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Effects of a rotating periodic lattice on coherent quantum states in a ring topology:
The case of negative nonlinearity
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We study the spectrum and stationary states in a ring-shaped lattice potential in the context of ultracold atoms
with attractive interatomic interactions. We determine analytical solutions in the absence of a lattice by mapping
them to those for repulsive interactions, and then we numerically follow the transformation of those solutions as
the lattice is introduced and strengthened. Several features emerge that are specific to negative nonlinearity, which
include soliton branches detaching to create new ground states, gaps opening up at the bottom of the primary
spectral branch, and multiple splitting and rejoining of some branches. We correlate the spectral features with
the behavior of the density and phase of the corresponding eigenstates, and track them along branches and as
various system parameters change. We find that the phase is sensitive to how a specific point in the spectrum is
approached, particularly relevant at certain persistent gaps in the spectrum. The symmetry and stability properties
are generally found to be opposite of that found for repulsive interactions.
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I. INTRODUCTION

This paper is the second of a sequence of two papers that
examines the stationary states of a self-interacting coherent
medium in a ring-shaped lattice potential. The first paper
considered repulsive interaction [1], and in this current one,
we consider attractive interaction. Our analyses are framed in
the context of a Bose-Einstein condensate (BEC) in a toroidal
trap [2], described with a mean-field picture [3] based on a
nonlinear Schrödinger equation (NLSE).

We are motivated by a rich array of physical phenom-
ena available when a BEC is confined within the nontrivial
topology of a ring trap with an added azimuthal periodic lat-
tice structure, which have been studied with both continuum
[4–12] and discrete [13–22] models. Toroidal traps have been
utilized in several experiments to explore the physics associ-
ated with the superfluidity of BEC [2,23], with demonstrations
of such systems serving as a promising atomtronics platform
[24–26]. But the usage of an azimuthal periodic lattice is
pending, despite existing capabilities [27,28].

Interactions are naturally present in ultracold atomic sys-
tems [29] and makes the physics richer and more complex.
Specifically, in the mean-field limit, the setup that we consider
can be used to probe and simulate nonlinear dynamics in
a lattice system which is closed, finite, and unbounded. A
necessary preliminary to exploring the dynamics is a thorough
understanding of the full landscape of stationary solutions. We
do that here for attractive interaction to complement our prior
analysis with repulsive interaction [1], to present a compre-
hensive picture.

In lattices with trivial topology, experiments [30,31] have
explored interacting BEC, complemented by theoretical stud-
ies [32–40]. However, in the context of ring lattices, apart
from our recent work [1], there has only been one other

detailed study [41], but none for attractive interactions. Our
approach here will be built on the analytical solutions that
exist for such nonlinear systems in the absence of a lattice
[42,43] and determine the effects of introducing a lattice of
increasing strength. This will draw on a convenient mapping
between solutions for positive and negative nonlinearities that
one of us recently demonstrated for the relevant NLSE [44].

Our results will have relevance in a broader context since
the nonlinear Schrödinger equation that we use is also relevant
in the field of nonlinear and fiber optics [45–47]. Thus, it
is well established that attractive interaction leads to signif-
icantly different behavior, for example, in three dimensions,
sufficiently strong interactions and large number of parti-
cles can lead to wave-function collapse [48], but though not
necessarily in one dimension (1D) [49]. Even in 3D, it was
established that for trapped gases, discrete energy levels cre-
ate regimes of metastability [50,51], wherein below certain
critical values of the particle number, a condensate can form
for finite duration. Analogous conditions apply in 1D, as we
will show, and experiments involving coherent media with at-
tractive interactions are similarly viable. However, there have
been no comprehensive studies of how attractive interactions
in an NLSE impact the states in the presence of a lattice in
a ring configuration. As we will show in this paper, there
are indeed dramatically different behaviors manifest when
the interaction becomes attractive that we did not observe
in our prior study of the same configuration with repulsive
nonlinearity.

In Sec. II, we summarize our physical model; we then
determine the analytical solutions in the absence of a lattice
in Sec. III, focusing on the essential features that distinguish
having attractive interactions instead of repulsive. We discuss
the effects of introducing the lattice on the spectrum in Sec. IV
and proceed to examine the impact on the corresponding
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stationary states, first on the density in Sec. V and then on the
phase in Sec. VI. The interplay between varying the strength
of the lattice and that of the interaction-induced nonlinearity
is explored in Sec. VII as regards the effects on the spectrum.
In Sec. VIII, we focus on several anomalous spectral features
that we observe. Section IX presents a stability analysis for
the various stationary states. We conclude with a summary of
our results and outlook in Sec. X.

II. PHYSICAL MODEL

The details of our physical model are presented in our prior
paper, which focused on repulsive interactions [1]; here we
will only recapitulate the salient points. Consider a BEC in
a toroidal trap with its minor radius r much smaller than its
major radius R so that the system is treated as a cylinder
r = (z, r, ϕ) with periodic boundary condition on z. Strong
confinement along (r, ϕ) justifies integrating them out for an
effective 1D Hamiltonian,

Ĥ (t ) =
∫ 2πR

0
dz�̂†(z, t )

[
− h̄2

2m
∂2

z + V (z, t )

+ g3DN

4π l2
�̂†(z, t )�̂(z, t )

]
�̂(z, t ), (1)

where g3D = 4π h̄2a/m is the interaction strength, a is the
s-wave scattering length, m is the mass of individual atoms,
N is the total number of atoms, and l = √

h̄/mωT is the har-
monic oscillator length for the transverse confinement along
the minor radius. Taking the major radius R as the length unit,
the azimuthal distance is rescaled as z/R = θ ∈ [0, 2π ); the
lowest-energy scale in the ring ER = h̄2

mR2 is set as the energy
unit and the corresponding frequency ωR = h̄

mR2 is set as the
unit for frequency as well as for angular velocity, and sets
the timescale τ = ω−1

R . The effective nonlinear constant in 1D
then has the form g = 2aωT N . Using these units leads to the
equation of motion which, in the mean-field limit 〈�̂〉 = ψ , is
a nonlinear Schrödinger equation,[

1

2
(i∂θ + 
)2 + V0 sin2

(
1

2
qθ

)
+ g|ψ |2

]
ψ = i∂tψ, (2)

with normalization
∫ 2π

0 dθ |ψ (θ, t )|2 = 1. The lattice
V (z, t ) = V0 sin2[ q

2 (z/R − 
t )] can rotate with angular
velocity 
 with respect to the laboratory frame, and in Eq. (2)
we transformed to the frame rotating with the lattice, so
the Hamiltonian itself is time independent. The stationary
solutions ϕ(θ ) = ψ (θ, t )eiμt satisfy the time-independent
version of Eq. (2) with i∂t → μ, where the eigenvalues μ

define the chemical potential.
The stationary solutions can be determined in the hydro-

dynamic picture, expressing ϕ(θ ) = √
ρ(θ )eiφ(θ ), leading to

coupled equations for the density ρ and the phase φ. The latter
can be formally integrated,

