
this brick-wall structure with all hopping terms phaseless and
adding complex next-nearest-neighbor terms, one can achieve
the Haldane model. To do this we will include next-nearest-
neighbor terms in the second-quantized formalism of Eq. (10)
by adding next-nearest hopping terms due to Raman-assisted
tunneling. We will use the four-next-nearest-neighbor case to
simplify proceedings.

We start now from Eq. (10). To distinguish the different
hopping terms that will arise, we momentarily set t1 = Jx, and
we add an additional label, m, which will refer to the internal
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FIG. 9. Brick-wall lattice structure, with the same conventions as
in Fig. 8, now with next-nearest-neighbor tunneling. White (black)
dots represent the A (B) sites, made distinct by an energy offset. Red
arrows (vertical and marked with a cross) are purely synthetic, and
here, one sees that these arrows skip a site located at ( j − 1, m).
Hence, this transition is, in fact, a next-nearest-neighbor hopping.
Purple arrows (dot-dashed tails) are the long-diagonal next-nearest-
neighbor hopping. The direction of an arrow indicates positive phase
gain.

state of an atom within the superlattice (9),

ĤTB =
∑

j

(ε j,m + aF j)â†
j,mâ j,m

+
∑

j

Jx(â†
j+1,mâ j,m + â†

j,mâ j+1,m ). (16)

The process to construct the nearest-neighbor hoppings is
exactly the same as discussed thus far for the synthetic-
dimensional brick-wall lattice. However, we have yet to
include an explicit diagonal hopping term in our Hamiltonian
(10). We will denote the contribution from the Raman laser
for a diagonal process as ĤDiag,

ĤDiag =
∑
j,m

Js
x (â†

j+1,m+1â j,m + H.c.). (17)

Next, the next-nearest-neighbor hoppings, like the nearest-
neighbor hoppings, come in two forms. The reason for both
nearest- and next-nearest-neighbor hoppings is the “skewed”
nature of the synthetic-dimensional brick-wall lattice caused
by the linear tilt. The first type of next-nearest-neighbor hop-
ping is, in fact, a simple hopping to an adjacent internal state
with no change in the physical site, as was previously touched
on. The second is a more involved next-nearest-neighbor tun-
neling in real space accompanied by a change in internal state,
which we will refer to as a “long-diagonal” process (see Fig. 9,
where purple arrows represent the long-diagonal process and
red arrows represent a straightforward internal state change).
As with the other hopping processes, these may be achieved
by Raman-assisted tunneling by selecting a suitable Raman
frequency in relation to the energy difference between the
coupled states and an ancillary state, which will be another
internal state along the synthetic dimension. The integrals
responsible for the hopping rates associated with these tun-
nelings will be discussed in more depth at the end of this
section. We denote them as the “purely synthetic” transition

with Hamiltonian ĤSyn. and the long-diagonal transition with
ĤLong:

ĤSyn. =
∑

m

Js(eiφ j â†
j,m+1â j,m + H.c.), (18)

ĤLong =
∑
j,m

Js
xx(eiφ( j+2)â†

j+2,m+1â j,m + H.c.). (19)

Adding these terms and (17) to (16), we obtain

ĤTB =
∑
j,m

[(ε j + aF j)â†
j,mâ j,m

+ Jx(â†
j,mâ j+1,m + â†

j+1,mâ j,m )

+ Js(eiφ j â†
j,m+1â j,m + e−iφ j â†

j,mâ j,m+1)

+ Js
x (â†

j+1,m+1â j,m + â†
j,mâ j+1,m+1)

+ Js
xx(eiφ( j+2)â†

j+2,m+1â j,m + H.c.)]. (20)

It should be noted that purely real-space complex next-
nearest-neighbor couplings can be achieved by an additional
pair of laser beams and could be added here, but as discussed
in Sec. II, they are unnecessary to see nontrivial topological
responses. Tuning the hopping integrals such that Jx = Js

x = t1
and Js = Js

xx = t2, identifying nearest neighbors and next-
nearest neighbors, one may reduce Eq. (20) to

ĤTB =
∑

n

(−1) j U

2
â†

nân

+
∑
〈n,n′〉

t1(â†
nân′ + â†

n′ ân)

