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Natural orbitals and their occupation numbers for free anyons in the magnetic gauge
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We investigate the properties of natural orbitals and their occupation numbers of the ground state of two
noninteracting anyons characterized by the fractional statistics parameter α and confined in a harmonic trap.
We work in the boson magnetic gauge where the anyons are modeled as composite bosons with magnetic flux
quanta attached to their positions. We derive an asymptotic form of the weakly occupied natural orbitals, and
show that their corresponding (ordered descendingly) occupation numbers decay according to the power law
n−(4+2α), where n is the index of the natural orbital. We find remarkable numerical agreement of the theory with
the natural orbitals and their occupation numbers computed from the spectral decomposition of the system’s
wave function. We explain that the same results apply to the fermion magnetic gauge.
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I. INTRODUCTION

Quantum statistics describes how the wave function of
a multiparticle quantum system changes under particle ex-
change. In three dimensions (3D), particles can have statistics
that are either fermionic or bosonic. Anyons are a class of
particles that exist only in two dimensions with fractional
statistics, between that of bosons and fermions, allowing their
states to gain arbitrary complex phases under exchange [1–5].
Such a statistic plays a role in understanding the fractional
quantum Hall effect (FQHE), with emergent quasiparticles
that have been identified as anyons [6]. In this model, anyons
are assumed to form a noninteracting gas (reviewed in Sec. II
of this paper) whose free Hamiltonian is unitarily equivalent
to a system composed of either fermions or hard-core bosons
with magnetic flux quanta bound to their positions [7–9].
This picture is usually refereed to as the magnetic gauge.
The magnetic flux quanta realize the exchange phases as
the Aharonov-Bohm phases. Anyons also find application in
quantum computing, as the exchange of non-Abelian anyons
(described by multicomponent wave functions) allows the im-
plementation of topologically protected quantum gates which
are intrinsically robust against local noise [10–13]. Such any-
onic quasiparticles can be detected experimentally [14] using
interferometry [15–17], correlation measurements in collider
geometries [18], or spectroscopy [19].

Due to the presence of anyonic quasiparticles in the FQHE,
there has recently been interest in developing the Kohn-Sham
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density functional theory (KS-DFT, see Refs. [20,21] for
more background) for the treatment of confined nonin-
teracting many-anyon systems. In particular, KS-DFT has
been developed for anyons described as composite flux-
fermions [22,23]. The reduced density matrix functional
theory (RDMFT [24]) is suitable for describing strongly cor-
related systems [25]. As anyonic quasiparticles appear in
strongly correlated systems, this method has been applied to
an FQHE system [26] (specifically, to a confined quantum
dot in the spin-frozen strong magnetic field regime). Recent
developments in the foundations of RDMFT for bosons [27]
suggest that RDMFT might be a suitable tool also for studying
anyon gas in the boson magnetic gauge.

In many methods of quantum chemistry the choice of
the appropriate single-particle basis is a crucial step. For
instance, the Hartree-Fock method approximates the N-body
wave function of a system as a single Slater determinant. This
approach has been applied to study the fermion-flux compos-
ites in relation to superconductivity and the presence of the
energy gap in the free anyon gas [7,28]. More generally, the
multiconfigurational self-consistent field method (MCSCF)
relies on superposing several Slater determinants coming from
a given single-particle basis. For a given N-particle (bosonic
or fermionic) quantum state, there exists a distinguished
multiconfigurational expansion called the natural expansion.
The single-particle basis that is used in the natural expan-
sion consists of the natural orbitals (NOs) that are defined
as eigenfunctions of the state’s one-particle reduced density
matrix (1RDM). It is known that natural expansion has the
fastest convergence of all the possible expansions [29]. The
eigenvalues of the 1RDM are called the natural occupation
numbers (NONs) and are denoted by νn, n = 1, 2, . . . , where
ν1 � ν2 � · · · . In this paper, we employ the convention for
the 1RDM to be always of trace one. Due to normalization,
the NONs (ordered descendingly) have to decay to zero if the
single-particle basis is of infinite dimension. The rate of their
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decay reflects certain fundamental features of the system at
hand. For instance, only the first N NONs of an uncorrelated
state of N electrons (a Slater determinant) are nonzero. On the
other hand, a slow decay of NONs characterizes a highly cor-
related quantum state. Furthermore, the knowledge of the NOs
and NONs allows one to compute the expectation value of any
one-particle observable where the individual contributions of
the NOs are proportional to their corresponding NONs. For
these fundamental reasons, the asymptotic rate of decay of
NONs in different quantum systems has been an object of
notable interest in quantum chemistry.