1

8
(∂xρ)2 − 1

4
ρ∂2

x ρ + 1

2
α2 + V0 sin2

(
1

2
qθ

)
ρ2

+ gρ3 − μρ2 = 0,

× �φ(θ ) = φ(θ ) − φ(0) = 
θ +
∫ θ

0

α

ρ(θ ′)
dθ ′. (3)

The integral of motion is associated with the current density
J = Nα and the superfluid velocity v = α/ρ(θ ). The ring
topology imposes periodic boundary conditions,

ρ(0) = ρ(2π ), ρ ′(0) = ρ ′(2π ),

�φ(2π ) = 2πn, δφ ≡ δφ(2π ) = �φ(2π ) − 2π
, (4)

with the integer n being the winding number. We will plot the
chemical potential μ as a function of the bare phase change
δφ acquired around the ring neglecting rotation. The phase
boundary condition for a finite-size ring picks out only dis-
crete points on the continuum spectrum as physically relevant
but, as can be seen above, the entire spectrum can be accessed
via rotation [1].

III. EXACT SOLUTIONS WITHOUT LATTICE

In the absence of a lattice, V0 = 0, analytical solutions can
be found for Eq. (3) [1,42–44], and they will provide the
framework for our description once the lattice is introduced.
We will show that the solutions for g < 0 can be related
intuitively to those for g > 0 that we presented earlier [1].
Integration of Eq. (3) yields

∂xρ = ±
√

f (ρ), f (ρ) = 4gρ3 − 8μρ2 + 8βρ − 4α2,

(5)

with integral of motion β, which can be written [44] in terms
of the integrated expression

β = 1

8ρ
(∂xρ)2 + 1

2ρ
α2 − 1

2
gρ2 + μρ. (6)

All the stationary states of the system can be expressed in
terms of the three roots of this cubic function f (ρ) [44].
The function is compared for g > 0 and g < 0 in Figs. 1(b)
and 1(d). With the forbidden negative density regimes of the
function (shown as dotted lines) left out, the phase-space plots
of ρ ′ = ±√

f (ρ) versus ρ in Figs. 1(c) and 1(d) generally
form a “loop-wing” structure, with a closed loop that corre-
sponds to oscillating solutions and an open wing shape tied to
solutions that diverge. Special cases occur when some of the
roots are degenerate or complex [44]. In terms of the roots, the
coefficients are

μ = g

2
(r1 + r2 + r3), α2 = gr1r2r3,

β = g

2
(r1r2 + r1r3 + r2r3). (7)

For real roots, without loss of generality, we assume ascending
order of the roots, r1 � r2 � r3.

Since α2 � 0, one root has to be negative or zero when
g < 0; but two and three negative roots are not allowed, and
neither are complex roots since a conjugate pair would have
a positive product and the whole phase-space curve would
be in the unphysical negative density regime. All the roots,
therefore, have to be real with r1 � 0, and r2, r3 � 0, and the
wing intersects with the ρ = 0 axis at r1. The wing, being
open on the left, lies entirely in the ρ � 0 regime. There-
fore, solutions on the wing are forbidden and only those on
the loop are allowed. Furthermore, in a ring with uniform
potential, solutions that grow or decay will not satisfy the
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FIG. 1. (a) Atoms are trapped in a toroidal trap with an az-
imuthal lattice potential of period 2π/q, its variation of depth shown
schematically as a thick sinusoidal line. The torus is taken as a
wrapped cylinder with our choice of coordinates r = (z, r, ϕ) shown,
assuming the major radius to be much larger than the minor radius,
R 	 r. Features of phase-space curves are compared for (b),(c) pos-
itive nonlinearity g > 0 with those for (d),(e) negative nonlinearity
g < 0. (b),(d) Schematics of the cubic function f that sets the density
variation, shown for all three real roots {ri}; the dotted parts lie in the
shaded forbidden region. (c),(e) Corresponding phase-space plot of
ρ ′ = ±√

f vs ρ has a wing-loop structure; the orientation of the wing
depends on the sign of the nonlinearity g.

periodic boundary conditions. So, only oscillatory solutions
are possible, with planes waves being a limiting case.

The general shape of the phase-space curves for g > 0
and g < 0 is a mirror reflection across some symmetry axis,
switching the roles of r1 and r3. As a result, we find that
solutions for g < 0 can obtained from the corresponding solu-
tions for g > 0 by simply switching r1 ↔ r3. We proved this
rigorously using the properties of Jacobi elliptic functions in
Ref. [44]. This insight allows us to summarize the solutions
for the attractive interactions as direct counterparts of the
solutions that we found for the repulsive interactions in our
prior work [1], with the density and phase now given by

ρ(θ ) = r3 + (r2 − r3)sn2[
√

g(r1 − r3) θ, m′],

δφ(θ ) = α

r3
√

g(r1 − r3)
�

(
1 − r2

r3
, ϕ, m′

)
, (8)

where � is an incomplete elliptic integral of the third kind
[52] and ϕ = sin−1{sn[

√
g(r1 − r3) θ, m′]}. The parameter m′

can be obtained from its counterpart m for g > 0 by switching
r1 ↔ r3 as well,

m′ = 1 − m = r2 − r3

r1 − r3
. (9)

The density oscillates with period θ = K (m′)/
√

g(r1 − r3). To
satisfy the density boundary condition, the complete phase-
space loop has to be traversed by an integer number of turns
j, leading to the condition for a complete circuit of the ring,

jK (m′) = π
√

g(r1 − r3). (10)

The bare phase in a circuit of the ring and the normalization
of the density constrain the solutions,

δφ = δφ(2π ) = 2πα

K (m′)r3
�

(
1 − r2

r3
, m′

)
,

∫ 2π

0
ρdθ = 2πr3 + 2π (r1 − r3)[1 − E (m′)/K (m′)] = 1.

(11)

Here, K (m′) and E (m′) are complete elliptic integrals of the
first and the second kind, respectively.

The definition of m′ in Eq. (9) along with Eqs. (10) and
(11) can be used to express the roots in terms of the com-
plete elliptic integrals of the first and second kinds, i.e., exact
counterparts of those we derived for g > 0 after applying the
mapping we mention above. When j and g are specified,
these are completely determined by the value of m′, which
can be determined by imposing the phase boundary condition,
yielding the complete solution.

The spectrum plotted as a function of the bare phase
comprises a parabolic dispersion curve and a sequence of
swallowtail branches [53] that mark solitonic solutions. As
with positive nonlinearity, we find three distinct types of so-
lutions: (i) plane waves corresponding to the spectral values
on the parabolic dispersion curve, (ii) density modulations
with nodes that correspond to the tips of the swallowtails, and
(iii) nodeless density modulations that mark the rest of the
swallowtail branches.