+
∑

〈〈n,n′〉〉
t2(eiφ â†

nân′ + e−iφ â†
n′ ân), (21)

where t1 and t2 are the nearest-neighbor and next-nearest-
neighbor hoppings rates, respectively. They directly corre-
spond to the tunneling coefficients in the target Hamiltonian,
Eq. (2), as does the phase φ. We have introduced the nota-
tion of vector indices n = ( j, m) and n′ = ( j′, m′), where j
indicate real-space site occupation and m indicate the internal
state. We also adopt the notation 〈n, n′〉 to signify summation
over nearest neighbors [the second and fourth lines in (20)]
and 〈〈n, n′〉〉 to signify summation over next-nearest neigh-
bors [third and fifth lines in (20)]. The energy E + V + U/2
is an energy shift experienced by all atoms and therefore may
be dropped, leaving behind only the sublattice symmetry-
breaking energy U/2, which alternates between positive and
negative on adjacent sites.

We have dropped the index in the exponential which cre-
ates a position-dependent phase gain. That is because in an
experiment, all observables are a result of a local complex
hopping phase creating a flux through a plaquette, keeping in
mind that a phase is not globally measurable anyway. Using
our proposal with position-dependent phase, it is therefore
sufficient to create a tunable flux through a plaquette as in the
Haldane model.

Now, the on-site energy is purely the site-dependent term,
and we identify M = U/2 to be in agreement with [1]. Sep-
arating the site operators into those for the A and B sites to
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allow for spinorial notation, we can then write

Ĥ =
∑

n

M[ψ̂†
n,Aψ̂n,A − ψ̂

†
n,Bψ̂n,B]

+
∑
〈n,n′〉

t1[ψ̂†
n,Bψ̂n′,A + ψ̂

†
n′,Aψ̂n,B]

+
∑

〈〈n,n′〉〉
t2[eiφψ̂

†
n,Aψ̂n′,A + e−iφψ̂

†
n′,Aψ̂n,A]

+
∑

〈〈n,n′〉〉
t2[eiφψ̂

†
n,Bψ̂n′,B + e−iφψ̂

†
n′,Bψ̂n,B]. (22)

We have dropped the tilt term since now an atom at n
coupled to photons from a Raman laser is degenerate with the
atom in the site to which the Raman beams induce a transition.
This argument is from [11]. Put another way, we may drop
the tilt term because we have taken this energy difference into
account in the Raman scheme. Fourier transforming Eq. (22)
changes it into the form of the Bloch Hamiltonian of the
Haldane model as in Eq. (1) with Hamiltonian density Equa-
tion (2). This is the target Hamiltonian, and hence, we end our
derivation here.

B. Energy hierarchy

Several restrictions on energies exist, creating a hierarchy
of energy scales for the proposal, and they are similar to those
for the Harper-Hofstadter model [27]. For example, the tilt
of the potential must be greater than the bare tunneling coef-
ficient J to inhibit this natural tunneling, as was discussed at
the start of this section. The tilt, however, must be less than the
energy required to excite a state of the Wannier-Stark model.
This energy is the band gap of the Wannier-Stark model,
which we denote ω. This restriction is in place is to prevent
an atom in the ground state from tunneling to an adjacent site
and occupying an excited state in that site; hence, we require
J < F < ω. As per [1], to ensure the bands of the energy
spectrum do not overlap, the ratio of the next-nearest-neighbor
tunneling coefficient to that of the nearest neighbor should
fulfill |t2| < |t1|/3.

Due to the tilt and the superlattice, two distinct energy
offsets, �± = F ± M, exist between adjacent sites depending
on whether tunneling, only along one direction, from A to B
or B to A. The hierarchy is therefore modified to J < �− �
�+ < ω. Furthermore, if one wishes to see a topological
structure, then the energy offset is required to be such that
M < 2

√
3t2 sin(φ). This is for the four-next-nearest-neighbor

case, and the argument as to the origin of this inequality is
the same as discussed in Sec. II for the location of the phase
transitions.