One of the early results in this area is Hill’s asymptotic
[30], which concerns ground states of two-electron systems
confined in an external potential with spherical symmetry.
Due to this symmetry, the 1RDM has a block-diagonal struc-
ture where the blocks are labeled by the angular momentum
quantum number l . Hill’s asymptotic states that the total oc-
cupancies of the blocks, ωl = ∑

n νnl , satisfy

lim
l→∞

(
l + 1

2

)7

ωl = CH , (1)

where CH is a constant that can be computed explicitly from
the given quantum state. This asymptotic behavior of ωl was
anticipated by the preceding numerical calculations for the
helium atom [31,32]. Numerical calculations for the harmo-
nium atom [33,34] further confirmed the validity of Hill’s
asymptotic beyond Coulomb external potentials. The large-n
asymptotic of νnl (for fixed l sector) has proved to be a more
difficult problem to study due to the lack of sufficiently ac-
curate electronic structure data. Various conjectural forms of
this asymptotic have been proposed and subsequently refuted
over the years [32,35,36]. Finally, its correct form has been
determined for ground states of two-electron systems in cen-
tral potentials and proved rigorously to be [37]

lim
n→∞ n8νnl = A, (2)

where the constant A does not depend on l and can be
calculated explicitly from the wave function at hand. This
result has been subsequently generalized to singlet states of
systems with arbitrary symmetries and numbers of electrons
[38]. Another work concerning general quantum systems of N
Coulomb-interacting particles proved the asymptotic [39]

lim
n→∞ n

8
3 νn = B, (3)

where the constant B can also be calculated explicitly from the
wave function [38,39]. Note the lack of the subscript l in the
formula (3) that does not assume any symmetries. The above
results have subsequently led to the recent discovery of a
universal power law governing the accuracy of wave-function-
based electronic structure calculations [40]. Similar results
have been recently obtained for a system with Fermi-Huang
interparticle interaction [41].

For the reliable application of quantum chemistry meth-
ods to anyonic systems, it is necessary to understand similar
asymptotic behavior for models of noninteracting anyons.
Here, it is relevant that anyonic systems are two-dimensional
(2D), as opposed to the previously mentioned quantum-
chemical systems, which are three-dimensional. Due to this

change in dimensionality, new technical tools have to be ap-
plied in order to extend the methodology of the above cited
papers to anyonic systems. However, the core feature remains
true: the NOs and NONs are solutions to the eigenproblem
of an integral operator whose kernel has a particle-particle
coalescence cusp that drives the large-n asymptotic of the NOs
and NONs. More specifically, as we explain in Sec. II, the
coalescence cusp is proportional to |z1 − z2|α , where z1, z2

are the positions of the two boson-flux composite particles
(represented by complex numbers) and α ∈ [0, 1] is the frac-
tional statistics parameter. In consequence, we show that the
natural amplitudes (NAs, the positive square roots of the
NONs, σ 2

nl = νnl ) of the ground state of the system at hand
satisfy

lim
n→∞ nα+2σnl = D(α) (4)

and provide explicit expression for the constant D(α) in
Eq. (37) in Sec. III. We also find very accurate asymptotic
forms of the weakly occupied NOs in terms of appropriately
transformed integer Bessel functions.

II. THEORETICAL BACKGROUND

Anyons have quantum statistics between fermions and
bosons—the exchange of a pair of Abelian anyons results in
the multiplication of the many-anyon wave function by the
phase factor eiπα , where α ∈ [0, 1]. Consequently, the wave
function �α of N Abelian anyons can be expressed in terms
of a bosonic wave function �B as

�α (z1, . . . , zN ) =
N∏

j<k

(z j − zk )α

|z j − zk|α �B(z1, . . . , zN ), (5)

where the complex number z j = x j + iy j describes the po-
sition of the jth particle, and α is the fractional statistics
parameter (see, e.g., Refs. [7,42]). Similar mapping defines
anyons in one dimension, where the one-body reduced density
matrix of anyons confined in a harmonic trap and its NOs can
be computed efficiently even for large particle numbers [43],
showing that the largest NON follows a power law ν1 ∼ N p(α)

with 0 < p(α) < 1. The anyonic wave function �α interpo-
lates between bosons for α = 0 and fermions for α = 1. The
free-particle Hamiltonian Ĥfree = ∇2

1 + ∇2
2 acting on �α then

transforms under the gauge transformation in Eq. (5) to a
magnetic Hamiltonian acting on �B [2,28]. In the case of
two particles, this magnetic Hamiltonian in center of mass
coordinates can be expressed as [44]

ĤB = − h̄2

4m
∇2

Z + 1

m
[−ih̄∇z − eA(z)]2, (6)

where Z is the center of mass, z = z1 − z2 is the relative
coordinate, and A(z) is the magnetic vector potential

A(z) = �

(−Im(z1 − z2)
Re(z1 − z2)