We discussed the features of these solutions for g > 0 in
some detail in Ref. [1]. Here we will discuss the differences
that emerge for g < 0. For plane-wave solutions, g < 0 shifts
the parabola down, μ = n2

2 + g
2π

, which translates to a down-
ward shift for the entire spectrum, so the ground state has
negative energy. The bare phase in Eq. (11) as a function of m′
is monotonically increasing for g < 0 and so, for the swallow-
tail branches, the phase lies in the range [

√
j2π2 + 2πg, jπ ]

corresponding to m′ ∈ [0, m′
c]. The m = 0 value corresponds

to the lower limit of the bare phase for negative g and cor-
responds to the end attached to the parabolic curve, where
it tends to a plane wave. The value m′

c corresponds to bare
phase multiples of π , the tips of the swallowtails which mark
the solutions with nodes. Since the upper value of the bare
phase marks the tip, the swallowtails are now on the outside
of the parabola, as we will see in Fig. 3, discussed in the next
section. This is in contrast to those for positive nonlinearity,
where the swallowtails extend on the inside concave side of
the parabola [1]. This is the most striking difference in the
spectrum between g > 0 and g < 0, in the absence of a lattice.

There is another distinguishing feature for these swallow-
tails that remains significant even when the lattice is present:
Clearly for g < − j2π/2, the range for the bare phase becomes
[0, jπ ] which, as we will see, marks a transition point where
the swallowtail branch of index j detaches from the parabola
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FIG. 2. The chemical potential μ plotted as a function of the lattice depth V0 for the number of lattice periods q = 1, 2, and 3 in (a)–(c),
respectively. The nonlinear strength is fixed at g = −1 and the bare phase accumulated around the ring δφ = 0.5 corresponds to the vertical
dashed lines in Fig. 3. The vertical dashed lines that appear here, in turn, indicate the values of V0 that correspond to the plots of μ vs δφ that
appear in Fig. 3

and slides below the lowest energy possible for the plane-wave
solutions associated with the parabola; the ground state then
corresponds to a swallowtail. This behavior is not seen for
repulsive interactions when g > 0.

The solutions with nodes cannot carry current and there-
fore can be made to be real valued everywhere and can be
readily obtained from the general solution in Eq. (8) setting
r2 = 0,

ψ (θ ) =
√

m′

2π (m′ + E/K − 1)
cn

(
jKθ

π
|m′

)
,

μ = (1 + m′) j2K2

2π2
. (12)

This differs in having an elliptic cn rather than sn that is
present for g > 0, and in that the elliptic parameter is m′
instead of m.

IV. SPECTRUM WITH LATTICE

In the presence of attractive interatomic interactions, g <

0, even with no lattice, there can be a multitude of solutions.
Keeping the interaction strength fixed at g = −1 and the bare
phase gathered around the ring fixed at δφ = 0.5, we track the
progression of the chemical potential in Fig. 2 as the lattice
potential is turned on, for three different lattice periods, q =
1, 2, 3. The qualitative behavior here resembles that for g > 0:
some of the branches split and then some of them rejoin again.

Significant differences in behavior emerge when we plot
the chemical potential as a function of the bare phase in Fig. 3.
In these and all other similar spectrum plots in this paper, we
reiterate that for a fixed value of the angular velocity (includ-
ing 
 = 0), only specific points on each trace are allowed that
meet the phase boundary condition in Eq. (4). Those points
lie on equally spaced vertical slices in the spectral plots such
as in Fig. 3 and any angular velocity 
 shifts those lines
continuously [1], allowing access to the entire spectrum. Even
when there is no lattice, the obvious difference in changing the
sign of the nonlinear is that for g < 0, the soliton branches are
on the outside of the main parabola which marks plane-wave
solutions; for g > 0, they are on the inside. As the lattice is
turned on, this difference leads to several interesting features

that differentiate negative nonlinearity from positive. What
remains similar is that the lattice splits the soliton branches,
but with gaps progressively smaller for higher j, requiring
stronger lattices to create noticeable gaps. Gaps open up in
the parabola as well at the soliton branches with index j
that are commensurate, as in exact multiples of the lattice
periodicity q.

When q = 1, there is only one lattice period around the ring
and every soliton index j is commensurate. So in Figs. 3(a)–
3(c), as the lattice is introduced, band gaps open up on the
parabola at every soliton branch. For q = 2 in Figs. 3(d)–3(f)
and q = 3 in Figs. 3(g)–3(i), distinctions emerge between
interband and intraband soliton branches, corresponding to the
soliton index being commensurate and incommensurate, re-
spectively. As lattice strength increases, the splits appear in all
the soliton branches, though progressively less conspicuous
for higher ones. For commensurate branches, the split soliton
branches blend with the main branch segments above and
below the gap to form hooklike structures which, for negative
nonlinearity, lie on the outer convex side of the parabola, as
shown by Figs. 3(b) and 3(c). With increasing lattice depth,
the spectral lines flatten out, causing the commensurate soli-
ton branches to become visibly indistinguishable from the
main branches at band gaps.

The intraband branches highlight a different behavior: For
positive g, with increasing lattice strength, those branches
slide upward towards higher chemical potential. With negative
g, the opposite happens and they slide downward along the
parabola. In the case of the lowest band, at sufficiently high
lattice strength, those spectral lines eventually “fall off” the
main branch and connect directly to the vertical axis, creating
a new ground state in the process. This behavior can be seen
for both q = 2 and q = 3 in Fig. 3, with the j = 1 branch
detaching and falling below the main branch in both cases.

We noted in the previous section that this behavior occurs
even without a lattice, for any branch when g � − j2π/2. Here
we see that even at values of g that do not meet that criterion,
increasing the lattice strength induces the same qualitative
behavior. The strength of the nonlinearity g determines the
number of intraband soliton branches that detach even with
no lattice.
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FIG. 3. The chemical potential μ plotted as a function of the bare phase δφ for three different lattice periods q = 1, 2, and 3, one in each
row. The nonlinear strength is fixed at g = −1. The three panels in each row are for different values of the lattice depth V0 corresponding to
the vertical dashed lines in Fig. 2. The vertical dashed lines here indicate the bare phase values δφ that correspond to the plots in Fig. 2.

This underscores the intricate interplay of the lattice and
the nonlinearity that defines the behavior of this system. That
interplay is responsible for other interesting variations of this
behavior, some seen in Fig. 3: In the case of q = 2, the j = 1
branch splits. Labeling the upper and lower branches u and
d for “up” and “down,” only the lower branch 1d detaches
from the main branch, while the upper one 1u shortens and
blends with the main branch as the branches flatten with
increasing lattice depth. On the other hand, for q = 3, both
1u and 1d detach and remain so as the lattice depth increases.
However, we do see the j = 2 branch vanish into the main
branch. Although the lattice splits the soliton branches, the
effect is not quite uniform. The commensurate branches split
significantly as they coincide with the band gaps opening up.
The intraband soliton splittings are smaller. Some branches
are surprisingly resistant to any noticeable splitting; for ex-
ample, the j = 2 branch for q = 3 in Figs. 3(g)–3(i) simply
disappears at sufficiently deep lattice.