C. Next-nearest-neighbor tunneling phases

We will now discuss in more depth the Raman processes
for the purely synthetic and long-diagonal hoppings. These
correspond to the terms with hopping coefficients Js and Js

xx in
Eq. (20), respectively. The hopping integrals leading to these
coefficients are explicitly shown, as are the phases which are
required to accompany these hoppings.

1. Synthetic dimension transitions

The phase which should be imprinted for the two different
next-nearest-neighbor transitions needs to be carefully cho-
sen. For the purely synthetic transition a phase of φ should be
used. This can be tuned using the momentum transfer, which
for this Raman process we denote by qs, of the Raman beam,
which is varied by changing the angle of incidence of the
beam. The tunneling rate for such a transition is given by [27]

t j = �e−i jqs

∫
dx |W0(x)|2e−iqsx. (23)

This leads to a phase gain of e−i jqs , where j denotes the
optical lattice site that the atom left. When an atom makes
the transitions

( j, m) → ( j, m + 1) → ( j + 1, m + 1) → ( j + 1, m),

there is an overall phase gain given by −φ j − (−φ)( j + 1) =
φ, or equivalently, there is a synthetic magnetic flux of φ

through every plaquette. This is not too dissimilar from the
two-dimensional real lattice with an effective magnetic field
realized in Ref. [28], demonstrating that high effective field
strengths can be attained. See [10,28,29] for technical details.

2. Long-diagonal transitions

For the other next-nearest-neighbor hopping, a long-
diagonal process of two real-space hoppings and an internal
level change, the required phase is φ/3. When an atom makes
the transitions

( j, m) → ( j + 2, m + 1) → ( j + 3, m + 1) → ( j + 1, m),

there is an overall phase gain given by − 1
3φ j − (− 1

3φ)( j +
3) = φ. Again, here, for long-diagonal processes, there is an
equivalent magnetic flux φ piercing the plaquette.

The tunneling rate for such a transition is given by [27]

t j→ j+2 = �e−i jqx

∫
dx W0(x)W2(x)e−iqxx. (24)

The number of lasers may be reduced if the required fre-
quency, polarization, and intensity of any two coincide. As
discussed for the triangular lattice in Ref. [26], three tunnel-
ings may be created from three lasers, where a Raman process
usually involves two laser beams.

To increase the synthetic dimension length, more states
from the hyperfine manifold must be coupled together. The
spacing in energy may not always be the same between any
two adjacent sites; hence, the Rabi frequencies need to be ad-
justed according to Clebsch-Gordan coefficients. The energy
spacings are given by �gF,m, with

gF,m =
√

F (F + 1) − m(m + 1), (25)

where F denotes the angular momentum quantum number and
m denotes its projection. For alkali metals it has been noted
that these modifications are not negligible (for example, see
the Supplemental Material of [13]). This means that for every
“ribbon” of synthetic dimension one wishes to include in the
lattice, extra lasers coupling the extra internal states may be
required.

One would imagine that a minimum of three internal m
states are required: The “largest” internal state, hosting an
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FIG. 10. Angles are for demonstrative purposes only. Magnetic
field is out of the page, and electric fields is along x, as indicated.
Pink-boxed lasers (left- and rightmost) generate the superlattice. The
green-and-blue-boxed laser (bottommost) creates nearest-neighbor
hoppings, while the red-boxed- (topmost) and purple-boxed (bottom
left) lasers induce next-nearest-neighbor hoppings.

edge state with one direction of propagation; the “smallest” in-
ternal state, hosting an edge state with a current flow opposite
to that of the largest state; and, sandwiched between them, an
internal state which has minimal particle transport. This was
the case for the quantum-Hall-effect synthetic-dimension ex-
periments [3,4]. Alkaline-earth and alkaline-earth-like atoms
demonstrate SU(N)-invariant interactions, meaning that the
effects of spin-changing collisions are suppressed [30]. If one
uses a three-legged ladder, due to the small number of internal
states used, the edge states will be relatively more populated,
which would facilitate spin-selective imaging. Hence, there is
a payoff between observing states from deep within the bulk
and sufficiently populated edge states [3]. Finite-size effects
in synthetic dimensions are nontrivial and were considered
previously for the Harper-Hofstadter model, for which it was
shown that a topological signature may still be extracted [31].