)
= �|z1 − z2|êθ , (7)

where e� = αh̄. In this model, the anyonic exchange phases
can be thought of as Aharonov-Bohm phases due to the
presence of a magnetic vector potential in the relative
Hamiltonian. The bosonic Hamiltonian therefore describes
boson-flux composites with hard cores.
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The eigenstates for this two-anyon system in a harmonic
potential are known [44]. Under the potential Vexternal = (z2

1 +
z2

2 )/2 (here and in the following, atomic units are used in
which the harmonic potential strength, the particle mass, and
h̄ are all equal to one) the ground state wave function in the
boson-flux composite picture is given by

�
(α)
B (z1, z2) = Nα |z1 − z2|αe− |z1 |2+|z2 |2

2 ,

Nα = 1

π

1√
2α
(α + 1)

. (8)

The NONs νn for a many-particle quantum system are
defined as the eigenvalues of the 1RDM. Recall that for a
two-particle wave function in Rd the 1RDM reads [45]

γ (r, r′) =
∫
Rd

dr2�(r, r2)�(r′, r2), (9)

and the natural orbitals φn are its eigenstates, i.e.,∫
Rd

dr′γ (r, r′)φn(r′) = νnφn(r). (10)

If the wave function � is real and symmetric, it is known
that its NOs and NONs can also be found by solving the fol-
lowing homogeneous Fredholm equation of the second kind
[46], which circumvents the necessity of computing γ :∫

Rd

dr2�(r, r2)φn(r2) = σnφn(r1). (11)

In the above equation the eigenvalues {σn}∞n=1 are the natural
amplitudes (NAs), νn = σ 2

n .
Moreover, if the wave function � is rotationally symmetric

[as is the case for any eigenfunction of the Hamiltonian (6)],
then the relevant eigenproblem is block diagonal where the
blocks are enumerated by the angular momentum quantum
number l . In summary, the rest of this paper will be devoted
to asymptotically solving the integral equation∫

R2
dz2�

(α)
B (z1, z2)φnl (z2) = σnlφnl (z1), (12)

where �
(α)
B is given by formula (8), for an arbitrary fixed

spin sector l , in the limit of n → ∞, which means studying
the weakly occupied NOs and their corresponding NAs. The
key intuitions here are that (1) the radial part of φnl is highly
oscillatory [as shown in Figs. 4(a)–4(c)—the nth numerically
computed NO has n − 1 nodes], and (2) when integrating a
highly oscillatory function against a function that has discon-
tinuous derivatives, the result goes to zero as a polynomial of
the inverse of the oscillation frequency.

III. DERIVATION OF ASYMPTOTICS

Restricting to a fixed-l sector means taking the NOs of the
following forms:

φnl (z) = eiθ lψnl (r)e−r2/2, (13)

where the factor e−r2/2 is included for the sake of convenience.
The orthonormality condition of the NOs then reads

2π

∫ ∞

0
rdr ψn1l (r)ψn2l (r)e−r2 = δn1,n2 . (14)

Using the relative angle variable θ12 = θ1 − θ2 and the polar
coordinates z j = r jeiθ j , j = 1, 2, the Fredholm Eq. (12) be-
comes

Nα

∫ ∞

0
r2dr2

∫ 2π

0
dθ12 cos(θ12l )

× (
r2

1 + r2
2 − 2r1r2 cos θ12

)α/2
e−r2

2 ψnl (r2) = σn ψnl (r1).
(15)

In order to evaluate the angular integral above, note that the
function cos(θ12l ) can be written as a polynomial of degree
2l in the variable t = [r2

1 + r2
2 − 2r1r2 cos(θ12)]1/2. This is

because

cos(θ12l ) = Tl (cos θ12) = Tl

(
r2

1 + r2
2 − t2

2r1r2

)
, (16)

where Tl is the Chebyshev polynomial of order l , which then
allows the finite polynomial expansion

cos(θ12l ) =
2l∑

p=0

a(l )
p (r1, r2)t2p,

where the coefficients a(l )
p can be found using the explicit

expansion formulas for Tl . In particular,

a(l )
0 (r1, r2) = Tl

(
r2

1 + r2
2

2r1r2

)
.