V. EFFECT OF LATTICE ON DENSITY

In order to get a better insight into the correlation of
the various spectral features and ultimately the behavior of
the system, we have to examine the associated eigenstates. We
do so in the context of q = 2 and q = 3, fixing the nonlinear

strength and then switching on and progressively increasing
the lattice depth.

As the spectrum evolves with the introduction of the lat-
tice, it becomes harder to classify branches as being on the
main branch or a specific soliton branch indexed by j as the
branches blend, split, and merge. Certain features of the eigen-
states help identify and classify them: (i) In the presence of a
lattice, the main branch solutions transform from plane waves
to Bloch waves with the same period as the lattice. (ii) Soliton
branches can be identified by the number of density peaks that
should equal the j index. (iii) When soliton branches split,
the eigenstates corresponding to the upper and lower branches
display different symmetry properties relative to the lattice.

The symmetry properties were discussed in detail in the
case of positive nonlinearity [1]. Here we note the differ-
ences: For g < 0, for each splitting, the energetically lower
branches have at least one density maximum line up with a
lattice minimum, while the upper branches never have any
state maximum line up with a lattice minimum. This is in
contrast for g > 0 wherein, for a lower branch, at least one
of the density minimum lines up with a lattice maximum; and
for the upper branch, lattice maxima and state maxima never
coincide.

The eigenstates as plotted in Figs. 4 and 5 provide more
insights. Densities and phases of the states are plotted in
vertical alignment with the corresponding spectra in the top
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FIG. 4. The top row plots the chemical potential μ as a function of the phase δφ, for lattice period q = 2, and shows the progression as the
lattice strength is increased from V0 = 0 to V0 = 1.7, keeping the nonlinear strength fixed at g = −6.5. The insets show details of the upper
splitting of j = 2, labeled 2u, and the unsplit j = 3 branch. The solid circles mark values for which the states are plotted in the rows below,
with labels as described in Eq. (14). The plots of the density and phases of the state are lined up with the corresponding spectral plots in the top
row, with the middle rows for soliton branch 3d and one point from the main branch, and the bottom rows for the soliton branch 2u. Labels on
the density traces mark which point they correspond to in the spectrum; the phase plots have matching traces. The lattice is indicated in filled
gray.

row. On the spectra, solid dots mark the points that correspond
to states plotted below, and labeled by

[ j-index] [sub-branch] [location], j = 1, 2, . . . , (13)

sub-branch = {m, u/u′, d/d ′}, location = {l, c, r}, (14)

with j being the swallowtail branch index based on the an-
alytical solutions with no lattice; the sub-branch labels are
m for the main branch, u, d for up and down marking upper
and lower in a split, and if there are further splittings of those
branches, we label them u′, d ′; and the location labels l, c, r
indicate left, somewhere near the center, and right end of each
branch.

A. q = 2

We examine the case of q = 2 lattice periodicity in Fig. 4
at fixed g = −6.5. This nonlinearity is sufficiently strong to
have the j = 1 and j = 2 soliton branches to be detached
and below the main branch, even with no lattice. The lattice
splits them both, with the gaps getting wider with increasing
lattice depth. But the j = 2 branch behaves differently: The
upper branch, 2u, and the main branch both detach from the
vertical axis and their left tips approach each other, tending to
form a hooklike structure. However, the left tips never actually
meet in our simulations, always leaving a gap, as shown in the
insets in the top row of Fig. 4. As the lattice is strengthened,
the 2u branch shrinks, eventually disappearing (not shown).
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FIG. 5. The top row plots the chemical potential μ as a function of the phase δφ, for lattice period q = 3, and shows the progression as
the lattice strength is increased from V0 = 0 to V0 = 2.5, keeping the nonlinear strength fixed at g = −15. The inset shows details of the upper
split of j = 3, labeled 3u, and the unsplit j = 4 branches. The solid circles mark values for which the states are plotted in the rows below, with
labels as described in Eq. (14). The density and phase are not plotted for V0 = 0, so the lower four rows line up and correspond to only the
nonzero potentials in the top row, as indicted by arrows. The middle rows are for soliton branch 4 and a point from the main branch, and the
bottom rows are for the soliton branch 3u with the last two columns including states from the newly emergent 3u′ branch as well. Labels on
the density traces mark which point they correspond to in the spectrum; the phase plots have matching traces. The lattice is indicated in filled
gray.

The general behavior resembles the opening of a band gap at
commensurate soliton branches, but with some differences.

We observe another interesting feature with the j = 3
branch. We do not see any visible splitting when the lattice
is introduced but, due to the observed symmetry features,
we label it 3d . Increasing lattice strength causes it to slide
downwards along the main branch, until it does something
surprising: It extends out beyond the now much contracted
main branch, as shown for V0 = 1.5 in Fig. 4. At even stronger
lattice, the branch extends out farther and slides farther down

to intersect with the shrunken 2u branch. An interesting char-
acteristic of these branches is that they have termination points
both on the left and the right; the left termination points are
atypically not at multiples of π , as we can see in Fig. 4, while
the right termination points are.

On each soliton branch, the number of density peaks equals
its j index. The main branch densities start off as plane waves
but, with the introduction of the lattice, they transform to
uniformly modulated Bloch waves similar to states on the
commensurate j = 2 branch. Specifically, as the left tips,
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labeled 2ul and ml , of the detached 2u and the main m
branches approach each other, the corresponding densities,
shown as thick red lines, converge to the same form. They ap-
pear to be mutual continuations, although we could never get
the gap to close. At stronger lattice, the main branch continues
to shrink, approaching termination at θ = 2π on the left, for
a solution with two nodes; and the densities all along the
shrinking 2u branch also tend towards that two-node solution.

The densities on the j = 3 soliton branch start off as Bloch
waves with three peaks in the absence of a lattice but, due to it
being incommensurate, its starts to get more localized with the
introduction of the lattice [1]. As the lattice deepens, the right
tip labeled 3dr continues to terminate at δφ = 3π and have
three nodes, as it did without a lattice. As the branch shoots
out and detaches from the main branch, the emergent left tip,
labeled 3dl , and the corresponding density, shown as a dotted
green line, displays qualitatively different behavior with only
two density minima. Density at an intermediate point 3dc,
shown as dashed magenta, indicates a morphing from three
density minima at the right tip branch to only two at the left.
But, the left tip does not feature nodes as it does not terminate
at a phase multiple of π .