IV. RAMAN SCHEME

An experimental setup to realize the Haldane model in a
synthetic-dimensional system could be as follows. First, two
sets of counterpropagating laser beams create the superlattice,
and an electric field applied along the x axis induces the linear
tilt F to create the potential in Eq. (9). These are represented
by the pink-boxed lasers in Fig. 10. An atomic gas is trapped
using harmonic traps to create a quasi-one-dimensional gas
sample. In the physical y and z directions we require tight
confinement. Next, a magnetic field is applied to the sample
to create Zeeman splitting between the energies of the internal
states of the hyperfine manifold. The synthetic-dimensional
brick-wall lattice is formed by the green-and-blue-boxed Ra-
man lasers in Fig. 10, which correspond to the green and
blue arrows in Fig. 8; that is, these lasers are responsible for
nearest-neighbor hopping. The Raman process is as illustrated
in Fig. 11 and bears a resemblance to double-λ schemes, as
used in laser spectroscopy setups [32]. As an example, say
that beam 1 has a one-photon Rabi frequency of �12 and
beam 2 has a frequency of �23, with a detuning of δ to the

FIG. 11. Laser beam configuration for couplings, demonstrated
with ancillary states, which are adjacent states along the synthetic
dimension. Transitions are labeled by numbers 1 through 6. Here, π ,
σ+, and σ− indicate the polarization, and δ is the detuning. Beams 1
and 2 create purely synthetic transitions, beams 1 and 3 create spatial
tunneling, and beams 1 and 4 create diagonal tunneling. Beams 5 and
6 are the additional pair of laser beams introduced to cancel out every
other diagonal tunneling provided the complex phase of this process
is greater than the complex phase of the beam process of beams 1
and 3 by π .

ancillary state 2; then the rate at which this process would
occur is dependent on the two-photon Rabi frequency � given
by (15), as well as a factor due to the overlap of the Wannier
functions, and a complex phase due to the angle of incidence
of the beams. This is per Eq. (23).

The recoil momentum imparted on an atom, which leads to
a complex argument in the hopping integral, is given by

kR = 2π cos θ

λR
, (26)

where θ is the angle of incidence of the beam and λR is its
wavelength. Since nearest-neighbor hoppings are entirely real,
the angle of incidence for the green-and-blue-boxed lasers is
orthogonal to the x axis.

Finally, next-nearest-neighbor hoppings are added through
the inclusion of two more Raman lasers, the purple-boxed
and red-boxed lasers in Fig. 10, corresponding to the purple
and red hoppings in Fig. 9. The angles of incidence for these
two lasers must be precisely selected. They are labeled by θ1

and θ2 for the purely synthetic and long-diagonal hoppings,
respectively, in Fig. 10. As mentioned in Sec. III C, the two
hoppings require two different complex arguments. Labeling
the wavelength of the red-boxed laser as λ1 and that of the
purple-boxed laser as λ2, the two angles are given by

qs = φ = 2π cos θ1

λ1
, (27)

qs
xx = φ

3
= 2π cos θ2

λ2
, (28)

and hence, they are related to one another by the following
two equivalent equations:

cos θ1

λ1
= 3cos θ2

λ2
, (29)

θ1 = cos−1

(
3λ1

λ2
cos θ2

)
. (30)

Hence, if θ2 is changed, then θ1 needs to be changed according
to (30). The purely synthetic transition can also be seen in
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FIG. 12. The next-nearest-neighbor long-diagonal coupling λ or
Raman scheme. As discussed in the text, if beam 7 matches any of
the beams from Fig. 11, then the number of beams may be reduced.

Fig. 11. The Raman scheme for the remaining next-nearest-
neighbor hopping, the long-diagonal tunneling, can be seen in
Fig. 12.

As mentioned in Sec. III C, the inclusion of additional
internal states would require additional lasers. The hopping
integrals must all be the same; otherwise, the notion of a
Brillouin zone is not well defined. Hence, these lasers may
have distinct wavelengths and so will have their own unique
angles of incidence, as given by (26).