Plugging this expansion into the left-hand side of (15), we get

Nα

2l∑
p=0

∫ ∞

0
r2dr2 a(l )

p (r1, r2)e−r2
2 ψnl (r2)

×
∫ 2π

0
dθ12

(
r2

1 + r2
2 − 2r1r2 cos θ12

)α/2+p

= σnl ψnl (r1). (17)

Next, we use the result that for any β ∈ R,∫ 2π

0
dθ12

(
r2

1 + r2
2 − 2r1r2 cos θ12

) β

2 = π Gβ (r1, r2), (18)

where

Gβ (r1, r2) = |r1 − r2|β 2F1

(
1

2
,−β

2
; 1;

−4r1r2

(r1 − r2)2

)

+ (r1 + r2)β 2F1

(
1

2
,−β

2
; 1;

4r1r2

(r1 + r2)2

)
,

(19)

and 2F1 is the ordinary hypergeometric function.
So far, all the calculations have been exact. However,

we will next start making approximations in order to make
the large-n asymptotic solution to Eq. (15) more tractable.
The key fact to notice is that the leading contribution to the
n → ∞ asymptotic of σn comes from the lowest-order cusp
of the left-hand side of Eq. (15) around r1 = r2. Let us next
look at the asymptotic expansion of Gβ (r1, r2) around r1 = r2

when 0 < β < 1. The only contribution to the cusp around
r1 = r2 is the first term in the right-hand side of Eq. (19). Its
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FIG. 1. The leading-order cusp in the function G̃β (r1, r2) is re-
produced by the first three terms of its asymptotic expansion around
r1 = r2. The plot shows the function G̃β (r1, r2) vs the first three terms
of its leading-order asymptotic expansion (20) for β = 1/5, r1 = 0.5.

asymptotic expansion reads

G̃β (r1, r2) = |r1 − r2|β 2F1

(
1

2
,−β

2
; 1;

−4r1r2

(r1 − r2)2

)

= 2β 

( 1+β

2

)
√

π

(
1 + β

2

) rβ

1 − β 2β−1 

( 1+β

2

)
√

π 
(1 + β

2 )
rβ−1

1

× (r1 − r2) + 

(− 1+β

2

)
2
√

π 

(− β

2

) 1

r1
|r1 − r2|β+1

+ O((r1 − r2)2). (20)

The first three terms of this expansion are plotted in Fig. 1.
In the above formula, we can see that the leading-order cusp
is |r1 − r2|β+1. Similarly, when β > 1 the analogous cusp
will appear in the order β + 1. This in turn means that the
leading-order cusp in Eq. (17) will come from the (p = 0)-
summand. Thus, the large-n asymptotic solution to Eq. (15)
can be obtained from the following equation, which extracts
only the leading-order cusp around r1 = r2:

B(α)
∫ ∞

0
r2dr2 |r1 − r2|α+1e−r2

2 ψnl (r2)

= σnl r1ψnl (r1),

B(α) =
√

1

2α π 
(α + 1)



(− 1+α

2

)
2 

(−α

2

) . (21)

In the above equation we have also used the fact that
a(l )

0 (r1, r1) = 1.
In analogy to the three-dimensional case [37], we choose

an ansatz for ψn,l of the form

ψnl (r) = fnl (r) Jl (κnlgnl (r)), (22)

where

fnl (r), gnl (r) > 0, g′
nl (r) > 0, κnl > 0,

∞ > lim
r→0

fnl (r) > 0, ∞ > lim
r→0

gnl (r)

r
> 0.

Functions Jl are the Bessel functions of the first kind. As
previously mentioned, taking the limit n → ∞ means consid-
ering highly oscillatory NOs, thus we necessarily have κnl	1.
The strategy is now to extract the leading order expansion of
Eq. (21) in the powers of 1/κnl , which will lead us to certain

consistency condition for the function gnl (r). Because κnl is
large, we can approximate the Bessel functions as [47]

Jl (z) ≈
√

2

πz
cos

[
z − (2l + 1)

π

4

]
. (23)

For convenience, we will ignore the phase shift proportional
to π/4 under the cosine, as it will not alter the resulting
consistency relations. Consequently, the integral equation (21)
becomes

B(α)
∫ ∞

0
dr2 |r1 − r2|α+1 r2 e−r2

2 fnl (r2)√
gnl (r2)

cos(κnlgnl (r2))

= σnl r1
fnl (r1)√
gnl (r1)

cos(κnlgnl (r1)). (24)

With the change of variables ui := gnl (ri) i = 1, 2,
q(u) := g−1

nl (u), we define

F (u2) = 1√
u2

q(u2) q′(u2) e−(q(u2 ))2
fnl (q(u2)).

Next, we extract the leading asymptotic around u1 = u2 using
the fact that

|q(u1) − q(u2)|α+1 = |u1 − u2|α+1[q′(u1)]α+1

+ O(|u1 − u2|α+2).