B. q = 3

We next examine the case of q = 3 lattice periodicity in
Fig. 5 at fixed g = −15. We find counterparts of most of the
features we noted above for q = 2, adjusting for the change
of the lattice period. However, since the lowest commensurate
branch has a higher index j = 3, we need a larger magnitude
nonlinearity to access them. Those shared features include the
detachment of both the main branch and the j = 3u branch
from the vertical axis, the subsequent formation of a persistent
gap, as well as the extension of the j = 4d branch beyond
the tip of the shrunken main branch. However, there is a new
feature here not seen with q = 2: At higher potential strength,
the upper split of the j = 3 branch splits further to create an
additional branch that we label 3u′, with distinctive features
that we describe below.

The j = 4 branch does not visibly split, or at least our sim-
ulations did not converge to two separate branches. However,
based on the symmetry feature that one density maximum
coincides with a lattice minimum, if there is a split, we have
converged on the lower branch and so we label it 4d . With
increasing lattice depth, this branch behaves exactly like the
3d branch for q = 2, with the density starting off as a uniform
Bloch wave and getting progressively localized. Then, as it
extends beyond the main branch, there is gradual morphing of
the density from having four nodes at the right tip to having
only two nodes at the left tip, for the, respective, bare phases
of 4π and 2π .

As the left tips of the detached main branch and the 3u
branches approach each other, the gap never closes, but the
densities at their tips, labeled ml and 3ul and plotted in thick
red lines, tend to almost identical Bloch waves with three
maxima, analogous to their q = 2 counterpart in Fig. 4. At
V0 = 2 and above, the 3u branch splits further, creating the
new branch 3u′ with a density profile distinctly different from
that of a Bloch wave. The densities at its left and right tips,
plotted in dotted green and dashed cyan, display localization,

but still with three density peaks; the symmetry properties are
that of an upper branch with none of the peaks lining up with
a lattice minimum. The tips do not reach multiples of π and
hence they do not have nodes in their densities. They just get
very close to having nodes, particularly at the right tip when
the lattice depth is V0 = 2.5, shown in Fig. 5.

VI. SENSITIVITY OF PHASE

In the previous section, we observed that for both q = 2
and q = 3, the upper of the respectively commensurate j = 2
and j = 3 branches detaches from the vertical axis, with the
left tip tending towards that of the also detached main branch.
The tips never meet even as the lattice depth increases; yet the
densities seem mutual continuations, suggestive of a continu-
ous morphing. This raises the question of whether the gap is
real or just an artifact of numerical convergence. There are two
reasons to suggest that it is indeed physical: The gap persists
as we increase the lattice depth, even as the upper solitonic
branch contracts to eventually disappear, as seen for the 2u
branch in Fig. 4. More significantly, we notice that the phase
has different behavior at the tips of the two relevant branches.
In Fig. 4, tip ml of the main branch corresponds to a solution
with phase having half the period as that for the solution that
corresponds to the tip 2ul of the upper j = 2 branch; both
branches are shown as thick red lines for easy comparison.
The same pattern is seen in Fig. 5 with their counterparts ml
and 3ul .

However, the phase issue is a bit more subtle. In our
simulations, we determine the solutions along the branches
progressively, starting from a specific point in the spectrum,
using that solution to find the next adjacent solution and so
on. We find that the density of the eigenstates is insensitive to
which initial solution we converge from. On the other hand,
the phase can be quite susceptible to the path that we take. We
illustrate this in Fig. 6, where we assume lattice periodicity
q = 2 and strength V0 = 1.3, as in the center column in Fig. 4:
In the left column [Figs. 6(a), 6(c), and 6(e)], we plot the
spectrum, density, and phase, respectively, at specific points
marked with filled circles, starting at the tip of the 3d soliton
branch. In the right column [Figs. 6(b), 6(d), and 6(f)], we plot
their counterparts starting at the tip of the 4u branch instead.

When we start at the tip of the 3d branch, we progress from
localized solitonic solutions having density profiles with three
nodes. They lose the nodes as we progress towards the main
branch, shown as dotted lines of nonuniform modulation in
Fig. 6(c). On reaching the main branch, we follow it down
until we reach the tip labeled ml; the corresponding density
is shown as a thick red line and is a Bloch wave, consistent
with Fig. 4. We then follow the main branch back up all the
way to the tip of the 4d branch. This path differs from the
path of approach; the inset in Fig. 6(a) shows a very small
gap that exists between the left terminal segment of the 3d
branch and that the main branch in leading down to the tip
ml . As we follow the main branch up, the densities remain
Bloch waves with two density maxima, shown as thin solid
lines in Fig. 6(c). But as we approach the 4d branch, the two
peaks flatten out and each develops a new minimum; so the
full density profile develops four minima and eventually four
nodes at the tip of the 4d branch.
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FIG. 6. Illustration of the dependence of the phase on how a
particular spectral value is approached. (a),(b) The chemical potential
is plotted vs the phase for the main branch and 3d soliton branch,
for q = 2 and V0 = 1.3, identically to the center top row panel in
Fig. 4. In (a), the left eigenstates are computed starting at the tip of
the 3d branch as indicated by arrows, while in (b), they are computed
starting at the tip of 4u branch. The inset in (a) shows that the bottom
part of the main branch is actually comprised of closely spaced
double lines. (c),(d) The densities are identical for corresponding
points in the two different cases. (e),(f) The phase, however, clearly
behaves differently in the two cases. Two additional traces appear on
the left plots [(c),(e)] corresponding to the points on the 3d soliton
branch.

In starting from the j = 4 branch, for numerical conver-
gence, we have to initiate in the 4u branch and progress along
it until the solution drops down to the 4d branch, and then we
continue down to the tip ml . We then converge back up along
that branch all the way to the tip of the 4d branch and plot the
densities and the phases along the path towards 4d at exactly
the same points as in the previous case, only leaving out the
two points on the 3d branch, not being present in this path, as
shown in Fig. 6(b). The densities in Figs. 6(c) and 6(d) for the
corresponding points on the spectrum along the two paths of
convergence are identical.

However, when we plot the phase in Figs. 6(e) and 6(f),
we find that the phases are completely different for the cor-
responding spectral points along the two different paths of
convergence: The right column has half the period of the left
for most of the points (only near the tip of the 4d branch does
the phase on the left path morph significantly, leading up to
phase slips at the nodes there). The difference is particularly
notable for the point at the bottom tip of the main branch, ml ,
highlighted in thick red lines in Figs. 6(e) and 6(f). This is

the upper edge of the gap between the detached 2u and main
branch in Fig. 4.

In Sec. V, we noted a difference in the phase of the states
that corresponds to the top and bottom of that gap, evident
in the columns corresponding to slightly higher lattice depths
V0 = 1.5 and 1.7 in Fig. 4. At those lattice depths, the 3d
branch has already detached from and extended beyond the
main branch, so we could only approach the bottom tip ml of
the main branch along the path starting at 4u, corresponding
to the right column panels in Fig. 6. Now, from the evidence
of Fig. 6, we can conclude that the difference in the phase that
we observe for above and below the persistent gap between
the points ml and 2ul is actually an artifact of the different
ways that we approach those points. This is confirmed by the
observation that in the middle column of Fig. 4, for V0 = 1.3,
the phase has the same period for the points above and below
that gap. Here the 3d branch is still attached to the main
branch, and we converged to the point ml along a path starting
at the tip of the 3d branch corresponding to the left panels in
Fig. 6; the phase period matches that at the bottom edge 2ul of
the gap which we converged to from the tip of the 2u branch.