Depending on energy scales, there may exist another
option for removing alternating diagonal hoppings. A nearest-
neighbor hopping in the x direction from site A to B is due to
a Raman process with specific one-photon Rabi frequencies
and detuning. Provided that all these energy scales are distinct
enough from the process which takes one from site B to A,
then this transition should not take place.

A larger-frequency detuning of the Raman beams was
found to produce fewer unwanted heating effects [11]. Tun-
neling rates of at least 1 Hz are required for experimental
implementations of models involving next-nearest-neighbor
atoms [11], and this is achievable thanks to Raman-assisted
tunneling, as the bare tunneling may be much smaller than
this rate. Furthermore, an advantage of using Raman-assisted
tunneling is that nearest-neighbor and next-nearest-neighbor
tunneling rates can be controlled independently. The first
experimental realization of the Haldane model achieved next-
nearest tunneling rates of 5 and 18 Hz. This was done by way
of an elliptically modulated honeycomblike lattice, giving
rise to an effective Hamiltonian with complex next-nearest-
neighbor couplings which the 40K atoms experience ( see [2],
in particular, the “Methods” section and the Supplementary
Materials).

V. EDGE STATES

A good starting point for considering edge states in our
proposal is the experimental realizations of the quantum Hall
effect in synthetic dimensions. Using a three-leg lattice in a
quantum Hall regime [3,4], time-of-flight methods were used
to obtain the lattice momentum distribution n(k) by a series
of spin-selective images, tracking the expansion of the atomic
cloud. Next, the lattice momentum imbalance, a quantification
of the asymmetry in the momentum distribution for a leg m, is
given by

Im =
∫ π

a

0
dkx [nm(kx ) − nm(−kx )]; (31)

the values for the top and bottom legs of the lattice (for
example, m = ±1 in Ref. [4]) were found to be equal and
opposite, while for the central leg (m = 0 [4]) the value was
found to be close to zero. In our proposal, the direction of the
edge-state propagation depends on the phase. That is, there
are two different situations depending on whether φ ∈ (0, π )
or φ ∈ (π, 2π ). Furthermore, in Ref. [4], with the use of
quench dynamic experiments, the classic cyclotron motion
was observed, giving a skipping effect along the boundary,
as expected. In our proposal, the edge states are located on
an edge which corresponds to the zigzag edge. To realize
an armchair edge, one would need to exchange the synthetic
and real dimensions, which would most likely require highly
involved, spin-dependent, and site-dependent tunneling. Edge
states on armchair lattices, however, are only thought to exist
in the presence of anisotropy [33].

VI. INTERACTIONS

Considered separately, the topics of interactions in syn-
thetic dimensions and in topological systems are fascinating
problems. In synthetic-dimensional systems, interactions
which take place between atoms, where the internal state of
the atom is the extra dimension, may give rise to nonlocal
effects since the atoms can reside in the same physical site
but be separated in the synthetic dimension.

For example, consider all the atoms on the same site in
Fig. 9 and notice they are “linked” to one another by the
red arrows, which represent the purely synthetic-dimensional
hopping discussed in Sec. III C. Considering what arrows
these would be in the brick-wall lattice with the aid of
Fig. 1(b), we realize that they are next-nearest-neighbor hop-
pings, and so interactions would take place in the brick-wall
lattice only along some axis at an angle π

4 with respect to the
lattice vectors. Thus, interactions in the synthetic dimensions
would simulate highly anisotropic interactions in the original
model.

Although we may wish to suppress the effects of inter-
actions, we note in passing that interactions are extremely
important in other situations. Interactions between elec-
trons are seemingly a prerequisite for the appearance of the
fractional quantum Hall effect [34]. In a similar vein, inter-
actions have been considered as a route to fractionalization
in ultracold-atom systems too, by way of charge pumping
[35]. The infinite range interaction found along a synthetic
dimension is a large obstacle which needs to be circumvented
to realize a fractional Chern insulator in such a system. These
problematic interactions may be made short range by way
of Trotterization of the system [36] and therefore provide a
basis for fractional excitations in synthetic dimensions. Taking
a different route, by coupling the top- and bottommost legs
of the synthetic ladder and reinterpreting the system as a
cylinder, it was shown that fractional quantum Hall states in
the form of density waves can arise [37].