This allows us to write the integral Eq. (24) as

B(α) Re

{∫ u∞

0
du2 F (u2)|u1 − u2|α+1eiκnl u2

}

= σnl
q(u1) fnl (q(u1))√

u1(q′(u1))α+1
cos(κnlu1), (25)

where u∞ = limr→∞ gnl (r). Finally, we use a theorem from
the paper [48] to extract the leading order behavior when in
κnl → ∞ (see the Appendix for more details). This leads to

− 2

κα+2
nl

cos
(πα

2

)
cos(κnlu1)F (u1)
(α + 2)

= σnl q(u1)
q(u1) fnl ( q(u1) )

B(α)
√

u1( q′(u1) )α+1 cos(κnlu1). (26)

Equating coefficients of cos(κnlu1) and expressing everything
back in terms of the variable r, we arrive at the following
consistency condition defining gnl (r):

κnl gnl (r) =
(

−C(α)

σnl

) 1
α+2
∫ r

0
dr1 e−r2

1 /(α+2)

=
(

−C(α)

σnl

) 1
α+2

I∞(α)erf

(
r√

α + 2

)
, (27)

where erf is the error function,

I∞(α) =
∫ ∞

0
dr1 e−r2

1 /(α+2) =
√

π (α + 2)

2
, (28)

and

C(α) = 2B(α)
(α + 2) cos
(πα

2

)
. (29)

In order to determine the dependence of σnl and κnl on n
together with the form of the function fnl , we refer to the
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orthonormality condition of the NOs (14), which takes the
explicit form

2π

∫ ∞

0
rdr fn1l (r) fn2l (r)Jl (κn1 gn1l (r))Jl (κn2 gn2l (r))e−r2

= δn1,n2 . (30)

In order to satisfy the above equality, we will make use of the
orthogonality relation for Bessel functions [47]∫ 1

0
dz Jl (μn1 z)Jl (μn2 z)z = 1

2
J ′

l (μn1 )2 δn1,n2 , (31)

where μn is the nth node of Jl . Note first that if we require the
relation √

re−r2

gnl (r) g′
nl (r)

fnl (r) ≡ Cnl (32)

to be satisfied and require that gn1l (r) = gn2l (r) ≡ gl (r), we
can readily apply the identity (31) to the left-hand side of
(30) after the familiar change of variables u = gl (r) under
the integral. Additionally, recall that the nth NO must have
n − 1 nodes. In light of Eq. (27), this requires identifying the
functions gnl (r) and κnl as

gnl (r) ≡ g(r) = erf

(
r√

α + 2

)
, κnl = μn. (33)

Consequently, we get that(
−C(α)

σnl

) 1
α+2

I∞(α) = μn. (34)

From the relation (32) we determine that fnl (r) takes the form

fnl (r) = Cnl

√
erf r√

α+2

r
e− r2

2(α+2) e
r2

2 , (35)

where the normalization factor reads

Cnl = 1

|J ′
l (μn)|

√
2

π
√

π (α + 2)
. (36)

Using the well-known asymptotic for the nodes of the Bessel
functions μn ≈ nπ , we summarize the results of this sec-
tion as follows:

lim
n→∞ |σnl | nα+2 = D(α),

D(α) = (2π )−α/2(α + 2)
α
2 +1

sin
(

πα
2

)


(−α

2

)2√

(α + 1)

. (37)

φnl (r, θ )
n→∞−−−→Cnl

√
erf r√

α+2

r
e− r2

2(α+2)

× Jl

[
μnerf

(
r√

α + 2

)]
eiθ l . (38)

IV. NUMERICAL METHODS

In this section, we carry out the numerical verification
of the asymptotics predicted in Eqs. (37) and (38). This is
done by writing Eq. (12) in the (κ-scaled) harmonic oscillator
eigenbasis

φ̃
(κ )
ml (r, θ ) = N (κ )

ml eiθ l (κr)|l|L|l|
m (κ2r2)e−κ2r2/2,

N (κ )
ml = κ

√
m!

π (m + |l|)! , (39)

where κ > 0 and L|l|
m is a generalized Laguerre polynomial.

These calculations are specific to l = 0. As will be explained
later, the parameter κ will be optimized, which allows us to
pick the basis in which the NONs converge at the fastest rate.
To simplify the notation we omit the l subscripts, i.e., we write
φ̃

(κ )
m,0 ≡ φ̃(κ )

m .
In the truncated basis φ(κ )

m , m = 0, 1, . . . , M, Eq. (12) for
l = 0 is solved via the diagonalization of the (M + 1) × (M +
1) matrix

[A(α)(κ )]m1,m2 = 〈
φ(κ )

m1
(z1)φ(κ )

m2
(z2)

∣∣� (α)
B (z1, z2)

〉
. (40)

Let us next briefly describe the steps that we apply in order
to evaluate some of the multidimensional integrals in the
Eq. (40). Similarly to the methodology of Sec. III, we use
the relative angle θ12 and compute the corresponding integral
over θ12 using the result from Eq. (18). Next, we change the
the radial coordinates r1, r2 to r1 = r cos ξ and r2 = r sin ξ ,
0 � r � ∞, ξ ∈ [0, π/2]. The Jacobian of this transformation
is r. Under this change of variables, we have

π Gα (r cos ξ, r sin ξ ) = rαKα (ξ ), (41)

where the function Kα (ξ ) reads (after using an identity for the
hypergeometric function to simplify its form)

Kα (ξ ) = − 2
√

π 

(

2+α
2

)


(

3+α
2

) [1 + sin(2ξ )]
2+α

2

| cos(2ξ )| Im

{
2F1

[
2 + α

2
,

1

2
,

3 + α

2
,

(
1 + sin(2ξ )

cos(2ξ )

)2
]}

.