VII. INTERPLAY OF NONLINEARITY AND LATTICE

We have, so far, considered the effects of varying the lattice
while keeping the nonlinearity fixed. As we noted in our
earlier study of positive nonlinearity [1], the two factors have
complementary effects and their interplay defines the spec-
trum and the states. We reexamine some of the features noted
earlier, as we now vary the nonlinearity at fixed lattice depth.
In Fig. 7, we use lattice periodicity q = 3, assume a weak
lattice V0 = 0.1 in Figs. 7(a) and 7(b) and a stronger lattice
V0 = 2.2 in Figs. 7(c) and 7(d), and plot the spectrum as a
function of (i) the bare phase at fixed nonlinearity (left panels)
and (ii) the nonlinearity with bare phase fixed at φ = 1.4 (right
panels).

As we would expect, the chemical potential monotonically
decreases as the nonlinearity becomes more negative. Com-
paring each pair of plots, Figs. 7(a), 7(b) and Figs. 7(c), 7(d)
at fixed lattice depth provides different perspectives. In both
cases, the gap between soliton branches of the same index,
for example 3u and 3d , appears insensitive to the change of
nonlinear strength, with the chemical potential decreasing at
about the same rate. This is in contrast to the mutual gaps
between the main branch m and soliton branches associated
with different j indices which diverge with stronger interac-
tions. Curiously, in Fig. 7(d), we observe the newly emergent
3u′ branch gradually approach the 3d branch as the interaction
strengthens.

With both the lattice and the phase fixed in Figs. 7(b) and
7(d), as a function of the nonlinearity, several of the branches
seem to appear out of the “blue sky” once the nonlinear
strength reaches a sufficient strength. But, seen as a function
of phase at fixed nonlinearity in Figs. 7(a) and 7(c), we can
understand most of them as arising from the splitting of soli-
ton branches as the lattice is increased. Together, these plots
show that the strengths of both the lattice and the nonlinearity
work in tandem to create branches at any specific value of the
bare phase.
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FIG. 7. Comparison is made for the plots of the chemical poten-
tial (a),(c) as a function of the phase at fixed interaction strength,
with plots (b),(d) as a function of the interaction strength at fixed
phase. The lattice periodicity is fixed at q = 3, with the lattice depth
V0 = 0.1 for the top row and V0 = 2.2 for the bottom row. The
branches are labeled according to our convention in Eq. (14). The
vertical dotted lines mark the values in each column that are fixed in
the counterpart in the other column.

Although in Figs. 7(a) and 7(c) we show snapshots only
at two values of the lattice, we tracked the evolution of the
spectrum as a function of the bare phase at other lattice depths
not shown here. We found that (i) the 4d branch detaches from
the main branch, flattens out, and eventually spans the phase
between 2π and 4π ; (ii) the 3u′ splits from the 3u, forming
a fork on the right, before separating completely; and (iii)
with further increasing of the lattice strength, both of those
branches shrink and eventually disappear, never closing the
gap with the main branch.

In Figs. 7(b) and 7(d), the spectrum as a function of the
nonlinearity at fixed phase and lattice strength gives a differ-
ent perspective. At weak nonlinearity, only the main branch
remains, underscoring that the soliton branches emerge and
extend out from the parabolic dispersion curve as the nonlin-
earity is strengthened. The left extremes of these branches in
Figs. 7(b) and 7(d) mark the threshold nonlinearity at which
the corresponding spectral lines, when plotted as a function of
δφ, reach the value of δφ/(2π ) = 1.4 fixed in these panels.

As a different perspective on our discussions in the previ-
ous sections, even when the spectrum is plotted as a function
of the nonlinearity in Fig. 7(d), a gap seems to emerge be-
tween the main branch and the 3u branch. Although the gap
is rather small, it is interesting that the 4d branch extends
into regimes of lower nonlinearity beyond the termination of
the main branch and 3u branch, precisely where those two
branches fail to meet. This is consistent with what we observe
in the complementary plot in Fig. 7(c), where that gap is more
prominent.

VIII. ANOMALOUS SPECTRAL FEATURES

The spectrum for negative nonlinearity displays several
unusual features that we did not observe with positive non-
linearity. We have noted some of these already, and now we
will identify a few others and also explain the origin of such
features. In order to track the interplay of the lattice and the
nonlinearity, in Fig. 8 we plot the spectrum as a function of
the bare phase in a grid, where we vary the lattice strength
and the nonlinearity in turn while keeping the other fixed, for
two different lattice periodicities q = 2 and q = 3.

This figure helps explain the curious detachment of certain
branches from the vertical axes, accompanied by a similar
detachment for the main branch, which we observed earlier
in Figs. 4 and 5. We confirm in Fig. 8 that this occurs only
for soliton branches that are commensurate with the lattice
period, for example, j = 2 for q = 2 and j = 3 for q = 3.
More significantly, the relevant commensurate branch needs
to be the lowest one still attached to the main branch or be
right below the main branch after having detached from it.
If the lattice was absent, the criterion from Sec. III suggests
the range −(q + 1)2π/2 < g < −(q − 1)2π/2, but the lattice
would shift that. As the magnitude of the nonlinearity is
strengthened, branches with higher values of j start “sliding
off” and detaching from the main branch. For q = 2 with
no lattice and V0 = 0, soliton branches j = 1, 2, and 3 slide
off the main branch as the nonlinear strength g gets more
attractive from g = −3 to −8 to −16. Likewise, for q = 3
with no lattice at V0 = 0, soliton branches j = 2, 3, and 4
slide off the main branch as the nonlinear strength g gets more
attractive from g = −12 to −16 to −30. When the lattice
is introduced, we observe the main branch detach from the
vertical axis along with the j = q upper branch, but only when
nonlinearity is in the range to have the two branches be adja-
cent, as with the g = −8 column for q = 2 and the g = −16
column for q = −3. At stronger or weaker nonlinearity, this
does not occur, for example, at g = −3 or −16 for q = 2 and
at g = −12 or −30 for q = 3.