Coherent collisions in spin-1 Bose-Einstein condensates
have been studied to the extent that they have even been ex-
perimentally exploited to determine the spin-dependent scat-
tering length [38]. In this instance, the internal dynamics are
decoupled from the spatial macroscopic wave function as the
spin healing length is larger than the size of the condensate.
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Ideally, spin-changing collisions would be suppressed, or
population dynamics would average nicely to allow for the
extraction of topological signatures.

The Chern number classifies the topology of a gapped band
structure for a noninteracting system, and so two bands with
the same Chern number may be deformed into each other
without closing the gap and changing any properties. First,
we will discuss the spinless case. Weak interactions in the
Haldane model have little effect on the system [24]. However,
for repulsive nearest-neighbor interactions of the same order
of magnitude as nearest-neighbor hopping, the topological
phases are destroyed, and a charge-density-wave insulating
state appears [39]. Expanding on this work, it was deter-
mined that adding on-site disorder interactions and varying
the strengths of the two different types of interactions can
give rise to different types of insulating states depending on
the relative strengths of the interactions [40].

An attractive Hubbard interaction, which is, again, infinite
along the synthetic dimension, was shown to induce Cooper
pairing between the counterpropagating chiral edge states in
quantum Hall ribbons [3,4], leading to a one-dimensional
topological superfluid exhibiting Majorana physics [41]. Fur-
thermore, exotic states of matter such as the supersolid are
found in synthetic models with interactions. For example, for
a bipartite lattice inhabited by internally coupled atoms with
next-nearest-neighbor hopping, at low tunneling rates, there
exist a charge density wave at exactly half filling, a supersolid
on one sublattice below this filling fraction, and phase separa-
tion above this filling fraction. At high next-nearest-neighbor
tunneling rates, there exists a phase which is dominated by
superfluid order [42]. Hence, one needs to be careful that one
is sufficiently far away from this regime if one wishes to use a
bipartite superlattice in a cold-atom experiment.

In summary, the inclusion of interactions affects the order
of the quantum fluid and will therefore have an effect on the
model the quantum fluid is simulating.

VII. CONCLUSION

We outlined a proposal for a semisynthetic-dimensional
realization of the Haldane model. Our scheme exploits the
fact that the brick-wall lattice is topologically equivalent to
the honeycomb lattice. By first realizing this in a synthetic

fashion using an optical lattice and coupled internal states
of an atom, one may go on to realize the Haldane model.
This is done through the introduction of complex next-nearest-
neighbor hopping terms via Raman-assisted tunneling and by
making the lattice bipartite. The flux through a plaquette of
the lattice can be changed by varying the angle of incidence
of the Raman beams. One can additionally change the energy
offset between adjacent sites of the optical superlattice, giving
experimental access to the full range of parameters required
to explore the phase diagram of the model. Our proposal
could be a new platform for the investigation of topologically
nontrivial materials. For example, one could extend the model
into the x-y plane where each row of sites displays this model.
Coupling this system to a copy of itself would emulate a
bilayer Haldane model, which is an interesting problem to
consider [43].

When the energy spectrum exhibits no band gap, for exam-
ple, at φ = π

2 and M = 2
√

3 t2, the system is referred to as a
topological semimetal, which may have a nontrivial winding
number if the Fermi energy is such that the lower band is filled
[44]. Our proposal may allow for the realization of such states
of matter; however, the origin of this phase is subtle, as it is
due to the laser recoil momentum, which is not a feature of the
original Haldane model. The analogous situation with regard
to synthetic dimensions is an open question.

The quantum Hall effect was more recently reproduced
in cold-atom systems with a larger bulk. This was done by
including more states of the hyperfine manifold, effectively
adding more sites along the synthetic dimension. A regime
coupling six internal states was achieved with the species
168Er [45], and a regime of 11 states was achieved with the
species 162Dy [46]. Although we mentioned that coupling
three states is the most attainable, these experiments indi-
cate that our scheme may be extended to include internal
states with a synthetic dimension numbering five, six, or even
greater.
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