Next, we apply the polynomial expansions of the Laguerre polynomials. It turns out that the integrals over r can be computed
analytically in terms of the Euler gamma functions. Thus, we are only left with the task of evaluating numerically the integrals
over ξ . After the above transformations, the matrix elements read

[A(α)(κ )]m1,m2
= Nα

2κα/2

m1∑
a=0

m2∑
b=0

(
m1

a

)(
m2

b

)
(−1)a+b

a!b!

(
2κ

κ2 + 1

)2+a+b+ α
2



(

2 + a + b + α

2

)

×
⎡
⎣ a∑

j=0

(−1) j

(
a

j

)
J (α)

b+ j +
b∑

j=0

(−1) j

(
b

j

)
J (α)

a+ j

⎤
⎦, (42)
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where the integration over ξ appears only in the integrals

J (α)
k =

∫ π/4

0
dξ sin(2ξ )Kα (ξ ) cos2k (ξ ). (43)

Note that in order to evaluate the expressions (42) numeri-
cally for all 0 � m1, m2 � M, we only need the integrals J (α)

k
for k = 0, 1, . . . , 2M which can be precalculated separately.
The difficulty of this approach is that we need to know the
values of the integrals J (α)

k with very high precision, because
they enter the alternating sums in Eq. (42). To this end, we
have used PYTHON’s library MPMATH. For the calculations
presented in this section, we have set the size of the one-
particle basis to M = 400 and the precision to 2M. Note also
that the expressions (42) can be computed efficiently for all
0 � m1, m2 � M at once using the vectorisation technique,
i.e., by recognizing that Eq. (42) allows one to express matrix
A(α)(κ ) as a product of three matrices.

The optimal parameter κ has been chosen by maximizing
the fidelity

F (α)
M (κ ) =

M∑
m1,m2=0

∣∣A(α)
m1,m2

(κ )
∣∣2. (44)

It has turned out that the optimal value of κ is approximately
independent of α, and for M = 400 it is κopt ≈ 7.

The resulting NAs are plotted in Fig. 2. Thanks to the
optimal choice of the parameter κ , we have obtained the
convergence of the first 105–125 highest NAs (the exact num-
ber depends on α) with the single-particle basis of the size
M = 400. In Fig. 2 we have plotted the values of nα+2 σn vs
1/n, which allowed us to determine the values of the constants
D(α) with the relative accuracy of the order 10−3. As shown
in Table I and Fig. 3, this is in perfect agreement with the
theoretical values calculated from Eq. (37).

In Fig. 4 we have plotted the numerically calculated
NOs and compared them with their asymptotic forms from
Eq. (38). We observe remarkable agreement of the asymptotic
form even for values of n as low as 30. For the convenience

FIG. 2. NAs of the l = 0 sector for α ∈ { 1
5 , 2

5 , 3
5 , 4

5 , 1} and M =
400. The number n represents the index of the values σn. The solid
lines show the outcome of the fifth-order polynomial regression for
each value of α.

TABLE I. Comparison of the values of the constant D(α) com-
puted via the fifth-order polynomial regression in Fig. 2 for l = 0
with the exact formula from Eq. (37).

α Fitted D(α) Exact D(α)

1/5 0.0586 ± 0.0004 0.058580 . . .

2/5 0.1055 ± 0.0005 0.105525 . . .

3/5 0.1394 ± 0.0005 0.139367 . . .

4/5 0.1593 ± 0.0005 0.159293 . . .

1 0.1649 ± 0.0005 0.164961 . . .

of comparison, in the bottom row of Fig. 4 we have plotted
the values of φn(r)

√
rer2/[2(α+2)] vs g(r), which extracts the

oscillatory part of the NOs. One can see that the NOs converge
to their respective asymptotic forms very fast.