Comparison among the different columns also clarifies
why this happens. We notice that for commensurate soliton
branches which are still attached to the main branch, as the
lattice splits the branch, the upper branch forms a hooklike
structure with the main branch, for example, g = −3, V0 =
0.1 for q = 2. This is exactly what happens even when the
commensurate soliton branch is detached; when the lattice
splits it, the upper branch tries to form a similar hooklike
structure with the main branch. We can see this as the lat-
tice strength is increased from V0 = 0.3 to 0.5 for q = 2 and
g = −8, and likewise when increasing from V0 = 0 to 0.5
for q = 3 and g = −16. In a variation of this same behavior
for q = 3 and g = −12, this occurs when the commensurate
branch is the lowest branch still attached to the main branch
when the lattice is absent: As the lattice is introduced, at
V0 = 0.5 we see that the main branch has detached from the
vertical axis and inches towards the 3u branch to form a hook.

One feature persists in these anomalous hook structures,
which is that the main branch never seems to join up with the
upper of the split commensurate branches, as we have noted
earlier. That remains the case, for example, with q = 2, g =
−8,V0 = 0.5 and for q = 3, g = −12,V0 = 0.5 in Fig. 8. This
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FIG. 8. Plots of chemical potential as a function of bare phase with the rows having fixed lattice depth V0 and the columns having fixed
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The lower left shows the rejoining of the 1u branch with the main branch, while the other one shows a three-way split of the j = 3 soliton
branch.

is a point of contrast with such hook structures that appear
when the main branch does not detach from the vertical axis
as for q = 2, g = −3,V0 = 0.1 in the same figure.

In Fig. 8, we use gray shading to highlight two other
anomalous spectral features: First, for q = 2 and g = −3,
increasing the lattice strength from V0 = 0 to V0 = 0.6 causes
the j = 1 branch to split; the gap between the branches
widens, until the upper branch 1u actually rejoins the evolved
main branch. Second, for q = 2, g = −16 and V0 = 1.5, we
find the j = 3 branch develops multiple splittings that we
label 3d, 3d ′, and 3u. The 3d branch disappears as the lattice
is strengthened to V0 = 3, and the two branches 3u and 3d ′
remain detached from both the main branch and the vertical
axis. Our labeling of these branches is based on their symme-
try properties, as defined earlier in Sec. V. This is illustrated
in Figs. 9(a1) and 9(a2), where the densities for the 3d and
3d ′ branches each have one minimum that coincides with a
lattice minimum, characteristic of the energetically lower split
branch. In contrast, that feature is absent for the density of the
3u branch shown in Fig. 9(a3), which additionally does not
have any of its density maxima aligned with a lattice mini-
mum, characteristic of an energetically higher split branch.

We can surmise that the two branches 3d and 3d ′ split
at what emerged as an inflection point at a lower lattice
strength. We can see something similar occurring for the
j = 4 branch in Fig. 8 for q = 3 at lattice depth of V0 = 0.9.
At higher lattice depth, V0 = 0.97, it is quite likely that there
are two separate branches that have split at that inflection
point, but we could only converge to the right branch as
shown.

In Figs. 9(b)–9(d), we examine, in further detail, the re-
joining of the 1u branch highlighted in the lowest-left panel of
Fig. 8. We plot the densities of a few points on the main branch
as well as along the 1u branch as it rejoins the main branch.
We label the main branch as 2d in this figure since Fig. 8
shows that at these lattice depths, the right termination of the
main branch is the 2d branch. Before joining, at V0 = 0.53,
the densities (shown as solid lines) along the 1u branch have
one minimum, as we would expect with j = 1, while the
densities along the main branch (shown in dotted lines) are
characteristic of Bloch waves with two maxima, as it should
be with q = 2. However, we note, at the left end of the 1u
branch still on the vertical axis, the density, shown as a thick
red line in Fig. 9(b2), is noticeably flattened. This remains so
as the branch detaches from the vertical axis at V0 = 0.55. But,
when it joins the main branch at V0 = 0.60, the flattened peak
morphs to develop a new minimum, heralding that it is now
on the main branch. But this point of joining is not a Bloch
wave and is markedly nonuniform in its modulation, having
characteristics of both branches that meet here.

IX. STABILITY OF STATES

Stability is a more relevant issue for attractive interactions,
particularly in the context of BEC. It is well known that a
sufficient atomic number can overcome the kinetic pressure
so that condensates with attractive interactions will eventually
collapse beyond some critical number of atoms. However, the
discrete energy levels associated with finite traps allow the
formation of metastable condensates [50,51] with sufficiently
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FIG. 9. (a1)–(a3) The top row shows the densities for the three
split branches for j = 3 for q = 2, g = −16,V0 = 1.5, highlighted
in Fig. 8. The three traces in each panel represent the densities at
the tips of each branch and for a point in the middle. The lower
panels provide details of the rejoining of the 1u branch for q = 2, g =
−3,V0 = 0.6, also highlighted in Fig. 8. (b1), (c1), (d1) The left
panels show the progression of the 1u branch as it detaches from
the vertical axis and joins the main branch. (b2), (c2), (d2) The right
panels show the evolution of the densities at the points marked on
the left panels: The dotted lines mark Bloch waves corresponding to
the 2d branch. The solid lines correspond to the 1u branch, with the
thick red one marking the left tip of that branch.

long lifetime for relevant experiments to be conducted [48].
The interaction energy per particle needs to be less than the
level spacing, and in 3D harmonic traps of oscillator length
l0, this translates to N � l0/a for atom species of scattering
length a. In a toroidal trap, the transverse confinement is
sufficiently strong to ensure that the system is in the transverse
ground state, so the limit is defined by requiring the effective
1D interaction energy to be less than the azimuthal energy gap
between the ground and the first excited state,

N

2πR

g3D

2π l2
� 3h̄2

2mR2
⇒ N � 3π l2

2Ra
, (15)

using our notation introduced in Sec. II. For example, consider
a ring of major radius R ∼ 10 µm such as used in a recent
experiment with ring traps [2], and transverse trap frequency
of ωr = 2π × 2000 Hz along the minor radius r typical for
creating quasi-1D systems [54]. Assuming 7Li, this condition
translates to N � 235 atoms, which is comparable to the num-
ber of atoms in the pioneering 3D experiment with lithium
in Ref. [48]. We also note that for these above values of the
parameters, the nonlinear constant g ∼ 9.4, which is of the
order of magnitude of values we use in our simulations.

In the remaining sections, we will examine the dynamical
stability properties of the solutions that we found, by consid-
ering a small perturbation around the mean-field stationary
states,

ψ (θ, t ) = ψ0(θ ) + δue−iμt e−iωt + δv∗e−iμt eiω∗t , (16)

and then solve the Bogoliubov equations [3] for the normal
modes of the fluctuations,

(H0 + 2g|ψ0|2 − μ)δu + gψ2
0 δv = ωδu,

−(H0 + 2g|ψ0|2 − μ)δv + g(ψ∗
0 )2δu = ωδu. (17)

If the angular frequencies ω of the normal modes have imag-
inary components and if Im(ω) > 0, then the fluctuations
would grow exponentially, indicating dynamical instability.