V. CONSEQUENCES OF THE NO AND NA ASYMPTOTICS
FOR COMPUTING ANYON CORRELATIONS

The asymptotic properties of NOs and NAs derived in
the preceding sections are of broad relevance to physics of
anyonic systems as they show universal properties of anyonic
wave functions. In particular, our results show that when an
anyonic wave function is expanded in a single-particle basis,
the convergence of such an expansion is much slower than in
the case of fermionic or bosonic systems. This has fundamen-
tal consequences for applications of any numerical methods to
anyonic systems. These consequences are particularly evident
in two-particle systems where the natural orbitals and natural
occupation numbers allow one to reconstruct the two-anyon
wave function (up to a diagonal rotation of the single-particle
basis), making it possible to compute the expectation value
of any quantum observable. Such two-anyon systems have
been extensively studied from the point of view of anyon cor-
relations and anyon interferometry [49–54] (including recent
experimental proofs of anyonic statistics [16,18]), where one

FIG. 3. The fitted values of D(α) from fifth-order polynomial
regression for α ∈ { 1

5 , 2
5 , 3

5 , 4
5 , 1} and M = 400. They are in perfect

agreement with the formula (37).
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(c)

(d) (e) (f)

(a) (b)

FIG. 4. Top row: the l = 0 natural orbitals of index 1 (a) and 6 (b) for various values of the fractional statistics parameter α. Frame
(c) shows a comparison of the numerical and asymptotic forms of the natural orbital n = 30, for which l = 0 and α = 1/5. The natural orbitals
are observed to cross the axis n − 1 times, where n is the order of the orbital. Bottom row: a comparison of the numerically computed natural
orbitals to their corresponding asymptotic formulas for large n, all with l = 0 and α = 1/5. For small r the deviations negligible. Frames
(d)–(f) show the oscillatory component of the natural orbitals, with n = 10 (d), n = 40 (e), and n = 80 (f). For small n, the deviations from the
asymptotic formula diverge as r increases from 0. This divergence is less pronounced for larger n.

of the relevant observables is the two-body observable called
the bunching parameter [54].

In this section, we show in detail how to calculate such ex-
pectation values using the example of two-particle correlation
coefficient τ defined as

τ = 2〈r1r2 cos θ12〉〈
r2

1 + r2
2

〉 , (45)

where we parametrize the configuration space of the anyons
via z j = r jeiθ j , j = 1, 2 with θ12 = θ1 − θ2 being the angle
between the position vectors of the anyons. The correlation
coefficient τ has been originally introduced in the context of
electronic wave functions [55], however it is closely related to
the anyon bunching parameter introduced more recently [54].

In order to calculate the correlation coefficient τ for the
two-anyon system at hand, we will work in the boson mag-
netic gauge, i.e., use the wave function �

(α)
B defined in (8). It

is convenient to change the variables to the center of mass Z
and relative position z, given by

Z = 1
2 (z1 + z2), z = z1 − z2. (46)

In the new coordinates, the two-anyon wave function has the
product form

�
(α)
B (z1, z2) = Nαe−|Z|2 |z|αe−|z|2/4. (47)

What is more, the correlation coefficient also takes a simple
form in the new coordinates, i.e.,

τ = 4〈|Z|2〉 − 〈|z|2〉
4〈|Z|2〉 + 〈|z|2〉 . (48)

It is a matter of a straightforward calculation to find the rele-
vant expectation values. The result reads

τ = − α

2 + α
. (49)

Recall that for α = 0 the quantum state �
(α)
B is just a product

state of two bosons which is uncorrelated. Consequently, the
correlation coefficient vanishes for α = 0. What is more, τ

is a monotonic function of the statistics parameter α and it
reaches its minimum value τ = −1/3 for α = 1, i.e., when
the wave function �

(α)
B describes a strongly correlated state of

two hard-core bosons.
Let us next take a closer look at how to compute the above

correlation coefficient τ with the NOs of �
(α)
B . The two-anyon

wave function can be written as

�
(α)
B (z1, z2) =

∞∑
l=0

∞∑
n=0

cn,lφn,l (z1)φn,−l (z2), (50)
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where φn,l are the NOs and |cnl | = |σnl | are the corresponding
NAs. Then, the correlation coefficient takes the form [55]

τ =
∑

n1,n2,l1,l2
cn1,l1 cn2,l2 | 〈φn1,l1 | z |φn2,l2〉 |2∑

n,l (cn,l )2 〈φn,l | z |φn,l〉 . (51)

Note that only those terms for which |l1 − l2| = 1 contribute
to the numerator; otherwise, 〈φn1,l1 | z |φn2,l2〉 vanishes. Al-
though the closed forms of the expectation values in the
formula (51) are difficult to find, numerics using the approx-
imate NOs (38) show that the convergence of the expression
(51) is rather slow, requiring the calculation of thousands of
terms to get numerically close to the analytic value (49).

VI. DISCUSSION AND CONCLUSIONS

In this work we have analyzed the asymptotic behavior of
the natural orbitals and their occupation numbers and natural
amplitudes in the ground state of two noninteracting anyons
in the boson magnetic gauge. We have derived exact asymp-
totic forms of the natural orbitals from a fixed l sector of
the 1RDM when the ordinal number of the orbital n that
indexes NOs and NAs tends to infinity (the latter are arranged
descendingly according to their absolute values). While the
asymptotic forms of NOs and NAs differ from their actual
values for small n, the convergence is surprisingly fast when
increasing n.

Although our calculations were done for the ground state
only, the methodology can be applied mutatis mutandis to any
other eigenstate (see Ref. [44] for their explicit forms) of this
two-anyon system, resulting in the same NA asymptotic with
suitably altered constant D(α). Our asymptotic results may
also extend to eigenstates of anyon gases with higher num-
bers of particles, however proving this would require using a
different set of mathematical tools such as the ones applied in
Ref. [39].

The same method can be employed to derive the NO and
NA asymptotic for the noninteracting two-anyon system at
hand in the fermion magnetic gauge. The fermionic counter-
part of the wave function (8) is [42]

�
(α)
F (z1, z2) = Nα eiθ12 |z1 − z2|αe− |z1 |2+|z2 |2

2 ,

where θ12 is the angle between z1 and z2. Note that the coa-
lescence cusp in �F is of the same order as the coalescence
cusp of �B. By repeating the steps from Sec. III with �B

replaced by �F , we arrive at the identical conclusion concern-
ing the asymptotics of NOs and NAs in the fermion magnetic
gauge.

It is interesting to note that according to the power law
(37), the anyonic NONs in two dimensions decay slower than
for Coulombic multielectron systems in 3D. This confirms
the intuition that 2D anyon systems are characterized by
strong correlations and, in light of Ref. [40], are likely to be
more challenging to tackle by the standard quantum chemistry
toolset.

One might be tempted to interpret our presented results in
terms of the Pauli exclusion principle for anyons. However,
note that the magnetic gauge transformation (5) from the
bosonic wave function �B to the anyonic wave function �α is
nonlocal, thus the NONs of �B are different from the NONs

of �α . Moreover, only the NONs of �α are the ones that
interpolate between fermionic case (Slater determinant for
α = 1) and the bosonic case (fully condensed state for α = 0).
Thus, for anyonic systems it is more appropriate to refer
to gauge-invariant methods of measuring the Pauli exclusion
principle such as the expectation value of the kinetic energy
operator [56–58].
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APPENDIX: THE LEADING-ORDER EXPANSION
OF EQ. (25)

Reference [48] provides the following theorem: for any
f being an analytic function in the region � = {z ∈ C : a �
Re(z) � b, Im(z) � 0}, we have

∫ b

a
dx (x − a)α (b − x)β f (x)eiωx

= iα+1

ωα+1
eiωa

∫ ∞

0
d p
(

b − a − i
p

ω

)β

f
(

a + i
p

ω

)
pαe−p

− iβ−1

(−1)β−1ωβ+1
eiωb

∫ ∞

0
d p
(

b − a + i
p

ω

)α

× f
(

b + i
p

ω

)
pβe−p. (A1)

Theorem (A1) as stated originally in Ref. [48] has a
typographic error, and above we have provided its corrected
version. In order to apply this theorem, we translate Eq. (25)
to the form

I−(u1) + I+(u1)

= Re

{∫ u1

0
du2 F (u2) (u1 − u2)α+1eiκnl u2

}

+ Re

{∫ u∞

u1

du2 F (u2) (u2 − u1)α+1eiκnl u2

}
. (A2)

Applying Theorem (A1) to the I−(u1),∫ u1

0
du2 F (u2)(u1 − u2)α+1eiκnl u2

= i

κnl

∫ ∞

0
d p

(
u1 − i

p

κnl

)α+1

F

(
i

p

κnl

)
e−p

− iαeiκnl u1

(−1)ακnl
α+2

∫ ∞

0
d p F

(
u1 + i

p

κnl

)
pα+1e−p.
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Extracting the leading order asymptotics in κnl → ∞ produces

i

κnl

∫ ∞

0
d p uα+1

1 F (0)e−p − iαeiκnl u1

(−1)ακnl
α+2

∫ ∞

0
d p F (u1)pα+1e−p = i

κnl
uα+1

1 F (0) − iαeiκnl u1

(−1)ακnl
α+2

F (u1)
(α + 2),

for which it is straightforward to see that F (r) → 0 as r → 0. Similarly, for the second integral we find∫ u∞

u1

du2 F (u2)(u1 − u2)α+1eiκnl u2 = − iα

κα+2
nl

eiκnl u1 F (u1)
(α + 2),

where we use the fact that F (r) must tend to zero as r → ∞. Summing up, the integral sum (A2) can now be expressed as

I−(u1) + I+(u1) = Re

{
−iα[(−1)−α + 1]

eiκnl u1

κα+2
nl

F (u1)
(α + 2)

}

= −2 cos
(πα

2

)
cos(κnlu1)

F (u1)
(α + 2)

κα+2
nl

Using the above fact in (A2) yields Eq. (26).
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