Figure 10 shows the stability properties for a relatively
weak nonlinear strength of g = −1, for three different lattice
periodicities q = 1, 2, and 3, and the lowest soliton branches
j = 1, 2, and 3 along the respective rows. The left column
shows the spectrum for each periodicity at a fixed lattice
depth. The remaining three columns plot the imaginary part
Im(ω) of the eigenmodes of the Bogoliubov fluctuations as
the lattice depth is varied. Dotted lines on the spectrum mark
the bare phase values δφ/(2π ) = 0.5, 1, 1.5 for which the
modes are plotted; they correspond to the tips of branches,
i.e., the solutions with nodes. The vast majority of the modes,
for every case shown, are purely real with Im(ω) = 0 which
is represented by the horizontal line present in all the plots. In
most of the plots, there are a few modes with nonzero Im(ω),
always the lowest one or two modes.

With no lattice present, all of the displayed solutions are
stable with all the modes being real, consistent with conclu-
sions in previous studies for repulsive interaction [1,55]. As
the lattice is strengthened, the lower branches, j = 1d, 2d ,
and 3d , remain stable, at least for weak lattices. The only
exceptions are the 3d branches for q = 1, 2 and the j = 2
branch for q = 3, which remain unsplit as far as we could tell.
Curiously, in the former case, the instability appears only for
a certain range of lattice depth. This is reminiscent of periodic
patterns that we observed for nonlinear stationary solutions
with a barrier, caused by the variation of the density at points
of transition of the potential [44]. We tested the stability up
to lattice depths of V0 = 20 and the lower branches remained
stable.

In contrast, the upper branches are unstable as soon as the
lattice is turned on, characterized by at least some nonzero
Im(ω). Their pattern of variation with the lattice depth is
diverse. A few key features are apparent: As the lattice gets
very deep, the instability seems to decline; there also appear
to be some islands of stability at certain lattice depths, anal-
ogous to the regimes of instability that we observe for the
lower branches. We do not yet have an explanation for why
those occur at those specific values, and this deserves further
investigation.

Our main observation regarding the dynamical stability
behavior is that the behavior for negative nonlinearity is the
opposite of that for positive nonlinearity [1], where we ob-
served that the upper branches were generally stable in the
presence of the lattice. In fact, the behavior was qualitatively
identical as described above, except that the stability of the
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FIG. 10. The measure of instability of the eigenstates as a function of the strength (±V0) is gauged by the imaginary part of the normal
modes Im(ω) of Bogoliubov fluctuations. The three rows have lattice periodicity q = 1, 2, and 3, respectively, for a low nonlinear strength
g = −1. The leftmost panels show a representative spectrum at a specific potential, indicated with vertical lines, indicating the bare phase
values δφ/(2π ) = 0.5, 1, and 1.5, for which the modes are plotted in the other three columns. The upper and lower branches are plotted
separately, except for the j = 2 branch for q = 3 in the bottom row since that branch was not observed to split. Nonvanishing Im(ω) marks
instability.

upper and lower branches is switched. This underscores that
the sign of the nonlinearity, as in whether interaction is attrac-
tive or repulsive, directly impacts the stability properties of
the soliton branches.

X. CONCLUSIONS AND OUTLOOK

Since the calculations with a lattice are obtained numer-
ically, we comment briefly on some of the challenges. We
find the solutions using Newton’s method in Fourier space,
where we use a finite number of basis states, which we have
described in our earlier paper [1]. Stronger nonlinearity re-
quires a larger basis and, curiously, we found that negative
nonlinearity requires more basis states than positive nonlin-
earity of the same magnitude. We first find the solutions with
no angular velocity 
 = 0 and then increment 
 gradually to
build the full spectrum. This has generally worked very well,
but when there are strong inflections or a jump in the branch,

the method can fail to find the continuation of a branch. Also,
it is possible to miss branches that may not terminate at a node.
We tried to account for these limitations, but despite our best
efforts, some spectral features or lines may be missing, par-
ticularly at stronger nonlinearity, which are computationally
more demanding.

Our examination of the negative nonlinearity induced
by attractive interaction complements our prior work with
positive nonlinearity [1] and completes our survey of the
landscape of stationary states of ultracold atoms trapped in
quasi-1D ring-shaped lattices. In the absence of an azimuthal
lattice, the analytical solutions display a convenient mapping
as the sign of the nonlinearity is changed. When the lattice
is introduced, the solutions are found to present symmetry
and stability properties that are, in many respects, the op-
posite between positive and negative nonlinearities, but not
completely. While certain features such as the splitting of
soliton branches by the lattice and general impact of an
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angular velocity remain unaffected by the change of sign of
the nonlinearity, there are various other features that are spe-
cific to attractive nonlinearity. The most prominent of those
is the progressive detachment and “falling off” of the soliton
branches from the main parabolic one, leading to new ground
states. When a solitonic branch with index commensurate with
the lattice periodicity is the lowest one still attached or the
highest one detached and energetically right below the main
parabolic branch, these branches are found to separate from
the vertical axis and tend to form a hooklike spectral pat-
tern. Among other spectral features that are observed, soliton
branches can undergo multiple splits and even rejoin after
detachment.

In the case of attempted rejoining of detached commen-
surate branches with the main parabolic branch, we found
certain persistent gaps. The phase of the states at the edge of
these gaps is found to be sensitive to the path of convergence
taken to approach those particular spectral points. This can be
directly translated to adiabatic evolution along different paths
by dynamically evolving the system parameters, such as angu-
lar velocity, lattice depth, and interaction strength. Examining
the path dependence of the phase under such variations is part
of our ongoing work.

The symmetry properties are not quite mutually oppo-
site between positive and negative nonlinearities, but they
are distinct. Likewise the stability features are generally
complementary with respect to the behavior of the upper
and lower branches in a lattice-induced splitting. The local-
ization properties of the states are the same regardless of
the sign of the nonlinearity, with soliton branches that are

incommensurate with the lattice periodicity having solutions
that tend to localize on introducing the lattice.

Together with our study of the case of repulsive nonlin-
earity [1], this paper will provide a firm theoretical basis
for exploring the dynamics of ultracold atoms in ring-shaped
traps, particularly in the substantially more interesting case
of having an azimuthal lattice. This system offers the pos-
sibility of examining numerous interesting phenomena in a
system that brings together elements of quantum mechan-
ics, topology, nonlinear dynamics, and mesoscopic condensed
matter physics. In the context of the relatively new field of
atomtronics, experiments on ring-shaped traps have used no
azimuthal potential variations [26] or have used localized
potentials as weak links [24,25]. But a lattice structure around
the circumference, as we consider here, can provide closer
ties to typical electronics systems; and due to the inherent
interactions among atoms, our study can have direct relevance
for future growth of this field. The intrinsic description in
terms of a NLSE also broadens the possibility of applications
to fiber-optical systems as well. We are currently working on
applying our results to understand the dynamics of a coher-
ent median in ring-shaped lattices, and we hope to motivate
experiments that will explore this very rich system.
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